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Abstract. There exists no formal treatment of non-renewable resource (NRR) supply, systematically
deriving quantity as function of price. We establish instantaneous restricted (fixed reserves) and
unrestricted NRR supply functions. The supply of a NRR at any date and location depends
not only on the local contemporary price of the resource but also on prices at all other dates
and locations. Besides the usual law of supply, which characterizes the own-price effect, cross-
price effects have their own law. They can be decomposed into a substitution effect and a stock
compensation effect. We show that the substitution effect always dominates: A price increase
at some point in space and time causes NRR supply to decrease at all other points. Our new—
although orthodox—setting takes into account not only NRR supply limitations, but also the
heterogeneity of NRR deposits, and the endogeneity of their development and opening. Our
analysis extends to NRRs the partial-equilibrium analysis of demand and supply policies. Thereby,
it provides a generalization of results about policy-induced changes on NRR markets.

Résumé. L’offre de ressources non renouvelables. Aucune étude ne caractérise de manière formelle
l’offre de ressources non renouvelables (RNRs), c’est-à-dire leur quantité produite en fonction de
leur prix. Nous établissons les fonctions d’offre restreinte (à réserves données) et non-restreinte
des RNRs. A chaque date et sur chaque marché, leur offre dépend non seulement du prix courant
mais aussi du prix aux autres dates et sur les autres marchés. Au-delà de la loi de l’offre habituelle,
qui caractérise l’effet prix propre, les effets prix croisés obéissent à leur propre loi. Ces derniers
consistent en un effet substitution et en un effet compensation qui est lié au stock de ressource.
Nous montrons que l’effet substitution domine toujours l’effet compensation : un accroissement
du prix à une date sur un marché cause une réduction de l’offre d’une RNR aux autres dates et
sur les autres marchés. Notre modèle est nouveau bien qu’il soit orthodoxe. Il tient compte non
seulement de la disponibilité limitée des RNRs, mais aussi de l’hétérogénéité de leurs gisements et
du fait que le développement et l’ouverture de ces derniers sont endogènes. Notre analyse étend
l’analyse en équilibre partiel des politiques publiques au cas des RNRs. Ainsi, elle permet de
généraliser des résultats existants quant aux effets des politiques publiques sur les marchés de
RNRs.
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Werner Sinn and Cees Withagen. Julien Daubanes is also very grateful to Andrés Carvajal and two
anonymous referees for their suggestions on the previous version of the paper. Financial support from the
Social Science and Humanities Research Council of Canada, the Fonds Québécois de recherche pour les
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1 Introduction

The standard theory of supply treats price as exogenous. Curiously, such a treatment

is missing for non-renewable resources (hereafter NRRs). We fill the gap in this paper,

providing an analysis that can also be adapted to commodities that need to be produced

before being allocated to various uses in space and time. The path of prices over time and

their distribution in space are taken as parametric and we study the properties of supply

functions, that is the effect on the quantity supplied at any date or location of a price

change occurring at any date or location. This approach is highly orthodox. However, it is

new and instructive.

The question of NRR supply has a long history and remains very contemporary. It was

first addressed by Gray (1914) and formally undertaken by Burness (1976). They specifically

inquired about the effect on the extraction path of changing the exogenous price, assumed to

be constant throughout the extraction period. Sweeney (1993) later attempted to reconcile

NRR supply with conventional supply theory, by deriving resource supply as a function of

the contemporary producer price. He stated that “static supply functions, so typical in

most economic analysis, are inconsistent with optimal extraction of depletable resources”

(p. 780) but left the task unfinished.

This research is mainly motivated by the recent interest in the effectiveness of policies

to reduce the use of carbon NRRs: more precisely, the effects across time and/or space

of decisions implemented at various future dates and locations. First, the “green para-

dox” literature has examined taxation-induced intertemporal changes in NRR extraction.

The initial contributions of Long and Sinn (1985), and Sinn (2008) assumed reserves to

be homogeneous and given rather than heterogeneous and produced (by exploration and

development). More recent papers relaxed these assumptions in various ways. For example,

Hoel (2012), van der Ploeg and Withagen (2012a, 2012b, 2014) and Grafton, Kompas, and

Long (2012), among others, considered that some part of the resource may be left unex-

ploited after a demand-restricting policy change. Second, the “carbon leakage” literature
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has further considered interregional changes in NRR use. Fischer and Salant (2013), for

example, extended the analysis of Eichner and Pethig (2011) to cases of incomplete NRR

exhaustion. Third, some have focused on the NRR quantity left unexploited. Long-term

effects of optimal carbon policies on “stranded NRR assets” have been examined by van

der Ploeg and Rezai (2016). Harstad (2012) studied direct supply policies, showing that

buying up and sterilizing NRR reserves will reduce consumption and emissions, whether

supply is static as in the core of his paper, or dynamic as in his two-period extension (p.

97).

To address these currently important and complex issues, economists have hitherto

focused on market equilibria responses, which combine supply and demand reactions, thus

circumventing the preliminary separate treatment of supply and demand reactions which is

customary in standard microeconomics. However, NRR demand being considered ordinary,

NRR market equilibria responses are traditionally attributed to supply reactions.

By contrast, in this paper, we intend to identify general properties of NRR supply

at various dates and locations—continuing the task undertaken by Gray (1914), Burness

(1976), and Sweeney (1993). We then show how the obtained properties extend the partial-

equilibrium analysis of demand and supply policies to NRRs, also illustrating how they

can be used in the time-honored supply and demand diagram. The analysis has immediate

applications to the green paradox, spatial carbon leakages and NRR extraction responses

to various policies, including the response of stranded assets.

1.a Our model of NRR supply and related literature

In the textbook formulation of a supply function, producers take the price as given and

choose production to maximize profits. Similarly, in the main part of this paper, supply at

any given date and location depends on exogenous prices over time and at various locations.

Such a highly orthodox approach is new for NRRs. The literature treats NRR prices as

constant or as a single-parameter path, or alternatively studies the intersection of NRR

supply and demand without any prior treatment of supply.
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We examine a NRR that comes in a variety of deposits. For each deposit, the amount

of exploitable reserves to be extracted needs to be previously developed at some cost:

Producers first choose when and how much reserves are developed, and then how much to

extract from developed reserves over time. As a matter of fact, NRR deposits not only differ

by their size and their date of development and opening, but also by their geology, depth

or quality, and location. This heterogeneity is reflected in the technologies underlying the

cost of reserve development and the cost of extracting, transforming and transporting the

production from each deposit.

This setup allows to study the flow of NRR supply at three basic levels: the contribution

of each single deposit, aggregate supply, and the allocation of the latter to each outlet. At

each level, we characterize supply as function of prices, and study their most fundamental

properties. We also distinguish between short-run and long-run supply according to whether

reserves are restricted or can be endogenously adjusted (McFadden, 1978).

Therefore, this model offers a highly general representation of NRR supply, combining

three central aspects of NRRs that have given rise to a number of important contributions:

(ı) the multiplicity and heterogeneity of NRR sources, (ıı) the endogeneity of the quantity

developed and exploited from these sources, and (ııı) the endogeneity of deposits’ opening.

The following discussion explains how our model of NRR supply relates to other existing

treatments.

Heterogeneity of deposits. NRRs often exist in various deposits, which differ by their

size, location, geology, including the form that the resource takes. We give due and careful

consideration to resource heterogeneity. The output supplied will be assumed homogenous,

but the conditions of the resource development and extraction may vary, especially due to

variations in the accessibility or quality of the geological reserves.

There are two main alternative approaches that have been used in the literature to deal

with such a resource heterogeneity. One is to consider that the cost of resource production

increases with the past cumulative extraction; this idea was already present in Hotelling

3



(1931), then addressed by Gordon (1967), and further perfected, among others, by Weitz-

man (1976) and Salant, Eswaran, and Lewis (1983).

Progressively rising extraction costs were introduced to refine the microeconomic rep-

resentation of deposits’ exploitation for some NRRs and extraction techniques. According

to Gordon (1967), they are particularly relevant when the structure of a deposit requires

that the resource of the highest quality or best accessibility be extracted first, before reach-

ing worse units as far as quality and accessibility are concerned—e.g., metal mining—and

when the pressure from remaining reserves within a deposit facilitates extraction from this

deposit—see, e.g., the empirical evidence presented in Anderson, Kellogg, and Salant (2018)

on the role of intra-deposit pressure in oil drilling.

This approach is often assumed to be also valid at the industry level—that is, across

deposits rather than within. It has been used, for example, to model the aggregate supply of

fossil fuels in the recent literature that investigates the green paradox. However, the increase

in the industry’s costs with cumulative extraction is controversial because it assumes that

the relevant stock of reserves is the industry’s aggregate and that, within the aggregate

reserves, least-cost resources are used first irrespective of the deposit from which they are

extracted.1

The second approach to resource heterogeneity is to consider a multiplicity of different

and independent deposits which may all contribute to aggregate supply. This representation

may be attributed to Herfindahl (1967) and gave rise to a series of papers on the optimum

sequence and possible overlap of deposit exploitation—see, e.g., Amigues, Favard, Gaudet

and Moreaux (1998), Gaudet and Lasserre (2011), and Salant (2013).2

1As Slade (1988) put it ”The idea that the least-cost deposits will be extracted first is so firmly embedded in
our minds that it is an often-made but rarely tested assumption underlying the construction of theoretical
exhaustible-resource models.” (p. 189). See also her references. According to Livernois and Uhler (1987),
“if the sign of the relationship between the aggregate reserve base and aggregate extraction costs is
ambiguous, then these models have very little to predict about the nature of optimal exploration or the
likely shape of price paths.”

2The computable version of the integrated assessment model due to Golosov, Hassler, Krusell, and Tsyvinski
(2014), for example, uses three deposits with different costs of extraction and no (reserve) stock effect on
these costs. However, they also assume reserves to be exogenous.
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In the main part of our analysis, we adopt the second approach to resource heterogeneity.

On the one hand, it is less restrictive in the sense that it does not assume that total reserves

are extracted in any particular pre-determined order. On the other hand, this multi-deposit

approach emphasizes that, for most NRRs, resource heterogeneity is manifest in differences

between deposits—differences in size, exploration and development costs, and extraction

costs mostly—probably more than in within-deposit differences.

Moreover, we extend our analysis to take into account that some NRRs exhibit intra-

deposit heterogeneity. In this extension, we assume that each deposit’s extraction cost

depends on its own cumulative extraction. Our analysis of price effects in this context

allows to verify that the presence of stock effects does not imply aggregation issues, thus

establishing the consistency of the first approach to model aggregate NRR supply with

progressively rising costs.

Development of exploitable reserves. In general, the stock of reserves to be exploited

does not become available without some prior exploration and development efforts. The

discovery of reserves and their development as exploitable reserves is an important factor

of NRR supply that reacts to NRR prices—see, for example, Arezki, van der Ploeg, and

Toscani’s (2016) empirical findings on oil discoveries (p. 23).

At the aggregate level, exploration and exploitation often take place simultaneously as

in Pindyck’s (1978) and Quyen’s (1988) models3—see Cairns (1990) for a comprehensive

survey of related contributions.

At the microeconomic level of a deposit, however, they occur in a sequence, as in Gaudet

and Lasserre (1988) and Fischer and Laxminarayan (2005). We, therefore, adopt the latter

representation for each deposit.

Opening of deposits. A fundamental factor determining the supply of NRRs is the timing

of deposits’ openings. In the case of oil, for example, the importance of this aspect was

emphasized by Venables (2014) and Anderson et al. (2018), who consider that oil supply

3This is also the case in Arrow and Chang (1982) who further deal with the uncertainty surrounding reserve
discoveries. For simplicity, our analysis does not address this aspect.
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results from a sequence of investments in new fields.4 Our model gives due consideration

to the fact that deposits’ development and opening is a matter of choice.

As explained above, we also consider that producers’ decision to open a deposit is

linked with expenditures in exploration and development that determine the quantity of

resource that can ultimately be extracted from each deposit. In an extension, moreover, we

also consider that these decisions are affected by technical progress in the technologies of

exploration and development of the resource.

1.b Structure and principal results

In Section 2, we progressively develop our model of NRR supply. When a deposit’s ex-

ploited reserves are given, an exogenous price change occurring at any date entails a pure

intertemporal substitution effect. At the same time, a change in the resource price path

faced by producers may also affect the quantity of reserves developed, and exploited, from

each deposit. We call this the stock-compensation effect and we show that the substitution

effect dominates the compensation effect, even when the latter is accompanied by a change

in the deposit’s opening date.

Consider an increase in price at some particular date leaving prices at all other dates

unchanged; the pure intertemporal substitution effect increases supply at that date and

reduces supply at all other dates; the stock effect results in an increase in ultimately ex-

tracted reserves. It follows that supply at the date of the price rise increases as the stock

effect and the substitution effect work in the same direction; this is the NRR version of the

law of supply. At all other dates, since the substitution effect dominates, it follows that

supply diminishes despite the stock effect; this effect may be called the law of intertemporal

substitution in NRR supply.

When the time dimension is combined with a space dimension, the same result applies to

4These studies do not, however, establish conventional oil supply as a function of oil price parameters.
Venables (2014) assumes that the oil price grows at a constant rate. Anderson et al. (2018), for empirical
purposes, only consider the spot price as a parameter, assuming that future prices are randomly distributed
accordingly.
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a price change occurring at a point in space and time. Thus, the intertemporal substitution

effect is accompanied by an analogous spatial substitution effect: A price rise at any point

in space and time reduces supply at all other points.

In the same section, we explain how our model and results differ both from standard

treatments of NRR and from the conventional supply analysis of non-resource commodities.

It is customary to use the apparatus of supply and demand to study policies; this

is the realm of partial-equilibrium analysis. Applying this apparatus to NRR markets

requires taking into account the intertemporal nature of NRR supply and its properties. In

Section 3, we explain how the properties of NRR supply established in Section 2 extends the

partial-equilibrium policy analysis to NRRs. We provide two examples, involving a carbon

NRR: first, demand taxation and the green paradox, and, second, reserve policies targeting

stranded carbon assets.

In Section 4, we discuss three other aspects—with detailed analytical extensions in

the Appendix—that affects some of our results. First, we consider technical progress in

the technologies of exploration and development and show that our results carry over for

an initial period of time in this context. Second, we assume resource heterogeneity not

only across but also within deposits. In this context, a tedious analysis shows that the

law of cross-price effects holds over cumulative quantities. The third extension addresses

investments in extraction capacities.

We conclude by putting the results in perspective, reiterating their theoretical and policy

relevance, and highlighting their applicability to all commodities that must be produced

prior to being dispatched in space or time.

2 A model of non-renewable resource supply

There are various possible NRR sources j = 1, ..., J (deposits, developed or not) that may

contribute to the supply of a unique homogenous resource. Let xj
t ≥ 0 denote the quantity

produced from deposit j at each of a countable set of dates t = 0, 1, 2, ... Aggregate supply
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at each date t is

xt =

J∑

j=1

xj
t . (1)

Deposit j may only come into production at and after the date τ j ≥ 0 at which it is

developed:

xj
t = 0, t < τ j . (2)

For simplicity, these deposits’ opening dates are considered exogenous at this stage.5 It is

further assumed that τ j = 0 for at least one deposit.

Each source j is constrained by its own finite initial stock Xj > 0 of the resource.

Since the resource is non renewable, the following exhaustibility constraint applies to the

production of each deposit j:
∑

t≥0

xj
t ≤ Xj. (3)

The present-value cost of producing a quantity xj
t from deposit j is denoted by Cj

t (x
j
t ),

where the function Cj
t may be time varying and deposit specific, is increasing and twice

differentiable, and satisfies Cj′′
t (xj

t ) > 0. For simplicity, we also assume6 Cj
t (0) = 0.

The stock of reserves to be exploited following a deposit’s opening does not become

available without some prior exploration and development efforts. For each deposit j, it

is assumed that the development of initial exploitable reserves Xj is instantaneous and

undertaken only once, at date τ j , at a present-value cost Ej(Xj); the Ej function is twice

differentiable, increasing, strictly convex, and satisfies Ej(0) = 0 and, at least for one

deposit, Ej′(0) = 0. The latter property that the marginal cost of reserve development is

zero at the origin for some j is introduced because it will be is sufficient to ensure that a

positive amount of reserves is developed; otherwise Ej′(0) ≥ 0, so that a resource whose

marginal exploration and development cost is too high for profitability does not need to be

developed.

5The analysis will be extended to endogenous opening dates further below in this section.
6The qualitative results follow through in presence of a fixed cost or lump sum tax.
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As a result, deposits differ by their size Xj, their geology, location and depth or quality,

as reflected in the technologies underlying both extraction costs Cj
t and exploration costs

Ej.

We will first establish the properties of NRR supply in the simplest and standard case

in which the resource is supplied to a single outlet. This includes the well-known Hotelling

case in which the resource is produced from fixed (restricted) reserves. The endogeneity

of reserves and the dispatching of supply to a multiplicity of outlets will be examined

thereafter.

2.a NRR supply to a single outlet

There is a single resource outlet at which the present-value producer price is denoted by

pt ≥ 0. The stream of prices p ≡ (pt)t≥0 is taken as given by the producers and treated as

exogenous at this stage.7 We assume that pt > Cj′
t (0) for each deposit j = 1, ..., J for at

least one date, so that, the extraction of exploitable reserves, if any, is warranted.

Clearly, the problems of producers exploiting deposits j = 1, ..., J are independent from

each other. Consider any particular deposit j. Since the development of reserves is costly,

the optimum plan of the producer will always bind the exhaustibility constraint (3). In

other words, leaving part of any deposit’s developed stock ultimately unexploited does not

maximize cumulative net discounted revenues. For a given price sequence p, the cumulative

value function corresponding to the optimum of the producer exploiting deposit j is

max
(xj

t )t≥0,X
j

∑

t≥0

(
ptx

j
t − Cj

t (x
j
t )
)
− Ej(Xj) (4)

subject to (2) and to the binding exhaustibility constraint

∑

t≥0

xj
t = Xj. (5)

7In Section 3, we will examine the implications of our results in a partial-equilibrium setting in which prices
are endogenously determined on markets.
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Denoting by λj the Lagrange multiplier associated with constraint (5), the necessary

first-order conditions characterizing the optimum extraction path are

pt − Cj′
t (x

j
t ) ≤ λj with

(
pt − Cj′

t (x
j
t )− λj

)
xj
t = 0, ∀t ≥ τ j . (6)

At dates when extraction is strictly positive, we have

pt − Cj′
t (x

j
t ) = λj , ∀t ≥ τ j , xj

t > 0. (7)

Otherwise, pt − Cj′
t (x

j
t ) ≤ λj for all xj

t ≥ 0, i.e., equivalently, pt − Cj′
t (0) ≤ λj , and

xj
t = 0; indeed, if the price is too low at some date, production may be interrupted before

exhaustion, and start again once prices are high enough.8 For the choice of initial reserves,

the first-order condition is

Ej′(Xj) = λj . (8)

Expression (7) is the Hotelling rule stating that the marginal profit from extraction must

be constant in present value over the period of active exploitation, equal to λj, the unit

present value of reserves underground, called the Hotelling scarcity rent. (8) is a standard

supply relationship that sets marginal cost equal to price. The price in this case is the unit

scarcity rent and is defined implicitly; in other words, reserves are the output of a production

process whose technology is described by the cost function Ej . However, reserves are not

like conventional goods that can be produced under constant returns to scale, because of

the scarcity of exploration prospects. The supply of reserves is thus a strictly increasing

function of the rent:9

Xj = Xj(λj) ≡ Ej′−1(λj). (9)

The Hotelling rule (7) implicitly defines the solution of problem (4)-(2)-(5) as a series

8The condition for supply interruptions must also hold after exhaustion.
9The finiteness of exploration prospects amounts to a fixed factor being imposed on the production process.
Hence reserves are produced under rising marginal costs.
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of functions xj
t giving extraction at each date when it is strictly positive: The function

xj
t = xj

t (pt, λ
j), ∀t ≥ 0, (10)

can be defined at all dates. It is strictly increasing in the current price pt and strictly

decreasing in the rent λj at all dates when xj
t > 0. At other dates, extraction is given by

the same function, which then takes a zero value: all dates t < τ j prior to the deposit’s

opening, if any, during supply interruptions, if any, and after exhaustion.

As Sweeney (1993) noted, functions like (10) can be interpreted as conventional static

supply functions, whose sole arguments are the price pt of the extracted resource and the

reserve price λj . However, λj is not a conventional price; unlike standard price parameters,

it corresponds to the “shadow” or implicit valuation of reserve units and, therefore, is

endogenous to the resource producer problem. Consequently, formulating regular supply

functions further requires expressing the rent λj as a function of the vector of exogenous

prices p.

2.b The benchmark Hotelling case: Restricted NRR supply with a single outlet

The above model assumes that reserves are endogenous, to reflect that, in the long run,

deposits’ NRR capital can be increased by investment in exploration and development. In

the short run, however, exploitable reserves are already established and, therefore, fixed.

The resulting notion of supply is called restricted (McFadden, 1978) and its properties are

now examined.

In fact, the restricted case of our model turns out to be the standard Hotelling description

of deposits in which reserves are fixed. The properties of NRR supply are intuitive in this

case and will be discussed further below.

Treating the stock of initial reserves as given at this stage and combining all relations (10)

into (5), we obtain that deposit j’s rent is a function increasing in all prices in p ≡ (pt)t≥0

and decreasing in stock Xj; we will denote that function with a tilde, and will do so for all
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functions of given reserves:

λj = λ̃j(p,Xj). (11)

Note that λ̃j is strictly increasing in pt when extraction xj
t is strictly positive. Otherwise

a price change at a date when supply is zero may leave the rent unchanged. Substituting

(11) into (10) gives the restricted supply functions, one at each date:10

xj
t = x̃j

t (p,X
j) ≡ xj

t

(
pt, λ̃

j(p,Xj)
)
, ∀t ≥ 0. (12)

These functions do not make use of the first-order condition for initial reserves. Conditional

on the initial reserve stock Xj and given the sequence p of prices, they determine how the

supplier allocates extraction from the stock to different dates.11

The restricted NRR supply function x̃j
t for any date t ≥ 0 is increasing in Xj . Holding

the reserve level unchanged, Appendix A examines the partial effects of prices, that is the

direct price effects. It shows that a rise in price pT at date T of the exploitation phase

induces extraction to diminish at all exploitation dates t 6= T , and to increase at date T .

The latter effect confirms that the law of supply obviously applies to restricted supply.

Our results about restricted supply from an individual NRR deposit, and their imme-

diate implications for aggregate restricted NRR supply, are summarized in the following

proposition.

Proposition 1 (Restricted NRR supply to a single outlet)

1. (Stock effect) An exogenous rise in exploitable reserves Xj increases (ı) restricted

10A standard restricted supply function depends on the output price, on the prices of variable factors, and
on the quantity of at least one restricted factor. Here, variable-factor prices are the prices of the factors
entering the extraction technology, omitted from the notation for simplicity, and the restricted factor is
the initial stock of reserves.

11Moreover, Hotelling’s lemma is obtained from the optimized value function by use of the envelope theorem
for constrained problems. That is, substituting (12) and (11) into the Lagrangian function associated
with problem (4)-(2)-(5) and differentiating with respect to pt, while holding the restricted level of Xj

and its multiplier as well as all extraction rates constant, gives the restricted supply at t. Hotelling’s
lemma is obtained similarly in the case of non-restricted supply functions defined further below. The
non-restricted value function is obtained by replacing the restricted level of Xj and the rent λj by their
optimized values Xj∗(p) and λj∗(p) defined shortly below.
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supply from each individual deposit at each of its exploitation dates, and, therefore,

(ıı) aggregate restricted supply from all deposits at each date;

2. (Cross-price effects) A price rise at any date T reduces (ı) restricted supply from each

deposit at each of its exploitation dates t 6= T , and, therefore, (ıı) aggregate restricted

supply from all deposits at each t 6= T .

The effects just established are obviously non-zero if they involve dates when exploitation

is active. To sum up, if xj
t > 0, then restricted supply x̃j

t (p,X
j) is strictly increasing in Xj

and in pt; if, furthermore, xj
T > 0, T 6= t, it is strictly decreasing in pT . Otherwise, stock or

price changes may leave extraction unchanged, so that the above effects may in general be

zero. The same will be true all along the paper for all effects that we will examine. For the

sake of brevity, we will establish stock and price effects regardless of whether extraction is

strictly positive or interrupted at the dates these effects involve, and, therefore, we will not

repeat the above conditions under which they become non-zero.

2.c Properties of supply in the Hotelling model

The above restricted NRR supply corresponds to supply in the standard Hotelling model

of NRR markets: In each deposit, reserves are established at a given level and are to be

extracted over time. In this context, in particular, the resource literature has seldom consid-

ered exogenous price changes, and never in a systematic treatment of supply. One exception

is Burness (1976) who forced prices to be constant in current value and investigated the

effect on production of a simultaneous change in all prices.

Although proper supply functions have hitherto not been characterized and, therefore,

examined in this case, their properties are now intuitive to economists of non-renewable

resources and implicitly used to understand policy-induced NRR equilibrium market re-

actions. For example, to explain the green paradox policy-induced equilibrium change in

NRR extraction, Sinn (2008) proposed the metaphor of a closed “pneumatic system of var-

ious pipes connecting various pistons” (p. 378): “If only one piston is pressed down, the
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others go up.” Clearly, this metaphor applies even more implacably to the above supply

setting than to Sinn’s Hotelling market equilibrium setting. However, Sinn’s analysis does

not extend to unrestricted NRR supply, when reserves to be extracted are allowed to ad-

just. Accordingly, the green paradox has been questioned in setups in which reserves are

endogenous, but only on the ground of particular cases.

As Section 3 will illustrate, these properties are fundamental to predict NRR market

reactions to public policies. The remainder of this section aims at showing that the supply

properties indicated by Proposition 1 carry over to much more general settings.

To start with, in the next subsection, we examine the case of unrestricted supply—

endogenous reserves—allowing the properties of NRR supply to be compared with the

supply of conventional goods that are not subject to supply limitations, unlike NRRs.

2.d Unrestricted NRR supply with a single outlet

Consider the choice of initial reserves. While (9) is a standard stock supply relation, deposit

j’s reserve price λj is not a standard exogenous price but an endogenous variable. The

supply of reserves at the optimum of deposit j’s producer in problem (4)-(2)-(5) can be

expressed as a function of exogenous prices. The value of the unit rent at the producer’s

optimum satisfies λj = λ̃j(p,Xj). By (9), the optimum amount of reserves satisfies Xj =

Xj(λj) = Xj
(
λ̃j(p,Xj)

)
, which implicitly defines Xj and λj as functions of p:

Xj = Xj∗(p) and λj = λj∗(p) ≡ λ̃j
(
p,Xj∗(p)

)
. (13)

Thus, the supply of reserves depends positively on each of the whole sequence of resource

prices, although this sequence can be summarized into one single rent.12

Restricted supply or factor demand as well as restricted cost or profit functions are

12As before, factor prices are omitted for notational simplicity from the reserve-supply function. They are
the prices of the factors entering the extraction process because they affect the optimum rent, but also
the prices of the factors entering the exploration and development process which are omitted arguments
of the Ej cost function.
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usually interpreted as representations of the short run. In the long run, the restricted factor

is variable. This interpretation is adequate here, exploration and reserve development being

analogous to capital investment. Just as capital goods are produced, reserves in (13) are

the outcome of a production process. Then, they are used as a factor of production in the

resource production process that generates the restricted supply (12).13

The optimal (unrestricted) NRR supply functions are defined as

xj∗
t (p) ≡ x̃j

t

(
p,Xj∗(p)

)
, ∀t ≥ 0. (14)

Appendix B presents the standard comparative supply analysis. Besides the usual law of

supply that characterizes the own-price effect, our analysis establishes that, despite reserves’

endogeneity, cross-price effects on extraction are systematically negative.

The following proposition summarizes the properties that are specific to NRR supply

functions: the price effect on the stock, and the cross-price effect on extraction. Having

shown these properties for each deposit, they follow through at the aggregate level.

Proposition 2 (Unrestricted NRR supply to a single outlet)

1. (Price effect on stock) A price rise at any date T increases (ı) unrestricted devel-

oped reserves from each deposit, and, therefore, (ıı) aggregate unrestricted developed

reserves from all deposits.

2. (Cross-price effects) A price rise at any date T reduces (ı) unrestricted supply from

each deposit at each of its exploitation dates t 6= T , and, therefore, (ıı) aggregate

unrestricted supply from all deposits at each t 6= T .

13Although this is not usually modeled, capital does get depleted (worn out) by production at a rate that
depends on the rate of production. However conventional capital can be replenished in a plant while this
is not, or only partially, true of the reserves of a mine. On the related subjects of resource substitution
and sustainability, see the huge literature initiated with the 1974 Symposium of the Review of Economic
Studies.
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2.e NRR supply versus supply of conventional goods

In the previous subsection, each deposit’s unrestricted NRR supply corresponds to supply

in the Gaudet and Lasserre’s (1988) extension of the Hotelling setup to adjustable reserves.

In this context, Proposition 2 indicates that the cross-price effect property of NRR supply,

which is intuitive in the Hotelling model, extends to the case in which reserves can be

adjusted—rather than fixed—as they are in the long run.

This case allows the comparison between NRR supply and the supply of conventional

goods. Indeed, conventional goods in the classical theory of supply are producible without

limit under conditions of constant returns to scale. By contrast, we have assumed decreasing

returns to the development of reserves—increasing marginal cost of development, i.e., strict

convexity of the cost function Ej . This assumption is inherent in the long-run production

of NRR reserves as it reflects the finiteness of extraction and exploration prospects. It is

also essential to the result. Suppose on the contrary that the development of reserves were

subject to constant returns to scale, as would be the case for a conventional good first

produced and then allocated to the different dates: Ej(Xj) = ejXj . As before, λj would

give the present value of each reserve unit so that λj = ej . The rent, thus determined by

the technology, would then be insensitive to variations in prices p, and supply at t would

only depend on current price by (12). Constant returns to scale in the development of Xj

would make all cross-price effects on supply vanish, just like in the classical theory of supply

under separable costs.

It follows that the supply of a NRR differs from a conventional supply function under

identical standard technological assumptions of cost separability in that it not only depends

on its own price, the current price, but also on the prices at all other dates. The comparative

static properties of NRR supply are thus defined over a wider set of variables than those

of a conventional supply function. With conventional supply functions, attention is usually

limited to the law of supply, the effect of a change in the price of the good supplied.14 With

14We ignore factor prices for simplicity.
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NRRs, supply cross-price elasticities, the effect on supply at t of changes in prices at other

dates, are also of theoretical interest: As the remainder of this section will show in a highly

general model of NRR supply, they obey their own law. This law, moreover, is fundamental

for the understanding of policy-induced equilibrium effects, as Section 3 will illustrate.

The decomposition of the change in NRR supply at t following a price change at T 6= t

into a pure substitution effect and a stock compensation effect may be reminiscent of the

decomposition of Marshallian demand. However, these decompositions are certainly not

isomorphic: In Appendix C, for the interested readers, we explain and graphically illustrate

the difference.

2.f Endogenous opening dates with a single outlet

In fact, in the long run, producers not only choose their development efforts, but also the

dates when these efforts are made. Assume now that each deposit j’s development date τ j is

freely controlled by the producer: It may be zero, or, if it is an interior solution, is a strictly

positive integer. Assume, moreover, that each deposit j’s cost of reserve development

Ej(Xj) does not change with the development date τ j .15 The problem of the producer

exploiting deposit j becomes

max
(xj

t )t≥0,τ
j ,Xj

∑

t≥0

(
ptx

j
t − Cj

t (x
j
t )
)
−Ej(Xj) (15)

subject to (2) and to the binding exhaustibility constraint (5).

The development of the resource may not be a necessity at early dates but become

justified at later dates by the possibility of making a profitable exploitation. Here, however,

an optimum extraction plan will not be constrained by the date of development of reserves to

be extracted. Indeed, in absence of technical progress in reserve development, constraint (2)

will never be active in the producer’s optimum: If it were so for any development/extraction

plan, the producer could obtain at least the same profit by producing the same amount of

15Technical progress in exploration and development will be examined in Section 4.
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reserves at an earlier date, because this would imply the same present-value cost.

In this context, therefore, the development date of deposit j can be considered to be

fixed at τ j = 0 without loss of generality. Since the development of reserves can take place

at any sufficiently early date at no additional cost for producers, the model of this subsection

turns out to be an extension of Herfindahl’s (1967) influential multiple-deposit setup to the

case of convex extraction costs and endogenous and costly reserve development.

Considering that τ j = 0 for all deposits j = 1, ..., J , the effects of a price change

established in the previous subsection with exogenous development dates appear to follow

through unchanged.

Proposition 3 (Unrestricted NRR supply to a single outlet with endogenous

development dates)

1. (Price effect on stock) A price rise at any date T increases (ı) unrestricted devel-

oped reserves from each deposit, and, therefore, (ıı) aggregate unrestricted developed

reserves from all deposits.

2. (Cross-price effects) A price rise at any date T reduces (ı) unrestricted supply from

each deposit at each date t 6= T , and, therefore, (ıı) aggregate unrestricted supply from

all deposits at each t 6= T .

However, the formulation of Propositions 2 and 3 hides a difference between the effect

of a price change with fixed and endogenous development dates: In the context of this

subsection, a price change may modify the date of development. Assume, for example, that

the development/extraction plan for deposit j prior to the price change is such that reserves

are developed at the first date where extraction is strictly positive. A future decrease in

the price may cause extraction to become strictly positive at dates prior to the initial

development date, requiring that the opening of the deposit and, therefore, its development

be advanced. Whether development dates are endogenous or not, a price change at any

future date always induces supply at earlier dates to move in the opposite direction.
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2.g NRR supply to many outlets

For simplicity, we have focused so far on the dynamic interpretation of the NRR supply

model. However, to the countable set of dates t = 0, 1, 2, ... we may add a spatial dimension

indexed by l = 0, 1, 2, ..., l̄; in that formulation, the price ptl is the present-value producer

price at date t and location l. Location may then refer to a particular country or jurisdiction

characterized by a particular price sequence, or an outlet commanding particular marketing

efforts or transportation costs. The net spot revenue from selling the amount xj
tl extracted

from deposit j at location l at date t is ptlx
j
tl − cjtl(x

j
tl), where the function cjtl(x

j
tl) gives

the cost of selling specifically in location l at t the resource extracted from deposit j; it

may be a transportation cost, a marketing cost, etc. It is assumed that cjtl is increasing

and strictly convex. The net spot revenue from serving all locations l = 0, ..., l̄ at date t

is
∑

l=0,...,l̄

(
ptlx

j
tl − cjtl(x

j
tl)
)
− Cj

t (x
j
t ), where xj

t =
∑

l=0,...,l̄

xj
tl is the quantity of NRR extracted

from deposit j at date t and the function Cj
t (x

j
t ) gives the cost of extracting and otherwise

processing this quantity before dispatching it to all locations l = 0, ..., l̄. Like with a single

deposit, we assume that ptl > Cj′
t (0) + cj′tl(0) for each deposit j = 1, ..., J for at least one

date and location.

The obtained model is a highly general model of NRR supply. It not only integrates a

variety of heterogenous NRR sources and multiple outlets, in the spirit of Gaudet, Moreaux,

and Salant’s (2001) Hotelling extended setup, but also takes into account that deposits’

reserves and opening dates are endogenous. In this context, the producer exploiting a

deposit not only chooses the date of development/opening, his development efforts, and its

extraction level, but also the dispatching of the latter to the set of outlets. In general terms,

for a given matrix of prices, the cumulative value function corresponding to the optimum

development, extraction and allocation of the resource for the producer exploiting deposit
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j becomes

max
(xj

t )t≥0,(x
j

tl
)t≥0,l=0,...,l̄,τ

j ,Xj

∑

t≥0


 ∑

l=0,...,l̄

(
ptlx

j
tl − cjtl(x

j
tl)
)
− Cj

t (x
j
t )


− Ej(Xj), (16)

not only subject to (2) and to the binding exhaustibility constraint (5) as previously in this

section, but also subject to the extraction-allocation constraint

∑

l=0,...,l̄

xj
tl = xj

t , ∀t ≥ 0. (17)

In this problem, like in previous subsections, control variables τ j and Xj related to the

development of the resource may be considered fixed in a short-run perspective, or free in

the long-run. However, for the same reason as in Subsection 2.f, one can treat the opening

date τ j as exogenously set to zero without loss of generality: A producer can always advance

the date of the deposit’s development at no present-value cost; therefore, as far as supply

reactions are concerned, the case of endogenous opening is similar to the case in which the

opening takes place at date 0.

Defining υj
t as the Lagrange multiplier associated with the new constraint (17) and

keeping the notation λj for the multiplier associated with the exhaustibility constraint (5),

the necessary first-order conditions characterizing the producer’s optimum are

ptl − cj′tl(x
j
tl) = υj

t , ∀t ≥ 0, ∀l = 0, ..., l̄, (18)

for the allocation of the production at any date t to all locations l, and

υj
t − Cj′

t (x
j
t ) = λj, ∀t ≥ 0, (19)

for the choice of extraction at date t. For simplicity, and with no consequence on the sign

of the price effects to be established, we focus here on interior resource allocations in which
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xj
tl > 0. As far as the choice of initial reserves is concerned, it is determined by the same

condition (8) as previously.

Condition (19) is the counterpart of (7) in the single-outlet model, in which the implicit

value υj
t plays the role of the price at date t in the determination of the rate of extraction.

υj
t can be interpreted as the after-extraction resource rent, i.e., the implicit value of the

inventory to be dispatched. Condition (18) plays the role of allocating production to outlets

by equalizing the contributions to υj
t from the various locations.

The analysis is presented in Appendix D: It unfolds in the same way as in the single-

location treatment of Subsections 2.b-2.f, but in two stages rather than one. The following

proposition summarizes the results obtained for a single deposit’s reserves, extraction, and

allocation of this extraction to each outlet. It also presents implications for aggregate supply

from all deposits, which are straightforward.

Proposition 4 (NRR supply with multiple outlets)

1. (Stock effect) A rise in exploitable reserves Xj increases (ı) restricted supply from

each individual deposit j at each of its exploitation dates and each location, and,

therefore, (ıı) total restricted supply from all deposits at each t and each l, as well as

(ııı) aggregate restricted supply at each date t;

2. (Price effect on stock) A price rise at any date T and any location L increases (ı)

unrestricted developed reserves from each deposit, and, therefore, (ıı) aggregate un-

restricted developed reserves from all deposits, whether deposits’ opening dates are

endogenous or not.

3. (Cross-price effects) A price rise at any date T and location L reduces (ı) restricted

and unrestricted supply from each individual deposit j at date T at each location l 6= L,

and at each date t 6= T at each location l, and, therefore, reduces (ıı) total restricted

and unrestricted supply from all deposits at the same dates and locations, as well as
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(ııı) aggregate restricted and unrestricted supply at each date t 6= T , whether deposits’

opening dates are endogenous or not.

2.h Summary for aggregate NRR supply

In Section 3, we illustrate how the properties of NRR supply functions can be used to

analyze policies in partial equilibrium. For ease of exposition, we do so using the properties

of aggregate supply from the number of deposits, and consider that this supply serves a

single outlet at which price is pt at each date t. This means that we will focus on the

intertemporal dimension of NRR supply, pushing into the background the allocation of

extraction to various outlets.

From our previous results, however, it must be clear that aggregate supply to a single

outlet reacts to a price change at any date in the same way as it reacts to a price change at

any date at any of multiple outlets. The properties of aggregate NRR supply are summarized

in the following corollary.

Corollary 1 (Aggregate NRR supply)

1. (Stock effect) A rise in exploitable reserves Xj increases aggregate restricted supply

at each date t.

2. (Price effect on stock) A price rise at any date T , whether supply serves a single

or multiple locations, increases aggregate unrestricted developed reserves from all de-

posits, whether deposits’ opening dates are endogenous or not.

3. (Cross-price effects) A price rise at any date T , whether supply serves a single or

multiple locations, reduces aggregate restricted and unrestricted supply at each date

t 6= T , whether deposits’ opening dates are endogenous or not.

As will be explained further below, other interesting applications in the spirit of Section

3 but involving the spatial dimension of various outlets can be carried out using the same

methodology.
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Only after Section 3, and still focusing on aggregate NRR supply for simplicity, we

will consider more complex setups, showing how the form of the properties of NRR supply

functions established above are modified.

3 Partial equilibrium, policy analysis, and examples of application

Having defined and characterized NRR supply functions in the standard way opens the

field of all applications that rely on the demand-supply schedule, in particular the partial-

equilibrium analysis of economic policies. Policy-induced changes are more complex than

the above analysis of supply for two main reasons. First, policy often affects equilibrium

prices indirectly, because it affects the demand for, or the supply of, the NRR. Second,

policy-related price changes usually take place over an extended period rather than at a

single date.

Two examples are provided below, involving a carbon NRR: one on the taxation of

demand, raising the issue of the green paradox; one on a reserve-reduction policy targeting

stranded carbon assets. The equilibrium is determined by the intersection of supply with

demand. Our applications emphasize the intertemporal dimension of NRR supply, thus

pushing into the background its spatial dimension:16 Therefore, we will consider a single

outlet as in Subsections 2.b to 2.f. Precisely, we will assume that supply functions are those

given in (12) for the short run and (14) for the long run, and use their properties established

in Propositions 1, 2 and 3. Moreover, the deposit index will be dropped to mean that these

functions reflect aggregate NRR supply from all deposits.

The properties of NRR supply are used to assess the equilibrium effects of changing a

policy at some date. The following applications are particular examples that illustrate more

general partial-equilibrium properties of NRR markets. These general properties are estab-

lished in Appendix E where they are summarized by Proposition 5. In the same appendix,

the issue of policy duration and timing is covered in Corollary 2 while the appendix ends

16It is for simplicity that we do away with the spatial dimension: With many outlets, Corollary 1 verifies
that aggregate NRR supply has the same properties as supply to a single outlet.
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with a discussion of other possible applications of our results, for example, involving the

spatial dimension of NRR supply.

3.a An important application: Carbon taxation and the green paradox

Assume that the demand for the NRR at date t is a function xD
t that not only depends

on the date, but is also decreasing and continuously differentiable in the consumer price.

In this subsection, consider a tax αt imposed on the use of the NRR at each date t. The

tax may aim, for example, at penalizing the release of carbon emissions caused by the

consumption of the resource. With the tax, the consumer price is pt + αt and the demand

writes xD
t (pt + αt). The path of the tax (αt)t≥0 is exogenously given.

Assume that the tax is implemented at date T and only at that date, so that αT rises

from 0 to αT > 0 while αt = 0, ∀t 6= T ; the partial-equilibrium effect is depicted in Figure

1 in which the horizontal axis represents the producer price pt, exclusive of the tax. Prices

pet , t ≥ 0, denote equilibrium prices with αT = 0; the corresponding market equilibrium is

indicated by intersections It, t ≥ 0. A producer price pT being given, the implementation of

the tax causes the demand at date T to shift down. Initially assuming that prices at dates

t 6= T are unchanged, date-T supply function does not change so that the drop in demand

induces a move of date-T equilibrium down along the supply curve. The producer price peT

is reduced to peT (αT ) < peT ; quantity xe
T is reduced accordingly (Figure 1(a)).

A lower producer price at T causes the supply curves at all other dates t 6= T to shift up

by Propositions 1, 2 and 3, i.e., in the short and long run, irrespective of whether deposits’

opening dates are endogenous or not. This results in a drop in price at these dates. In turn,

reduced producer prices at dates t′, also different from T , further reinforce the upward shift

in the supply curve at t (Figure 1(b)). Thus, fully adjusted prices pe′t are lower and quantities

supplied are higher at all dates t 6= T than before the tax implementation, confirming the

“green paradox” phenomenon. It follows that there is a feedback at T which shifts supply up

to x∗
T

(
pT , (p

e′

t )t6=T

)
. This reinforces the initial drop in the price at T while also causing an

increase in quantity (Figure 1(a)). However, this quantity response only partially offsets the
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initial downward reduction in quantity along the supply curve. Indeed, when reserves are

fixed as in the short run, the increase in quantities at all dates t 6= T implies that extraction

must decrease at T ; and in the long-run, following Section 2’s analysis, exploitable reserves

are lowered—stranded assets are increased—by the demand-reducing tax, so that extraction

at T diminishes more than in the short run.

xT

xe
T

xe′
T

xD
T (pT )

xD
T (pT + αT )

x∗
T

(
pT , (p

e
t )t6=T

)
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T

(
pT , (p

e′
t )t6=T

)

pTpeTpe′T peT (αT )
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t

(
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(
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Figure 1: Partial-equilibrium effects of demand reduction

This application illustrates how the general properties of NRR supply functions estab-

lished in Section 2 can be used, for example, in the simple demand-supply schedule, to

qualitatively assess policy-induced effects on NRR extraction. Specifically, it shows the

generality of the green paradox phenomenon when (ı) NRR supply results from the con-

tribution of many deposits, (ıı) allowing their developed and exploited reserves to adjust,

(ııı) as well as their dates of opening.

Nevertheless, a quantitative assessment of the same policy effects obviously further

requires that the effects be derived analytically, rather than graphically. For example,

van der Ploeg (2016) examines the green paradox in a model that is comparable to, but

more restrictive than, ours: There is a single deposit and two dates, the first date being

the exogenous reserve development date, and the second date being when the policy is

implemented. His results are in line with the above findings. Besides, his analysis allows to
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characterize the magnitude of the effect, depending on demand and supply elasticities, as

well as the conditions under which the policy improves welfare (inclusive of environmental

damages).

3.b Another important application: Reserve policies and stranded carbon assets

In this application, for simplicity, we consider that there is a single deposit17 and that a

supply policy aims at reducing exploitable reserves X from this deposit, for example, in the

spirit of Harstad (2012), by buying up and sterilizing some of these reserves. For example,

the policy aims at reducing the amount of a carbon NRR that will be ultimately exploited,

or, equivalently, at increasing the amount of reserves ultimately left unexploited and called

“stranded carbon assets.” If initial exploitable reserves were fixed, resource supply would

be directly given by restricted functions x̃t(p,X) defined by (12)—the deposit index j is

omitted—increasing in reserves according to Proposition 1. Thus any policy that reduces

reserves from a level X to X ′ = X −Ω causes production to diminish at all dates. Partial-

equilibrium implications turn out to be obvious, as illustrated in Figure 2 where point It

represents the initial situation at date t. At all dates t ≥ 0, instantaneous supplies x̃t(p,X)

meet instantaneous downward-sloping demands xD
t (pt) and determine equilibrium prices pet .

For a change in exploitable reserves from X down to X ′ occurring at date zero, consider

the market at any particular date t ≥ 0. For unchanged prices pet′ at dates t′ 6= t, date-t

supply is shifted down to x̃t (pt, (p
e
t′)t′ 6=t, X

′), causing a rise in the equilibrium price. Since

lower supplies at all other dates t′ 6= t similarly increase all equilibrium prices pet′ , supply

curves at all dates are further shifted down. Fully adjusted equilibrium prices at all dates

are pe′t′ ≥ pet′ , with equality if demand is infinitely elastic, and date-t supply curve becomes

x̃t (pt, (p
e′
t′ )t′ 6=t, X

′), lower than x̃t (pt, (p
e
t′)t′ 6=t, X

′).

When reserves are endogenous, reserve reduction may be partly compensated by the

development of new reserves. In that case, the supply of exploitable reserves X(λ) de-

fined by (9) is shifted down to X (λ) − Ω. For a more general supply-reduction policy

17The analysis accommodates many deposits and a reserve policy targeting one or all deposits.
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Figure 2: Partial-equilibrium effects of reserve reduction

whose stringency is indexed by Ω, the reserve supply function is redefined as X (λ; Ω), with

∂X
∂λ

> 0 and ∂X
∂Ω

< 0.18 Intuition suggests, and Proposition 5 will confirm, that an increase

in the policy’s stringency from Ω to Ω′ > Ω results in a greater equilibrium rent λe′ > λe

and in lower equilibrium developed reserves Xe′ < Xe, i.e., greater stranded carbon assets.

Thus whether the reserve reduction is compensated (endogenous reserves) or not (restricted

reserves), instantaneous supplies are reduced at all dates, and the partial-equilibrium impli-

cations of a rise in Ω are qualitatively the same as those of a fall in X described by Figure

2.

4 Other aspects of NRRs

The NRR supply model of Section 2 generalizes the framework of Hotelling (1931) and

Herfindahl (1967) to take into account, besides the heterogeneity of NRR sources, three

fundamental aspects considered important by more recent analyses: the determination of

exploitable reserves by exploration and development, the timing of deposits’ opening, and

18For example, suppose that exploitable reserves are reduced by an exogenous, policy induced, demand for
reserves XD(λ; Ω), decreasing in λ and increasing in the stringency index Ω. Then, the reserve supply
function becomes X(λ; Ω) ≡ E′−1(λ)−XD(λ; Ω) ≤ E′−1(λ).
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the multiplicity of outlets. In this highly general model, NRR supply cross-price effects

have proved to be robust: A price rise at any date induces a supply reduction at other

dates.

For the sake of completeness, in this section—with details in the Appendix—we reex-

amine the above law of cross-price effects in presence of additional aspects of supply that

are important for some NRRs. First, we consider technical progress in the development

of deposits—see, for example, Managi et al. (2005) on improvements in the development

of new oil reserves. Second, we assume intra-deposit heterogeneity, as when the cost of

extracting the resource from a deposit increases with the deposit’s depletion. For exam-

ple, Anderson et al. (2018) show that deposits’ pressure is an important factor driving

oil extraction; they find, however, that the timing of deposits’ opening is the most im-

portant determinant. Third, we consider that the extraction technology depends on prior

investments in resource extraction infrastructure.

In this section again, for the sake of brevity, we focus on the intertemporal dimension

of resource supply by assuming a single outlet.

4.a Technical progress in NRR development

Assume that each source j = 1, ..., J is now characterized by its own exploration and

development present-value cost Ej
t (X

j), whose qualitative properties are the same as in

Section 2, except that, for a given level of reserves Xj, both the cost Ej
t (X

j) and marginal

cost Ej′
t (Xj) decrease over time. In this context, the development of a deposit’s reserve need

not be economic at early dates, but may become justified at later dates not only by high

prices and/or low extraction costs, but also by technical improvements in the technology of

reserve discovery and development. Obviously, the problem differs from Section 2 only in

the long run, over which producers freely choose both the reserve development efforts and

the dates τ j when these efforts are made.

In this context, Appendix F examines the optimal choice of the date τ j of development

and opening. In general, with technical progress in reserve development, the producer is
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not indifferent as to the date when reserves are developed. Under standard conditions, we

find that following a price rise at some date the planned opening of a deposit either remains

unchanged or is modified in the direction of the date when the price rise occurs (Lemma 1).

It follows that a price rise at any date T > 0 reduces aggregate unrestricted supply at each

date t 6= T of an initial period that extends at least until the date of the first postponed

deposit development.

4.b Stock effects or heterogeneity within NRR deposits

As explained in the Introduction, for some NRRs and some extraction techniques, deposits’

exploitation becomes increasingly costly with cumulative extraction. Assume that each

source j can be exploited at a cost Cj
t (x

j
t , X

j
t ) that depends not only on extraction xj

t in

the same way as in Section 2, but also negatively on the remaining geological reserves Xj
t :

Higher reserves means lower cumulative extraction, hence a lower cost.

Appendix H shows how the analysis is modified in presence of such an intra-deposit

heterogeneity. The extension relies on restrictions due to Sweeney (1993), ensuring the con-

sistency of the extraction cost function with our discrete-time model. For simplicity, the

analysis assumes that dates of development/opening are fixed, but consider that the devel-

opment of exploitable reserves is endogenous in the long run. Despite this simplification,

the analysis turns out to be very tedious. Yet, the resulting Proposition 7 delivers a simple

modification in the form of the results presented in Section 2: Negative cross-price effects

survive but apply to cumulative extraction quantities. This has no implication as far as the

first extraction date is concerned, since cumulative extraction at that date is identical to

the extraction flow.

Since the result holds at the deposit level, it also applies at the industry level. Therefore,

as far as the cumulative NRR extraction is concerned, our results ensure the consistency

of the widely-used model of NRR supply that assumes that extraction costs rise at the

aggregate level with aggregate cumulative extraction, even in absence of aggregate NRR

reserves.
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4.c Costly adjustment in NRR extraction

In general, deposits’ exploitation requires extraction and transportation infrastructure; in-

vestment in capacity is a typical aspect of NRR extraction. Our formulation of the NRR

supply problem is compatible with the use of capital as an input whose payment is included

in extraction costs.19

Yet, this conventional formulation does not allow to take into account that adjustments

in extraction capacity are limited or subject to frictions. A standard way to do so is to

consider that capacity adjustments are done in the course of a resource’s exploitation, and

that adjustment costs are increasing with the change in the extraction rate from one date

to another. Formally, for example, date-t extraction cost can be reinterpreted to include

such adjustment costs, becoming a function

Ct(xt, xt−1),

with the same properties as in Section 2, except it also negatively depends on xt−1. This

standard modeling reflects that more extraction at date t − 1 commands a capacity ex-

pansion, thus alleviating potential needs to scale up extraction capacity at the next date.

This is in contradiction with the model of the previous subsection assuming that costs in-

crease, rather than decrease, with past extraction. Therefore, if this standard modeling of

adjustment costs was adopted here, it would intuitively tend to invalidate our results:20 In

a nutshell, a price rise at some date would call for a capacity expansion at earlier dates,

thus justifying an increase in production at these dates.

At the level of an individual deposit, nevertheless, the investment in capacity is real-

ized prior to the exploitation of the deposit and extraction capacity remains unchanged

throughout the exploitation period as, for example, in Cairns’ (2001) specific treatment of

NRR exploitation in this context—see also the references therein. The initial investment

19For simplicity, we have omitted the prices of inputs mobilized to produce the extraction output.
20Thanks are due to an anonymous referee for this remark.
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determines the extraction technology, including, perhaps, capacity constraints.

Therefore, in Appendix K, we adopt the latter approach to develop a simple extension

of our analysis to initial deposit-specific investments in capacity that negatively affects

the extraction cost function. The problem is only interesting in a long-run perspective

over which both investment in capacity and reserve development efforts can be adjusted.21

As noted by Cairns and Lasserre (1991), these two irreversible decisions—on extraction

capacity and reserve development—are not redundant but interrelated.

In this context, we establish that NRR supply exhibits negative cross-price effects if

returns to scale in capacity investment and/or in reserve development are sufficiently de-

creasing, as when the resource scarcity is sufficiently pronounced.

5 Conclusion

The supply of a NRR or any commodity that must be produced before being dispatched

over time and space differs from conventional supply in that supply functions then depend

on a vector of parametric prices rather than a single price. The inventory to be dispatched

or, in the case of NRR supply, the reserves to be extracted, may be given. In that case,

supply consists in optimally allocating a given stock (inventory or reserves) over time and

space. The supply functions, called restricted because they are conditional on the given

factor, are then functions of the parametric prices prevailing at all dates and locations, as

well as the quantity of the restricted factor. This defines the short run. In the long run, the

stock of reserves (or the production inventory) is chosen endogenously at the beginning of

the exploitation period so that the (unrestricted) supply functions depend on prices only.

The beginning of the exploitation period may itself be endogenous.

While the commodities produced have been treated as homogeneous throughout the

paper, the restrictive factor (reserves or inventories) has been allowed to be heterogeneous.

This is important in general, not only in the case of NRRs, but also in the case of non-

21They cannot be adjusted, however, after the opening of the deposit.
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resource commodities as conditions of production may vary according to origin or due to

technological change and other factors. Moreover, our setting allows to examine supply

at three basic levels: production at the inventory or deposit, aggregate supply, and the

allocation of the latter to each outlet.

The law of supply is only one property of the supply functions that we have characterized.

This paper has focused on cross-price effects: the effect on supply at one date and location

of changes in prices at other dates or locations. They were decomposed into substitution

effects (across time or space) and long-run stock compensation effects.

Our main model offers a highly general representation of NRR supply and yields the

following results. The substitution effect (across time or space) is always negative. It

dominates the long-run stock compensation effect, which is positive. Consequently both

the short-run and the long-run cross-price effects are negative.

Besides filling a gap in the analysis of supply functions, this result confirms or pro-

vides several policy results. We give the examples of the taxation of resource use—with

implications for the green paradox—and reserve control policies, giving generality to results

usually discussed on the basis of particular cases. In the context of limiting the use of car-

bon NRRs, for instance, our examples stress that supply responses in anticipation of future

carbon-penalizing public policies should be expected to undermine policies’ effectiveness,

despite the role of stranded carbon assets in reducing the production of NRRs at all dates.

Our analysis further implies that these effects are qualitatively robust to the modelling of

NRR supply.

More importantly, the highly-orthodox theoretical apparatus developed in the paper

extends the conventional treatment of competitive supply to commodities whose supply

is determined across time and space according to parametric prices defined at dates and

locations. By so doing, the paper extends to such supply situations the tool of partial-

equilibrium analysis and the familiar method of assessing the effects of policies by analyzing

shifts in demand and supply curves.
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Other potentially important aspects have been discussed on the ground of detailed

analyses that are presented in the Appendix. First, we address technical progress in the

technology of production of NRR reserves or of the good to be dispatched. In this context,

negative cross-price effects survive for an initial period of time. Second, besides the hetero-

geneity across inventories or reserves, we consider the heterogeneity of production within

inventories and reserves. This aspect is probably more relevant for oil and minerals than

for non-resource commodities. In this context, we find that negative cross-price effects hold

but apply to cumulative supply rather than to the flow of supply, with no implication for

the first date of production. Third, we consider that the cost of dispatching or extracting

can be lowered by investment in related capacity. In that context, supply retains its central

properties provided returns to scale are sufficiently decreasing as when the scarcity of a

NRR is pronounced. However, especially as far as the green paradox is concerned, more

research is needed to understand supply responses with irreversible investments in capacity.
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A Proof of Proposition 1

The first point of the proposition is obtained in the main text preceding the proposition.
The second point is obtained as follows. Holding the reserve level unchanged, consider

the partial effects of prices, that is the direct price effects. We will now show that x̃j
t (p,X

j)
is increasing in pt and decreasing in any pT , T 6= t. By (12),

∂x̃j
t (p,X

j)

∂pT
=

∂xj
t

(
pt, λ̃

j(p,Xj)
)

∂pT
+

∂xj
t (pt, λ

j)

∂λj

∂λ̃j(p,Xj)

∂pT
,

where the first term on the right is zero unless T = t, as xj
t (pt, λ

j) is not directly dependent
on prices other than the contemporary price. The second term is clearly negative whether

T = t or T 6= t since xj
t decreases in λj while

∂λ̃j(p,Xj)
∂pT

is clearly positive since a rise in the

resource price at any date cannot reduce the rent. It follows that
∂x̃

j
t (p,X

j)

∂pT
is negative for

T 6= t while a contemporary rise in price involves two effects working in opposite directions.
However, if extraction diminishes at all dates t 6= T , it must increase at t = T for otherwise
reserves would not be exhausted, which would be suboptimal as already discussed: The law
of supply obviously applies to restricted supply. Consequently, in case of a contemporary
price rise, the direct price effect given by the first term must dominate the second term
that operates via the resource rent.

B Proof of Proposition 2

The first point of the proposition is obtained in the main text preceding the proposition.
The second point can be shown as follows. To examine the effect of a change in price at

date T on supply at date t, one must distinguish between a change at the same date T = t
and a change at T 6= t. From (14), this decomposes into a direct price effect and a stock
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compensation effect :

∂xj∗
t (p)

∂pT
=

∂x̃j
t (p,X

j∗(p))

∂pT
+

∂x̃j
t (p,X

j∗(p))

∂Xj

∂Xj∗(p)

∂pT
, (B.1)

The first term on the right-hand side—the direct price effect—has been examined in isola-
tion in Subsection 2.b. The second term—the new stock compensation effect—is positive
since, by Proposition 1, the stock effect is positive and since resource prices always affect

developed reserves positively:22 ∂Xj∗(p)
∂pT

≥ 0.

When T = t, the total price effect may be called the own price effect ; since x̃j
t is increas-

ing in both pt and Xj, and as resource prices always affect developed reserves positively, the
own price effect is positive. Expression (B.1) when T = t indicates that the law of supply
holds and illustrates the Le Châtelier principle, which says that the long-run (unrestricted)
elasticity is higher than the short-run (restricted) elasticity.

When T 6= t, the direct price effect in (B.1) may be called the pure substitution effect
as it reflects the reallocation of an unchanged reserve stock to extraction at a date different
from T ; (12) makes clear that this substitution effect only arises via the effect of the rent

on the x̃j
t function:

∂x̃
j
t (p,X

j)

∂pT
=

∂x
j
t (pt,λ

j)

∂λj

∂λ̃j(p,Xj)
∂pT

. Also by (12), the stock compensation

effect works in the opposite direction and can be itself decomposed into
∂x̃

j
t (p,X

j)

∂Xj

∂Xj∗(p)
∂pT

=
∂x

j
t (pt,λ

j)

∂λj

∂λ̃j(p,Xj)
∂Xj

∂Xj∗(p)
∂pT

so that the total cross-price effect can be factorized as follows:

∂xj∗
t (p)

∂pT
=

∂xj
t (pt, λ

j∗(p))

∂λj

[
∂λ̃j (p,Xj∗(p))

∂pT
+

∂λ̃j (p,Xj∗(p))

∂Xj

∂Xj∗(p)

∂pT

]
, T 6= t, (B.2)

where the term between brackets is in fact the total derivative of λ̃j(p,Xj) with respect to
pT , decomposed into a direct price effect at constant initial reserves, and the effect on the
rent of the change in initial reserves induced by the price change. Resource prices at all

dates affect the rent positively, i.e., ∂λj∗(p)
∂pT

≥ 0, ∀T .23 Consequently,

∂xj∗
t (p)

∂pT
=

∂xj
t (p, λ

j∗(p))

∂λj

∂λj∗ (p)

∂pT
≤ 0, ∀t 6= T, (B.3)

implying that the stock compensation effect is never high enough to offset the pure substi-
tution effect.

22Formally, the definition of Xj∗(p) = Xj
(
λ̃j
(
p,Xj∗(p)

))
yields ∂Xj∗(p)

∂pT
=

Xj′(λj)
∂λ̃j(p,Xj∗(p))

∂pT

1−
∂λj(p,Xj∗(p))

∂Xj Xj′(λj∗(p))
,

implying that the term between brackets in (B.2) can be factorized as ∂λj∗(p)
∂pT

=

∂λ̃j(p,Xj∗(p))
∂pT

(
1

1−
∂λ̃j(p,Xj∗(p))

∂Xj Xj′(λj∗(p))

)
, which is positive since ∂λ̃j(p,Xj)

∂Xj is negative. By (13), it

also follows that ∂Xj∗(p)
∂pT

is positive.
23See footnote 22.
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C NRR supply versus Marshallian demand

The dependence on a vector of prices, as well as the substitution and compensation effects
are reminiscent of demand theory: NRR producers allocate a stock of resource to different
dates and outlets in a way that is comparable to the way consumers allocate their income to
different expenditures on different goods. The time space and spatial space play a similar
role as the good space in static demand. The stock of reserves is not unlike the budget
constraint in demand theory, as both limit what can be allocated to alternative supplies or
to expenditures on alternative goods; furthermore, these constraints are both affected by
prices, although by different channels.

However, the law of supply always applies: Unlike the Giffen paradox, the supply of
a NRR always increases if its price rises. Similarly, inferior goods have no counterpart in
NRR supply: Given a price vector, supply does not diminish at any date if reserves are
exogenously increased.

Similarly, although reminiscent of the decomposition of Marshallian demand, the de-
composition of the change in NRR supply at t following a price change at T 6= t into a
pure substitution effect and a stock compensation effect is not isomorphic to the Slutsky
decomposition. The substitution effect and the stock compensation effect of a resource price
change are illustrated in Figure 3 for the case of a single deposit exploited over two periods,
which corresponds to the two-good representation of demand theory. Assuming prices p0
and p1, point O = (x0, x1) in Figure 3 depicts the producer optimum. Given a stock of
reserves X , periods 0 and 1 extraction levels are chosen such that the producer reaches the
highest possible two-period iso-extraction-profit curve for prices (p0, p1) (of level π).

24 The
optimum allocation (x0, x1) is thus at the point of tangency between the π iso-profit curve
and the exhaustibility constraint, the −45 degree line which expresses the trade-off between
quantities extracted in period 1 and quantities extracted in period 2 in such a way that
x0 + x1 = X . Unlike the case of Marshallian demand, the slope of this linear constraint is
not affected by changes in prices. Also, while prices do not affect iso-utility curves, they
affect the slope of iso-profit curves: Iso-profit curves may cross at different prices.

Consider a rise in p1 to p′1 > p1. The price change implies that all iso-profit curves
become flatter at any given feasible level of x0. If the stock of reserves remains unchanged
at X , the new tangency point is along the same exhaustibility constraint and along the
iso-profit curve of level π̃ > π, at point Õ above O, so that x̃0 < x0 and x̃1 > x1. The move
from O to Õ represents the substitution effect.

However the rise in price leads producers to increase reserve development to X ′. Taking
this stock effect into account brings the new optimum to O′. It is clear that x′

1 > x̃1 > x1.
Unlike the Slutsky decomposition, there is no possibility of a commodity analogous to a
Giffen good, whose supply would diminish as a result of a rise in its price. Moreover, in the

24In Figure 3, the iso-profit curves correspond to the two-period extraction profit, conditional on X and
before deduction of the sunk exploration cost E(X): π = (p0x0 − C0(x0))+ (p1x1 − C1(x1)). By (7), any
optimum extraction is such that pt−C′

t(xt) = λ. Thus in a neighborhood of any optimum, pt−C′
t(xt) > 0.

In a neighborhood of an optimum, it follows from the convexity of Ct that the slope −
p0−C′

0(x0)
p1−C′

1(x1)
of any

iso-profit curve at prices (p0, p1) is negative, increasing in x0 and decreasing in x1. In Figure 3, we focus
on the relevant convex parts of the iso-profit curves. On other parts, they need not be convex.
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Figure 3: Price effect decomposition with p′1 > p1

case of NRR supply, the substitution effect always dominates the compensation effect, so
that, by (B.3), x′

0 must be lower than x0 following the rise in p1. There is no such thing as
NRR supply complements; quantities extracted at different dates are always substitutes.

D Proof of Proposition 4

The analysis shows similar results as in the single-location treatment of Subsections 2.b-2.f.
However, it is slightly more complex, involving two stages rather than one, as follows.

The allocation rule (18) implicitly defines the solution as a series of functions giving the
optimal quantity at each date and location

xj
tl = xj

tl(ptl, υ
j
t ), (D.1)

with the same properties as the functions defined by (10). The rule (19) similarly defines
the total quantity across locations at each date t as a function

xj
t = x̄j

t(υ
j
t , λ

j). (D.2)

The functions x̄j
t also have properties with respect to the implicit value υj

t and the rent λj

that are analogous to those of (10): x̄j
t is increasing in the implicit price υj

t and decreasing
in the rent λj.

Treating date-t extraction xj
t to be dispatched across locations as given—in the same

way as we took reserves Xj to be allocated across dates as given in Subsection 2.b—and
combining all relations (D.1) into (17), we obtain the new multiplier υj

t as a function
increasing in all components of the vector of date-t prices pt ≡ (ptl)l=0,...,l̄ and decreasing in
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xj
t :

υj
t = υ̃j

t (pt, x
j
t). (D.3)

Substituting (D.3) into (D.2) yields an implicit function identical to (10)

xj
t = xj

t (pt, λ
j), (D.4)

except that pt is a vector rather than a single price. Results similar to the single-outlet
model of the previous subsections follow.

A rise in pTL, i.e., a rise at any date T ≥ 0 and location L ∈ [0, ..., l̄], causes the rent
λj to increase. This is true whether the size of the exploitable reserves Xj is restricted or
not. Thus, by (D.4), extraction decreases at all dates t other than T . When reserves Xj

are endogenous, they increase as a result of the price rise; since all xj
t are reduced at all

t 6= T , it follows that xj
T must increase if the sum of all xj

t is to use up reserves.
According to (D.1), quantities xj

tl at all locations react in the same direction to the
same change in implicit value υj

t . Since xj
t =

∑
l=0,...,l̄

xj
tl, the reduction in xj

t at t 6= T is only

compatible with a rise in υj
t . Thus x

j
tl decreases for all t 6= T and all l.

At date T where xj
T increases as a result of the rise in pTL, (D.2) makes clear that only a

rise in υj
T is consistent with the increase in λj . The rise in υj

T in turn implies by (D.1) that
xj
T l diminishes for all l 6= L. Since, total extraction xj

T at date T rises, it must be that xj
TL

rises as a result of the price rise, which illustrates the law of supply for this spatio-temporal
version of the model.

E Analysis of generic NRR supply and demand policies

The illustrations given in Section 3 are simple examples. For more general applications,
generic supply and demand policies can be modeled as follows; their effects are described
in Proposition 5 further below. For ease of exposition, we assume a single deposit.

A demand policy indexed by θt may reduce date-t demand for the NRR to xD
t (pt; θt)

from its no-intervention level xD
t (pt; 0). Demand-reducing policies may take various forms,

such as consumer taxes of Subsection 3.a or support to NRR substitutes. Assuming that
xD
t is continuously differentiable and monotonic in both arguments, the inverse demand

function at t, Pt(xt; θt) is decreasing in xt and in θt. In the sequel we will assume that
stringency levels are chosen such that Pt(0; θt) is greater than the equilibrium price pet for
some dates, to avoid situations where policies do not warrant any production at all.

A supply policy may aim at extraction while affecting reserves only indirectly; or it may
focus on reserves directly. We will refer to the former as extraction policy, while calling
the latter a reserve policy. An extraction policy indexed by ξt reduces date-t marginal
extraction profit pt − C ′

t(xt) −
∂Gt(xt,pt;ξt)

∂xt
, where the policy function Gt is positive and

such that the policy-adjusted cost function Ct + Gt inherits the properties of the original
cost function: It is increasing, strictly convex and twice differentiable in xt; it also satisfies
Ct(0)+Gt(0, pt; ξt) = 0 for all t ≥ 0, pt > 0 and ξt, and is such that C ′

t(0)+
∂Gt(0,pt;ξt)

∂xt
is lower

than the equilibrium price pet for at least one date where Pt(0; θt) > pet also holds. Last,
it is assumed that ∂2Gt

∂xt∂pt
< 1 to eliminate ill-conceived policies under which marginal cost
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would increase more than marginal revenue as a result of a price increase. We define a more
stringent extraction policy as one that reduces the marginal extraction profit: ∂2Gt

∂xt∂ξt
> 0,

∀xt ≥ 0. Modified this way, problem (4)-(2)-(5) yields necessary conditions

xt = xt(pt, λ; ξt), ∀t ≥ 0. (E.1)

As their counterparts in (10), the new functions (E.1) are increasing in pt and decreasing
in the rent λ; they are further decreasing in the extraction policy index ξt.

Next, a reserve-reducing policy increases the marginal cost of developing exploitable
reserves. The exploration and development cost E(X) in the objective (4) is augmented
by the function F (X ; Ω), positive and increasing in its two arguments, where Ω reflects the
stringency of the reserve-reducing policy. As in Section 2, assume that the total development
cost E(X) + F (X ; Ω) is twice differentiable, strictly convex and satisfies E(0) + F (0; Ω) =

E ′(0)+ ∂F (0;Ω)
∂X

= 0. Modifying problem (4)-(2)-(5) accordingly, the necessary reserve-supply

condition (8) is replaced by E ′(X)+ ∂F (X;Ω)
∂X

= λ, which implicitly defines the policy-induced
level of reserves as

X = X(λ; Ω). (E.2)

As its counterpart (9), this function is increasing in the rent λ; it is further decreasing in
the reserve-policy index Ω. The NRR producer’s supply behavior is summarized by the
functions (E.1) and (E.2).

At this stage of the formalization in Section 2, the remaining step toward establishing
supply functions was to replace the endogenous rent λ by an appropriate function of para-
metric prices. In the current partial-equilibrium analysis, prices are endogenous but one
must recognize the dependency of λ on both the supply and the demand policy parameters.
This is done as follows.

For any date t ≥ 0, substituting the inverse demand function Pt(xt; θt) into the supply
function (E.1) implicitly defines date-t equilibrium extraction as a function

xt = x̂e
t (λ; ξt, θt), ∀t ≥ 0. (E.3)

This function is decreasing in the rent λ, in the extraction-policy index ξt, and in the
demand-policy index θt.

Treating the stock of initial reserves as given at this stage, and combining relations (E.3)
at all dates into the exhaustibility constraint (5) defines the short-run equilibrium rent as a

function λ̃e(X ; Ξ,Θ) of initial reserves, of the vector of extraction-policy indices Ξ ≡ (ξt)t≥0,

and of the vector of demand-policy indices Θ ≡ (θt)t≥0. As its counterpart (11), λ̃
e(X ; Ξ,Θ)

is decreasing in X ; it can be shown that it is also decreasing in all elements of the policy
vectors Ξ and Θ.

Substituting λ̃e(X ; Ξ,Θ) into each extraction function (E.3) gives the restricted (short-
run) NRR equilibrium extraction functions:

xt = x̃e
t (X ; Ξ,Θ) ≡ x̂e

t

(
λ̃e(X ; Ξ,Θ); ξt, θt

)
, ∀t ≥ 0. (E.4)

Each restricted NRR equilibrium extraction function is increasing in initial reserves X .
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Holding X unchanged, the partial effects on equilibrium supply at t of changing policy
intensities ξT and θT at any date T ≥ 0 can be established as in Subsection 2.b’s analysis
of the effects of changing the price pT on restricted supply. The only difference is that a
rise in ξT or θT (a policy restriction) affects the quantity supplied in a direction opposite
to that of a rise in price.25

Now consider the long term, allowing initial reserves to be endogenously determined.
Substituting λ̃e(X ; Ξ,Θ) into (E.2), implicitly defines unrestricted equilibrium reserves

X = Xe(Ξ,Θ,Ω). (E.5)

In turn, substitutingXe(Ξ,Θ,Ω) into λ̃e(X ; Ξ,Θ) defines λ = λe(Ξ,Θ,Ω) ≡ λ̃e (Xe(Ξ,Θ,Ω); Ξ,Θ).
It can be shown that Xe is decreasing in ξt and θt, for all t ≥ 0, as well as in Ω, and that
λe is decreasing in ξt, in θt, for all t ≥ 0, but increasing in Ω. The unrestricted (long-run)
equilibrium extraction level at date t is thus defined as the following function of all elements
in the policy vectors Ξ and Θ as well as the policy index Ω:

xe
t = xe

t (Ξ,Θ,Ω) ≡ x̃e
t (X

e(Ξ,Θ,Ω); Ξ,Θ) . (E.6)

The restricted equilibrium extraction functions (E.4) and the unrestricted equilibrium
extraction functions (E.6) just established have the same comparative static properties with
respect to the exogenous (supply and demand) policy parameters, mutatis mutandis, as their
NRR supply counterparts have with respect to the exogenous prices, irrespective of whether
opening dates are assumed exogenous or endogenous. This can be shown by adapting the
steps followed in Section 2. In particular, the effects of supply- and demand-reducing
policies on equilibrium extraction quantities can be decomposed into a stock compensation
effect and a pure substitution effect as illustrated by (B.1) in the case of the price effect in
Section 2. Those properties are summarized in the following proposition.

Proposition 5 (Policy-induced equilibrium changes in aggregate NRR extrac-
tion)
Whether opening dates are endogenous or not,

1. A reserve-reducing policy decreases restricted and unrestricted equilibrium extraction
at all dates t;

2. Any combination of extraction and demand-reducing policies at any date T

(a) Reduces unrestricted developed reserves;

(b) Reduces restricted and unrestricted extraction at date T ;

(c) Increases restricted and unrestricted extraction at all dates t 6= T .

25For example consider an increase in θT at any date T ≥ 0. By the definition (E.4) of the x̃e
t restricted

functions, extraction at all dates t 6= T is only affected via the policy-induced change in the rent λ̃e in
x̂e
t ; λ̃

e is reduced as a consequence of the rise in θT , which in turn, by (E.3), increases x̂e
t , for all t 6= T ,

and thus x̃e
t , for all t 6= T . Extraction being increased at all dates t 6= T while exploited reserves are

unchanged, equilibrium extraction must decrease at the date T of the policy change. The same analysis
applies to a change in the supply-policy stringency ξT .
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Proposition 5 focuses on the equilibrium of a single-outlet NRR market. It can be
readily extended to multiple-outlet markets using the formalization leading to Proposition
4. Possible applications involving the spatial dimension of NRR supply include, for example,
the analysis of a policy penalty on a carbon NRR use implemented unilaterally on a single
of many outlets, raising the issue of carbon leakage.

The results stated in Proposition 5 can be used to study the effects of policies that reduce
NRR demand and/or supply over some extended future period and in specific locations via
various forms of restrictions to NRR extraction and use, or assistance to alternative sources
of supply.

Let us again, for simplicity, on the dynamic dimension of NRR supply, and consider an
increase in policy stringency at several dates T that form a set ∆. Proposition 5 establishes
that such increases in policy stringency have the same qualitative effect on equilibrium NRR
quantities at dates when no policies are implemented. Thus all effects combine to positively
affect extraction at all dates t /∈ ∆.

When policies are unanticipated and not accompanied by any adjustment in the stock of
reserves, they affect the restricted equilibrium supply x̃e

t (X ; Ξ,Θ); when they are anticipated
and associated with a drop in developed reserves, they affect the unrestricted equilibrium
supply xe

t (Ξ,Θ,Ω). In either case, reductions, for example, in demand at T ∈ ∆ increase
extraction at all t /∈ ∆, confirming the validity of the green paradox in this more realistic
context.

If the policy change occurs at a single date as in Proposition 5.2, the drop in price
unambiguously causes a drop in extraction at that date. When ∆ contains more than a
single date, the reaction of NRR extraction at each T ∈ ∆ depends on the magnitude of the
price change occurring at that date relative to the changes occurring at other dates T ′ ∈ ∆.
However, the above analysis indicates that cumulative extraction over ∆ is reduced. This
is because X decreases while cumulative supply at all dates t /∈ ∆ increases.

Corollary 2 (Equilibrium changes in aggregate NRR extraction and policy over
periods of time)
Whether opening dates are endogenous or not, an extraction or demand-reducing policy
implemented at dates T ∈ ∆

1. Reduces unrestricted developed reserves;

2. Reduces restricted and unrestricted cumulative extraction over dates T ∈ ∆;

3. Increases restricted and unrestricted extraction at all dates t /∈ ∆.

As suggested already, using the properties of NRR supply involving the spatial dimension—
and summarized in Proposition 4—other applications would follow, as, for example, the
analysis of unilateral policies and resulting leakages. Indeed, leakages of NRR use (Gaudet,
Moreaux and Salant, 2001; Fischer and Salant, 2017) work in the same direction spacewise,
and timewise, in the short run and in the long run.26 When the change in demand affects
more than one region as with Fischer and Salant’s (2017) technology-oriented policies, or

26The spatial version of Corollary 2 can be established using the formalization of Proposition 5; a proof is
available on request.
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takes place at more than one date as with their emission taxes, the reaction of resource
supply to one region at one date depends on the magnitude of the price change occurring
in that region and date relative to the changes occurring at other regions and dates. At
dates and regions not concerned by the policies, short-run and long-run supply increases.

F Technical progress in NRR development

Assume that each source j = 1, ..., J is now characterized by its own exploration and
development present-value cost Ej

t (X
j), whose qualitative properties are the same as in

Section 2, except that it depends on time. In this context, the development of a deposit’s
reserve need not be economic at early dates, but may become justified at later dates not
only by high prices and/or low extraction costs, but also by technical improvements in the
technology of reserve discovery and development.27

We assume that technological progress on exploration and development is such that, for
any date t′ > t and initial reserves Xj ≥ 0,

Ej
t

(
Xj
)
≥ Ej

t′

(
Xj
)
and Ej′

t

(
Xj
)
≥ Ej′

t′

(
Xj
)
, ∀j. (F.1)

As before, it is supposed that exploration and development are instantaneous and under-
taken only once for each deposit; extraction may take place only after deposit development.
Obviously, the problem differs from Section 2 only in the long run, over which producers
freely choose both the reserve development efforts and the dates τ j when these efforts are
made. For deposit j, the producer solves the same problem as in Subsection 2.f, once the
development cost is adjusted to depend on time:

max
(xj

t )t≥0,τ
j ,Xj

∑

t≥0

(
ptx

j
t − Cj

t (x
j
t )
)
−Ej

t (X
j) (F.2)

subject to (2) and (5).
Like in Section 2, the choice of extraction is determined by condition (7). For simplicity,

we assume that the evolution over time of resource price changes and extraction technology
is such that, once initiated, production is not interrupted until exhaustion.28 As far as the
choice of developed reserves is concerned, it is determined by a condition similar to (8),
except that the marginal cost of exploration and development varies with time:

Ej′
t (X

j) = λj . (F.3)

We further assume that the problem is well behaved in the sense that the optima being
characterized are global rather than local, at least in the neighborhood of the price vec-
tor under consideration. This rules out jumps from one local maximum to another local

27For some price and technology combinations, development occurs only at τ = 0 if at all. Such is the case,
for example, if (present-value) prices are non increasing while (present-value) extraction and development
costs are non decreasing.

28This assumption facilitates the analysis while it eliminates situations of only minor economic interest such
as temporary interruptions of production. It is satisfied if prices do not diminish too fast and technological
change is such that extraction costs do not increase too fast over any part of the exploitation period.
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maximum as a result of a small change in the price vector.
Since the exploitation of each deposit is independent of other deposits, let us focus on

deposit j. The optimal development date τ j∗(p) of deposit j may be the corner solution
τ j∗ = 0, or, if it is an interior solution, it is a non-zero integer within the set of possible
dates.

At this preliminary stage, consider the development date τ j as given. Conditional on τ j ,
optimum extraction flows xj

t (p, τ
j) for all t ≥ τ j are determined by (7) where λj = λj(p, τ j)

will be characterized shortly.
On the one hand, λj(p, τ j) reflects the contribution of marginal reserves at the producer’s

optimum. Indeed, denoting deposit-j’s value function conditional on τ j by

Vj
(
p, τ j , Xj

)
≡ max

(xj
t )t≥τj

∑

t≥τ j

ptx
j
t − Cj

t (x
j
t ) (F.4)

subject to
∑
t≥τ j

xj
t ≤ Xj , (F.5)

and keeping in mind that λj(p, τ j) is formally the Lagrange multiplier associated with
constraint (F.5), the Envelope Theorem for constrained problems implies

λj(p, τ j) =
∂Vj (p, τ j , Xj(p, τ j))

∂Xj
, (F.6)

which relates the optimum amount of reserves Xj(p, τ j) with their implicit value λj(p, τ j).

In equation (F.6),
∂Vj(p,τ j ,Xj)

∂Xj is a decreasing function of reserves Xj by the assumption
that extraction costs are strictly convex. Moreover, it is a decreasing function of τ j , since
exploiting unchanged reserves Xj over a smaller set of dates means that marginal reserves
must optimally be extracted at higher costs.

On the other hand, (F.3) indicates that exploitable reserves Xj(p, τ j) are optimally pro-
duced in such a way as to equate their marginal development cost Ej′

τ j
(Xj(p, τ j)) with their

implicit valuation underground λj(p, τ j). This reserve-supply relation is strictly increasing
since the Ej

τ j
function is strictly convex by assumption.

Thus in optimum, for a given development date τ j , the rent λj(p, τ j) and reserves
Xj(p, τ j) are jointly determined by the combination of (F.6) with (F.3):

∂Vj (p, τ j , Xj(p, τ j))

∂Xj
= λj(p, τ j) = Ej′

τ j

(
Xj(p, τ j)

)
. (F.7)

Using this result, Appendix G examines the optimal choice of the (endogenous) devel-
opment date τ j∗(p) of each deposit j. It establishes the following result about the effect of
a price change on development dates.

Lemma 1 (Endogenous opening dates with technical progress)

1. A price rise at any date after the planned opening of a deposit either leaves the opening
date of the deposit unchanged, or postpones it to a date closer and anterior to the date
of the price rise.
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2. A price rise at any date prior to the planned opening of a deposit either leaves the
opening date of the deposit unchanged, or accelerates it.

Consider a price rise at T > 0. Lemma 1 indicates that all deposits that were active
before T have unchanged or postponed development dates. Clearly for deposits with un-
changed development date the results of Proposition 3 carry over so that their combined
supply diminishes at each date t 6= T . For deposits whose development is postponed their
production becomes zero until the new development date, which is inferior or equal to T .
However, it cannot be ruled out that their production in the new program at dates following
the new development date might exceed their production at those dates under the initial
price. Consequently, it is certain that aggregate production diminishes from date zero until
the date of the first postponed deposit development if any.29 In particular, a price rise at
any date t > 0 always reduces aggregate supply at the present extraction date t = 0. The
following proposition summarizes the above results.

Proposition 6 (Aggregate NRR supply with endogenous openings and technical
progress)
(Cross-price effects) A price rise at any date T > 0 reduces aggregate unrestricted supply at
each date t 6= T of an initial period that extends at least from date 0 until the date of the
first postponed deposit development.

G Proof of Lemma 1

The optimum rent λj(p, τ j) and optimum reserves depend on the (at this stage) exogenous

development date τ j . As explained above,
∂Vj(p,τ j,Xj)

∂Xj is decreasing in τ j . Let τ j′ < τ j be

two exogenous development dates: It must be that
∂Vj(p,τ j′,Xj)

∂Xj ≥
∂Vj(p,τ j ,Xj)

∂Xj . Moreover,

by assumption (F.1), Ej′

τ j′
(Xj) ≥ Ej′

τ j
(Xj). It thus follows that (F.7) taken at τ j and at

τ j′ < τ j generates two different rents such that

λj(p, τ j′) ≥ λj(p, τ j), τ j′ < τ j . (G.1)

For any given development date τ j , the Maximum Theorem applies.30 Thus price changes
continuously affect all variables and functions. In particular, if τ j is the optimum devel-

29Formally, a price rise at T > 0 reduces supply from deposit j at all dates t 6= T if j is active at t in the
initial program (t ≥ τ j∗(p), where p is the initial price vector) in the two following cases:
1) The development date of the deposit is the same in the initial and new programs (τ j∗(p) = τ j∗(p′),
where p′ is the new price vector), implying that the deposit is still active at t after the price rise;
2) the deposit is inactive at t in the new program (τ j∗(p′) > t ≥ τ j∗(p)).

30 When reserves are endogenously determined at the exogenous date τ j , the optimal reserves Xj(p, τ j)
must be finite so that the extraction possibility set is bounded, and is evidently closed. Prices in p also
affect the objective (F.2) continuously. Furthermore, this objective is strictly concave by assumption and
the set of extraction possibilities is convex since the convex combination of two possible extraction paths
satisfying the exhaustibility constraint (5) satisfies the same constraint. The Maximum Theorem thus
applies: Given the development date τ j , the optimum sequence of extraction x

j
t (p, τ

j) and the multiplier
λj(p, τ j) evaluated at the optimum are continuous functions of each price in the vector p.
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opment date, small changes in price that do not require any change in that date have
continuous effects.

Consider now that τ j = argmax
τ≥0

Vj (p,Xj(p, τ), τ) − Ej
τ (X

j(p, τ)), where, given τ ,

Xj(p, τ) is chosen optimally as described above. It follows that, for any τ j′ 6= τ j ,

Vj
(
p,Xj(p, τ j), τ j

)
− Ej

τ j

(
Xj(p, τ j)

)
−
[
Vj
(
p,Xj(p, τ j′), τ j′

)
− Ej

τ j′

(
Xj(p, τ j′)

)]
≥ 0.
(G.2)

The first part of the lemma considers a price rise at some date T , posterior to the deposit-
opening date τ j . Assuming instead that T ≤ τ j′ < τ j , let us show now that no increase
in price can cause (G.2) to be violated, so that a price rise cannot cause the development
date to be accelerated. Precisely, consider an infinitesimal change in price at date T > τ j .
Denoting by ∆ the total derivative of the left-hand side of inequality (G.2), one obtains

∆ =
∂Vj (p,Xj(p, τ j), τ j)

∂pT
+

∂Vj (p,Xj(p, τ j), τ j)

∂Xj

dXj(p, τ j)

dpT
− Ej′

τ j

(
Xj(p, τ j)

) dXj(p, τ j)

dpT

−

[
∂Vj (p,Xj(p, τ j′), τ j′)

∂pT
+

∂Vj (p,Xj(p, τ j′), τ j′)

∂Xj

dXj(p, τ j′)

dpT
− Ej ′

τ j′

(
Xj(p, τ j′)

) dXj(p, τ j′)

dpT

]
.

Recalling the second equality in (F.7), we have

∂Vj (p,Xj(p, τ j), τ j)

∂Xj

dXj(p, τ j)

dpT
− Ej′

τ j

(
Xj(p, τ j)

) dXj(p, τ j)

dpT
= 0

and similarly for τ j′. Thus, ∆ may be rewritten

∆ =
∂Vj (p,Xj(p, τ j), τ j)

∂pT
−

[
∂Vj (p,Xj(p, τ j′), τ j′)

∂pT

]
,

where the Envelope Theorem applied to (F.4)-(F.5) implies

∂Vj (p,Xj(p, τ j), τ j)

∂pT
= xj

T (p, τ
j),

for τ j and for τ j′. ∆ thus reduces to

∆ = xj
T (p, τ

j)− xj
T (p, τ

j′).

Finally, the inequality (G.1) established above, together with the first-order condition
(7) characterizing extraction at date T implies that xj

T (p, τ
j) ≥ xj

T (p, τ
j′), which proves

that
∆ ≥ 0.

Since a price rise positively affects the left-hand side of inequality (G.2), it cannot cause
the earlier date τ j′ < τ j to become the optimal development date.

The second part of the lemma considers a price rise occurring at date T prior to the
deposit-opening date τ j . Under the initial prices, assume that extraction takes place at
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dates t ≥ τ j ≥ T and reserves are optimally developed at τ j ; that must yield higher
intertemporal profits (F.2) than opening the deposit at a later date. A postponing of the
opening date τ j to τ j′ > τ j would restrict extraction to dates t ≥ τ j′ > τ j , over which
price conditions are unchanged by the rise in price at T . Clearly, that restriction cannot
dominate the possibility of extracting at the larger set of dates t ≥ τ j .

Having established the lemma, Proposition 6 follows, as indicated in Appendix F in the
paragraph preceding the proposition.

H NRR supply with stock effects in extraction costs

In this appendix and the following Appendix J, we focus on a particular deposit for simplic-
ity. For the sake of notational simplicity, we omit the deposit index j. Assuming that all
deposits are modeled in the same way, the results obtained will indicate that their extension
to the aggregate level is straightforward.

Since the resource is not homogeneous, it is important to make a distinction between
geological and economical reserves. Let Xt represent the stock of geological reserves re-
maining at t, and relabel the stock of initial geological reserves X0, with X0 = X0. Units
of measurement are chosen such that the flow of extraction is homogeneous over time, e.g.,
barrels of oil of constant energy content, viscosity, refining cost, etc. Cumulative extraction
between dates 0 and t is equal to X0 −Xt, with

Xt+1 = Xt − xt, X0 = X0 given.

The extraction cost function may be written as Ct (xt, Xt). Under such a techno-
geological constraint on extraction, the net present-value extraction revenue ptxt−Ct (xt, Xt)
not only depends on xt and pt as in Section 2, but also on remaining reserves Xt. It is still
true at each date t that ∂Ct(x,X)

∂x
> 0 and Ct(0, X) = 0, ∀X ≥ 0. Also, we assume that

∂Ct(0,X0)
∂x

< pt for at least one date so that some exploitation is warranted. The dependency
of extraction cost on cumulative extraction implies that the cost depends on X negatively:
Higher current reserves imply lower cumulative extraction, hence a lower cost. We assume

∂Ct(x,X)

∂X
< 0 and

∂Ct(x,X)

∂x∂X
< 0, (H.1)

for all t ≥ 0 and for all x > 0 and X ≥ 0.
We also assume that Ct (x,X) is strictly convex in its two arguments.31 We owe James

Sweeney (1993) a thorough investigation of the discrete version of the Hotelling-Gordon
model; as he showed, the existence of an underlying continuous-time representation of the
technology implies restrictions on the partial derivatives of allowable discrete-time cost

31Under the maintained assumption that the cost function is convex, the objective function for this problem
is concave and the feasible set is convex. Thus the first-order necessary conditions are sufficient for opti-
mality and multiple local unconnected optima cannot exist (Sweeney, 1993, p. 771). We further assume
the strict convexity of the cost function in order to avoid having to deal with supply correspondences
rather than supply functions.
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functions; precisely, it must be true that

∂2Ct (x,X)

∂x2
+

∂2Ct (x,X)

∂x∂X
> 0, (H.2)

a property called the dominance of extraction rate on marginal cost32 which will also be
assumed to hold here.33

As in the simple model of Section 2, the producer must identify and develop the reserves
to be exploited before extraction begins. At date 0, a portion X0−XF is chosen within the
initial stock X0 of geological reserves and undergoes a costly exploration and development
process that makes it suitable for exploitation. No development expenditure is applied to
reserves that are not deemed economical, implying that the stock XF ≥ 0 of geological
reserves left undeveloped will be left unexploited at the end of the extraction process.

The amount X0−XF defines economic reserves. Economic reserves can be increased at
date zero by reducing XF . It is sensible to assume decreasing returns to exploration and
development on the ground, as argued before, that the best prospects are developed first.
Redefining the function E, we thus assume that the cost of developing an initial stock of
exploitable economic reserves X0 −XF when geological reserves are X0 is E

(
X0 −XF

)
,34

with E(0) = 0 and E ′(0) = 0.35

The problem faced by a NRR producer under such conditions is (see the Appendix for
details of the resolution)

max
(xt,Xt)t≥0

∑

t≥0

(ptxt − Ct(xt, Xt))−E(X0 −XF ) (H.3)

subject to
Xt+1 = Xt − xt, ∀t ≥ 0, (H.4)

32Salant et al. (1983) also imposed this assumption, although not in reference with any underlying
continuous-time technology.

33As a simple way to focus on the rise in extraction cost with cumulative extraction, the extraction cost of
the underlying continuous-time cost function is sometimes assumed to depend on the remaining-reserve
stock, but not on the extraction rate (e.g., van der Ploeg and Withagen, 2012a, among many others); i.e.,
total cost is assumed linear in extraction rate. However, this linearity assumption in a continuous-time
model implies a discrete-time representation in which marginal extraction cost is a strictly increasing
function of extraction rate and a decreasing function of the remaining stock (Sweeney, 1993). Thus the
discrete-time model presented here encompasses both continuous-time versions of Gordon’s model that
treat the marginal cost of extraction as constant or as strictly rising.

34We write the amount of reserves developed for exploitation as X0 − XF rather than merely X as in
Section 2 in order to emphasize an important property of the model. The marginal unit of reserves
being developed at date zero is the unit that will be extracted last, not first. In models of homogeneous
resources, this does not matter; in Gordon’s model, the sequence of reserve development and extraction is
a geological and technological assumption, although it is often justified on economic grounds. Increasing
the stock of developed reserves at date zero means reducing the amount of geological reserves XF to be
left unexploited at the closure date. As a result, the cost of extraction at date zero is the same whatever
the amount of developed reserves.

35As in Section 2, the property E′(0) = 0 is introduced because it is sufficient to ensure that a positive
amount of reserves is developed. It plays no other role than ruling out uninteresting situations where
resource prices do not warrant the production of any reserves.
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xt ≥ 0, ∀t ≥ 0, (H.5)

X0 = X0 given (H.6)

Xt ≥ XF ≥ 0, ∀t ≥ 0, (H.7)

where economic reserves X0 − XF , and thus also geological reserves XF left undeveloped
at the end of exploitation, are fixed in the short run but endogenous in the long run.

We denote by S, which may be infinite, the last date at which strictly positive extraction
occurs. Thus if S exists, Xt = Xt+1 for all t ≥ S + 1. Clearly, extraction may also be null
occasionally before S.

Because of resource heterogeneity, the present-value resource rent measured by the La-
grangian multiplier associated with (H.4) is not constant over time. It is sometimes called
a Ricardian resource rent and diminishes as reserves diminish; we denote it µt rather than
λ, the Lagrangian multiplier associated with the same constraint in Section 2, to emphasize
that this rent is different from a pure Hotelling scarcity rent.

Pure scarcity arises in this model at two levels, associated with the two inequality
constraints in (H.7). The right-hand side inequality addresses the possibility that the
totality of geological reserves be worth exploiting. It has been well investigated (e.g.,
Levhari and Liviatan, 1977) and will be considered in Appendix I. The left-hand side
inequality recognizes the assumption that only those reserves that have been previously
discovered and developed at date zero may be exploited. As already argued, exploration
and reserve development are costly, so that no reserves are developed to be ultimately left
unexploited. Prior to the exhaustion of economic reserves, Xt > XF and the constraint
is not binding; at the date of exhaustion, the constraint becomes binding and we denote
the associated multiplier by λ with no time index because the date of exhaustion S is
endogenous; λ may be interpreted as the pure Hotelling component of the resource rent in
a short-run perspective, or, in a long-run perspective, as a quasi-rent reflecting both pure
Hotelling scarcity and expenditures sunk in exploration and development.

The first-order condition for strictly positive extraction at date t is

pt −
∂Ct(xt, Xt)

∂x
= µt, xt > 0, ∀ t = 0, ..., S. (H.8)

The resource rent evolves according to the first-order condition

µt = µt−1 +
∂Ct(xt, Xt)

∂X
, ∀ t = 0, ..., S, (H.9)

with

µS = λ and λ = E ′
(
X0 −XF

)
in the long run if XF > 0. (H.10)

According to (H.9), the present-value rent diminishes as the stock of reserves diminishes
and extraction cost increases. At the end of operations, all pre-developed reserves are
exhausted so that remaining geological reserves equal XF . When those remaining reserves
are not null, the constraint that XF ≥ 0 is not binding and the resource rent equals the
cost of finding and developing the marginal unit of economic reserves, as stated by the
right-hand equality in (H.10).
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The following proposition characterizes the effect on restricted supply of a change in
restricted reserves, and the effect on restricted and unrestricted supply at any date of a
change in price occurring at any other date of the exploitation phase. It extends, in the
context of the Hotelling-Gordon model, Propositions 1 and 2 which apply to a homoge-
neous resource within each deposit. Intertemporal cross-price effects are negative, whether
reserves are endogenous or not; the impact of a price change on reserves does not dominate
the direct substitution effect. However, this result holds in terms of cumulative, rather than
instantaneous, supply.36

Proposition 7 (NRR supply with intra-deposit heterogeneity)
Assume that each deposit is heterogenous in the way just described.

1. (Stock effect) An exogenous rise in exploitable reserves increases cumulative restricted
supply at all dates.

2. (Cross-price effects) A price rise at any date T ≤ S reduces cumulative restricted and
unrestricted supply at all dates t 6= T , where cumulative supply if t > T is defined to
exclude the supply at date T .

The extension to aggregate NRR supply is straightforward.

I NRR supply with stock effects in extraction costs: Problem statement and
preliminaries

The problem under investigation is (H.3)-(H.7). In this problem, (H.4) and (H.5) imply
that Xt+1 ≤ Xt for all t ≥ 0. Thus it is sufficient that (H.7) be imposed when t → ∞ or at
the highest date considered. Let us call X∞ the value of Xt at that date or its limit when
t → ∞. Then (H.7) can be replaced by

X∞ ≥ XF ≥ 0. (I.1)

We denote µt and ηt, the Lagrange multipliers respectively associated with date-t con-
straints (H.4) and (H.5); the Lagrange multipliers associated with X∞ ≥ XF and XF ≥ 0
are λ and ε. The Lagrangian is

L =
∑

t≥0

(ptxt − Ct(xt, Xt) + ηtxt)−E(X0 −XF ) (I.2)

+
∑

t≥0

µt (Xt − xt −Xt+1) + λ
(
X∞ −XF

)
+ εXF .

It must be maximized with respect to xt and Xt at all dates in both the long-run and
the short-run versions of the problem. In the long-run version it is also maximized with

36Thus the results of Section 2 hold in terms of cumulative supply when extraction costs change with the
stock of remaining reserves. They hold in terms of flows at date zero, the current date of extraction of the
planning horizon. Indeed, from the present perspective of the producer, current supply and cumulative
supply are identical.
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respect to XF , resulting in the long-run supply and cumulative supply functions x∗
t (p) and

X∗
t (p). In the short-run version XF , or equivalently developed reserves X0 −XF , is taken

as given, resulting in the short-run (or restricted) supply and cumulative supply functions

x̃t

(
p,X0 −XF

)
and X̃t

(
p,X0 −XF

)
.

L is strictly concave in XF by the convexity of E; L is strictly concave in xt and Xt by
the convexity of Ct; the latter means that

∂2Ct(x,X)

∂x2
,
∂2Ct(x,X)

∂X2
, and

∂2Ct(x,X)

∂x2

∂2Ct(x,X)

∂X2
−

(
∂2Ct(x,X)

∂x∂X

)2

, (I.3)

are all strictly positive for all t ≥ 0, for all X ≥ 0 and all x > 0.
Differentiating (I.2) with respect to xt and Xt gives the following first-order conditions:

µt − ηt = pt −
∂Ct(xt, Xt)

∂x
, ηt ≥ 0, xtηt = 0, ∀t ≥ 0 (I.4)

and

µt−1 = µt −
∂Ct(xt, Xt)

∂X
, ∀t ≥ 0. (I.5)

Let S be defined as the last date at which extraction is strictly positive; S is endogenous;
we assume for simplicity that S ≥ 1. Also for simplicity, we assume that x0 > 0.37 Thus,

x0 > 0, xt ≥ 0, ∀t = 1, ..., S − 1, xS > 0 and xt = 0, ∀t > S, (I.6)

and, by (H.4),
Xt = XS+1, ∀t ≥ S + 1. (I.7)

Since the development of reserves is costly, the optimum plans of the producer will bind
the first exhaustibility constraint, X∞ ≥ XF , in (I.1). Precisely, starting at t = S + 1,
Xt = Xt+1 by (I.7) so that Xt must reach X∞ = XF at S + 1 if it is to equal XF at the
end of the program. Consequently,

Xt = XF , xt = 0, ηt ≥ 0, ∀ t ≥ S + 1; (I.8)

Xt > XF , xt ≥ 0, ηt ≥ 0, ηtxt = 0, ∀ t ≤ S. (I.9)

It follows from (I.4) that

µt = pt −
∂Ct(xt, Xt)

∂x
, xt > 0, ∀t = 0, ..., S, (I.10)

which is expression (H.8) in the text. If xt = 0, either

µt ≥ pt −
∂Ct(0, Xt)

∂x
, ∀t ≤ S, (I.11)

37The proofs of this appendix extend to the case where the deposit is not exploited at date 0, or only
exploited at date 0. The results are also valid when S → ∞.
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or

µt ≥ pt −
∂Ct(0, X

F )

∂x
, ∀t ≥ S + 1. (I.12)

Since Ct(0, X) = 0 for all X ≥ 0, ∂Ct(0,X)
∂X

= 0 for all X ≥ 0. Therefore, before S, (I.5)
implies

µt−1 = µt, if xt = 0, ∀t < S. (I.13)

Beyond S, since xt = 0, (I.5) reduces to

µt−1 = µt, ∀t ≥ S + 1. (I.14)

(I.5) is unchanged at t ≤ S when extraction is strictly positive:

µt−1 = µt −
∂Ct(xt, Xt)

∂X
, xt > 0, ∀t = 0, ..., S, (I.15)

which is expression (H.9) in the text.
Since, starting at t = S + 1, xt = 0 and Xt = Xt+1 by (I.6) and (I.7), the sum∑

t≥0

µt (Xt − xt −Xt+1) in the Lagrangian (I.2) reduces to
∑

t=0,...,S

µt (Xt − xt −Xt+1). Con-

sequently, the Lagrangian may be rewritten

L =
∑

t≥0

(ptxt − Ct(xt, Xt) + ηtxt)− E(X0 −XF ) (I.16)

+
∑

t=0,...,S

µt (Xt − xt −Xt+1) + λ
(
X∞ −XF

)
+ εXF ,

where (I.7) also implies that XS+1 in the term µS (XS − xS −XS+1) equals X∞. It follows
that the first-order condition to the choice of X∞ requires the equality µS = λ. Since µt

remains constant starting at t = S by (I.14), we obtain

µt = λ, ∀t ≥ S (I.17)

This gives the equality on the left-hand side of (H.10) in the text.
When XF is treated as endogenous (long run) and the constraint XF ≥ 0 in (I.1) is

binding, the first-order condition associated with XF in (I.2) is38

E ′(X0) = λ− ε, XF = 0, λ > 0, ε ≥ 0; (I.18)

when XF > 0, it must satisfy

E ′(X0 −XF ) = λ, XF > 0, λ > 0, ε = 0. (I.19)

This establishes the right-hand-side equality in (H.10).

38Given our assumptions on prices and costs, a strictly positive stock of reserves X0−XF is developed and
exploited. Thus E′(X0 −XF ) > 0, which will imply that λ > 0.
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Let us define the short-run value function

V
(
p,X0 −XF

)
≡
∑

t≥0

(ptxt − Ct(xt, Xt)) , (I.20)

where xt and Xt are solutions x̃t

(
p,X0 −XF

)
and X̃t

(
p,X0 −XF

)
to the restricted (X0−

XF fixed) version of Problem (H.3)-(H.7), i.e. satisfy (I.10), (I.11), (I.12), (I.13), (I.14) and
(I.15). V

(
p,X0 −XF

)
denotes the total present-value revenue derived from the exploitation

of the developed reserves X0−XF . By standard interpretation,
∂V(p,X0−XF )
∂(X0−XF )

is the implicit
value of the marginal extracted unit, which is also the implicit value λ of the marginal
developed reserve unit:

λ ≡
∂V
(
p,X0 −XF

)

∂(X0 −XF )
> 0. (I.21)

By the assumption of cost convexity, V is increasing and strictly concave in X0 −XF .
In the long run, when XF is endogenous, so that (I.18) and (I.19) hold; it follows

E ′(X0) =
∂V (p,X0)

∂(X0)
− ε, XF = 0; ε ≥ 0, λ > 0;

E ′(X0 −XF ) =
∂V
(
p,X0 −XF

)

∂(X0 −XF )
, XF > 0, ε = 0, λ > 0.

When the constraint XF ≥ 0 on the availability of geological reserves is not binding,
reserves are developed in such a way that the cost of developing the marginal unit is equal
to the contribution of this unit to the intertemporal profit. However, in the case where the
marginal cost of developing the totality of geological reserves falls short of the value of the
marginal reserve unit, it is optimal to set XF = 0, with 0 < E ′ (X0) = λ− ε < λ.

In the short run, when X0 −XF is given, (I.21) holds, but conditions (I.18) and (I.19)
are not necessarily satisfied.

J Proof of Proposition 7

1. Stock effect on restricted cumulative supply

Assuming that exploitable reserves X0 − XF are parametric, with XS+1 = XF as per
(I.8), consider an increase d(X0 − XF ) > 0, i.e. a reduction dXF < 0 (X0 is given); this
requiresXF > 0. In the sequel, we establish the effect on the restricted supply and restricted
cumulative supply functions x̃t

(
p,X0 −XF

)
and X̃t

(
p,X0 −XF

)
of this exogenous reserve

increase; x̃t

(
p,X0 −XF

)
and X̃t

(
p,X0 −XF

)
are the values of Xt and xt in the solution

of Problem (H.3)-(H.7), whose Lagrangian is (I.2), when xt and Xt are endogenous but X
F

is exogenous.
The strict concavity of V in (I.21) implies that the rise in reserves causes a strict reduc-

tion in λ. The final extraction date S may be modified as a result of the reserve change.
In what follows, we will denote by S the date at which extraction endogenously stops once
the reserve change is taken into account.
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Notation 1 If S is modified by any parametric change, S denotes in these proofs the date
at which extraction endogenously stops once the parameter change is taken into account.
For example, if S changes from S0 to S1 as a result of a change in XF from XF

0 to XF
1 ,

the notation xS signifies xS1
and dxS signifies xS1

|XF=XF
1
− xS1

|XF=XF
0
.

The proof makes use of several lemmas.

Lemma 2 As a result of a reserve change d(X0−XF ) > 0, dλ < 0, dµS < 0 and dXS+1 <
0.

Proof. dλ < 0 is shown above.
If S is unchanged, µS = λ and XS+1 = XF before and after the reserves’ change; the

lemma immediately holds in that case.
If S is postponed, for all t ≥ S, µt = µS = λ by (I.17) and Xt+1 = XS+1 = XF , before

and after the change; the lemma also immediately holds.
Examine now the case where S is advanced. Before the change, µt > λ by (I.15) and

Xt+1 > XF for all t strictly preceding the initial last-extraction date; in particular at the
date S which will be the last extraction date after the change, remembering Notation 1,
XS+1 > XF . After the change, since µS = λ and XS+1 = XF while the change implies
dλ < 0 and dXF < 0, it follows that dµS < 0 and dXS+1 < 0. QED

The following lemma will be used later to exploit Lemma 2.

Lemma 3 If, as a result of the increase in reserves, dµt ≥ 0 and dXt+1 ≥ 0 for some
t = 0, ..., S − 1, then dµt+1 ≥ 0 and dXt+2 ≥ 0.

Proof. For some date t = 0, ..., S − 1, assume that the change in reserves causes changes
dµt ≥ 0 and dXt+1 ≥ 0.

If xt+1 was null and remains so as a result of the change in reserves, then µt+1 = µt by
(I.13); it follows that dµt+1 ≥ 0. Also, dxt+1 = 0 implies by (H.4) that dXt+2 = dXt+1 ≥ 0.

Consider now that xt+1 was strictly positive and remains so after the change, so that
(I.10) holds. Assume, as a premise to be contradicted, that dµt+1 < 0. On the one hand,
total differentiation of (I.10) at date t+ 1 then implies

dxt+1 >
−∂2Ct+1

∂x∂X

∂2Ct+1

∂x2

dXt+1. (J.1)

On the other hand, totally differentiating (I.15) and (I.10), taken at t+1, and substituting
yield

dµt = −

[
∂2Ct+1

∂x2
+

∂2Ct+1

∂x∂X

]
dxt+1 −

[
∂2Ct+1

∂X∂x
+

∂2Ct+1

∂X2

]
dXt+1. (J.2)

The first term between brackets is strictly positive by assumption (H.2). Using (J.1), and
simplifying it follows that

dµt <

(
∂2Ct+1

∂x2

)−1
[(

∂2Ct+1

∂x∂X

)2

−
∂2Ct+1

∂x2

∂2Ct+1

∂X2

]
dXt+1,
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where assumption (I.3) implies that the term multiplying dXt+1 is negative. Thus the
lemma’s assumption dXt+1 ≥ 0 implies that dµt < 0. This contradicts the other lemma’s
assumption dµt ≥ 0. We conclude that the maintained assumption dµt+1 < 0 cannot hold
and that dµt+1 ≥ 0 when xt+1 remains positive as a result of the change.

Consider finally the (intermediate) cases where extraction is zero before the reserve
change and becomes strictly positive as a result of the change, or vice versa, where extraction
is strictly positive and becomes zero. We just showed that dµt+1 ≥ 0 if extraction is null
and remains so, and also if extraction is strictly positive and remains so. By the Maximum
Theorem µt+1 is continuous across these cases, so that we also have dµt+1 ≥ 0.39

We have shown that dµt+1 ≥ 0; now consider dXt+2. Consider first that extraction xt+2

was null before the reserve change and remains so after the change. In that case, (H.4)
implies that dXt+2 = dXt+1, which is positive as lemma assumption. Consider now that
extraction xt+2 was and remains strictly positive. In that case, (I.10) holds before and after
the reserve change, so that the rise dµt+1 ≥ 0 implies a reduction in ∂Ct+1

∂x
, that is by total

differentiation of (I.10)

dxt+1 ≤
−∂2Ct+1

∂x∂X

∂2Ct+1

∂x2

dXt+1. (J.3)

By assumptions (H.1) and (H.2), the coefficient of dXt+1 in the above inequality is positive
and lower than unity. Thus the inequality implies that dxt+1 ≤ dXt+1, which yields dXt+2 ≥
0. The continuity argument made earlier to invoke the Maximum Theorem also applies here
for cases where extraction xt+2 becomes positive or null as a result of the change in reserves.
QED

The combination of Lemma 2 and Lemma 3 will give the following result.

Lemma 4 As a result of the reserve increase, dµ0 < 0 and dX1 < 0, and for all t = 1, ..., S,
either dµt < 0 or dXt+1 < 0.

Proof. This lemma follows from Lemma 2 and the contrapositive of the series of implications
in Lemma 3. Indeed, the final implication of Lemma 3 that µS ≥ 0 is contradicted by Lemma
2. Thus for all t = 0, ..., S, dµt ≥ 0 and dXt+1 ≥ 0 do not hold at the same time: either
dµt < 0 or dXt+1 < 0, where the relation “or” is not exclusive.

For t = 0, x0 > 0 by (I.6) so that (I.10) holds. It follows that dµ0 < 0 is equivalent to
dx0 > 0 since X0 is given, which is equivalent by (H.4) to dX1 < 0. Thus the proposition
that “either dµ0 < 0 or dX1 < 0 holds” is equivalent to “dµ0 < 0 and dX1 < 0 hold.” QED

39The Maximum Theorem applies as follows to the restricted problem under study. The exploitable reserves
parameter X0 −XF continuously affects the extraction possibility set defined by (H.4), (H.5) and (H.7),
and continuously affects the objective (H.3). SinceX0−XF must be finite by (H.7) and by the finiteness of
X0, the extraction possibility set is bounded, and is evidently closed. Furthermore, the objective (H.3) is
strictly concave by assumption and for any given reserves level X0−XF , the set of extraction possibilities
is convex since the convex combination of two possible extraction paths satisfying the exhaustibility
constraint satisfies the exhaustibility constraint. The Maximum Theorem thus applies, implying that the
optimum extraction path (xt, Xt)t≥0 is a continuous function of the reserve level X0 − XF . In turn,
because all multipliers µt, t ≥ 0, are defined as continuous functions of xt and Xt by (I.10) and (I.14), it
follows that in optimum they are continuous functions of X0 −XF .
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The result that dµ0 < 0 and dX1 < 0 will be later exploited by use of the following
lemma, whose proof partly relies on the other part of Lemma 4.

Lemma 5 If, as a result of the reserve increase, dµt < 0 and dXt+1 < 0 for some t =
0, ..., S − 1, then dµt+1 < 0 and dXt+2 < 0.

Proof. For some t = 0, ..., S − 1, assume that dµt < 0 and dXt+1 < 0 hold simultaneously.
Suppose, as an assumption to be contradicted, that dXt+2 ≥ 0.
There are several possibilities as far as extraction xt+1 is affected by the change in

reserves. First consider the case where xt+1 = 0 before and after the change. Then by
(H.4), dXt+2 = dXt+1 < 0, which contradicts the maintained assumption.

Consider now the case where extraction xt+1 was strictly positive before the change in
reserves and remains so after the change. By Lemma 4, dXt+2 ≥ 0 implies

dµt+1 < 0. (J.4)

On the other hand, by (H.4), dXt+2 ≥ 0 implies

dXt+1 ≥ dxt+1. (J.5)

Differentiating (I.10) at t + 1 gives

dµt+1 = −
∂2Ct+1

∂x2
dxt+1 −

∂2Ct+1

∂x∂X
dXt+1,

where the coefficient of dxt+1 is strictly negative by assumption (I.3). Substituting for dxt+1

by use of inequality (J.5) implies

dµt+1 ≥ −

[
∂2Ct+1

∂x2
+

∂2Ct+1

∂x∂X

]
dXt+1,

where the term between brackets is strictly positive by (H.2). Since dXt+1 < 0 by assump-
tion of the lemma, the inequality implies that dµt+1 > 0, which contradicts (J.4).

Therefore, whether extraction at t+1 remains zero or remains strictly positive as a result
of the reserve change, it must be true that dXt+2 < 0. Finally consider the (intermediate)
cases where xt+1 was zero and becomes strictly positive or, vice versa, was strictly positive
and becomes zero. By the Maximum Theorem (see Footnote 39 on how it applies here),
for any t ≥ 0, Xt+2 is continuous in reserves. Hence, the result that dXt+2 < 0 also applies
across the cases where extraction remains zero or strictly positive, that is in the intermediate
cases.

We conclude that, whether extraction was and remains zero or becomes strictly positive,
or else was strictly positive and remains so or falls to zero at date t + 1,

dXt+2 < 0.

It follows by (H.4) that
dXt+1 < dxt+1. (J.6)
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Let us now show that dµt+1 < 0. Consider first that extraction xt+1 was null before
the reserve change and remains so after the change. In that case, µt+1 = µt before and
after the change by (I.13) or (I.14). It follows that dµt+1 = dµt < 0 by the lemma’s
assumption that dµt < 0. Consider now that extraction xt+1 was and remains strictly
positive. In that case, (I.10) holds at t+ 1 before and after the reserve change, which gives

dµt+1 = −∂2Ct+1

∂x2 dxt+1 −
∂2Ct+1

∂x∂X
dXt+1, where the coefficient of dxt+1 is strictly negative by

(I.3). Substituting for dxt+1 by use of inequality (J.6) implies

dµt+1 ≤ −

[
∂2Ct+1

∂x2
+

∂2Ct+1

∂x∂X

]
dXt+1,

where the term between brackets is strictly positive by (H.2). Since dXt+1 < 0 by assump-
tion of the lemma, the inequality implies that dµt+1 < 0. The continuity argument invoked
earlier (Maximum Theorem; see Footnote 39) also applies here for cases where extraction
xt+1 becomes positive or null as a result of the change in reserves. QED

The following lemma concludes the proof of Proposition 7.1.

Lemma 6 As a result of the increase in reserves, dµt < 0 and dXt+1 < 0 for all t = 0, ..., S.

Proof. By Lemma 4, dµ0 < 0. Since x0 > 0 by assumption (I.6), (I.10) holds, where X0 is
fixed. It follows from dµ0 < 0 in (I.10) that dx0 > 0. In turn, (H.4) implies dX1 < 0.

dµt < 0 and dXt+1 < 0 are thus simultaneously verified for t = 0, which implies by
Lemma 5 that dµt+1 < 0 and dXt+2 < 0, for all t = 0, ..., S − 1. Lemma 6 is obtained by
recurrence, thus completing the proof of Proposition 7.1. QED

2. Cross-price effects on restricted and unrestricted supply
The following proof will simultaneously establish the effects of a price change on re-

stricted cumulative supply X0 − X̃t

(
p,X0 −XF

)
and on unrestricted cumulative supply

X0 − X∗
t (p). X∗

t (p) is the value of Xt in the solution of Problem (H.3)-(H.7), whose La-

grangian is (I.2), when xt, Xt and XF are treated as endogenous; X̃t

(
p,X0 −XF

)
is the

value of Xt in the solution of Problem (H.3)-(H.7) when xt and Xt are endogenous but X
F

is exogenous.
We will consider a strict price rise dpT > 0 at some date T ≥ 1 that differs from the pre-

change date of last strictly-positive extraction, and is such that xT is strictly positive before
the change; the proof can easily be extended to T = 0 and to a price rise occurring at the
pre-change date of last extraction. The restriction that xT > 0 rules out the uninteresting
possibility that the price rise has no effect on λ because it applies to a null extraction base.
It also implies that the price rise does not occur at a date posterior to the pre-change date
of last extraction.

When the size of reserves is restricted, according to (I.21), the value of the marginal

unit of reserves is λ =
∂V(p,X0−XF )
∂(X0−XF )

, with
∂2V(p,X0−XF )
∂(X0−XF )∂pT

> 0. Thus the price rise dpT > 0 at
some date of the extraction phase implies dλ > 0.

When reserves are not restricted, there are two possibilities. When XF > 0, (I.19) and
(I.21) hold: Developed and exploited reserves X0 − XF and their marginal value λ are
jointly determined by the equality of the strictly rising marginal development cost function
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E ′(X0 −XF ) with the decreasing marginal value of reserves
∂V(p,X0−XF )
∂(X0−XF )

. In that context,
a price rise dpT > 0 at some date of the extraction phase causes a rise dλ > 0 and an
increase in developed and exploited reserves d(X0 − XF ) > 0 or, equivalently, dXF < 0.
When XF = 0 before the price rise, the above effect does not take place: d(X0 −XF ) = 0
despite the absence of reserve restriction so that dλ > 0 as when reserves are restricted.

The following lemma gathers those results.

Lemma 7 A price rise dpT > 0 at some date T ≥ 1 such that xT > 0 and T strictly
precedes the last date of strictly positive extraction, causes the value of the marginal reserve
unit to increase strictly (dλ > 0) and developed reserves to increase (dXF ≤ 0).

The possibility that dXF = 0 ensures that Lemma 7 holds whether supply is restricted
or unrestricted and, in the latter case, whether the constraint XF ≥ 0 is binding or not.

The second step of this proof involves the backward recurrence described in Lemma 8.
This recurrence will be used to assess the effect of the price change on quantities at the
terminal date S and then at all dates between T and S.

Lemma 8 If, as a result of the date-T price rise, dµt > 0 and dXt ≤ dxt ≤ 0 for some
date t ≤ S, t 6= T , then dµt−1 > 0 and dXt−1 ≤ dxt−1 ≤ 0, t− 1 6= T .

Proof. Assume that for some date t 6= T , 1 < t ≤ S, dµt > 0 and dXt ≤ dxt ≤ 0.
First, consider the case where xt was null before the price change and remains so after-

wards. Then, dxt = 0, so that µt−1 = µt by (I.13). By the maintained assumption dµt > 0,
it follows that dµt−1 = dµt > 0 in that case.

Second, consider the situation where xt was strictly positive before the change in price,
and remains so with the change. (I.10) holds in that case; totally differentiating (I.10) at
date t and using dµt > 0 yields

dxt <
− ∂2Ct

∂x∂X

∂2Ct

∂x2

dXt. (J.7)

Assume now that t − 1 6= T . Replacing µt in (I.15) by its expression as per (I.10) and
totally differentiating give

dµt−1 = −

[
∂2Ct

∂x2
+

∂2Ct

∂x∂X

]
dxt −

[
∂2Ct

∂X2
+

∂2Ct

∂X∂x

]
dXt,

where the first term between brackets is strictly positive by assumption (H.2). Substituting
dxt by use of inequality (J.7) and rearranging, we obtain

dµt−1 >

(
∂2Ct

∂x2

)−1
[(

∂2Ct

∂x∂X

)2

−
∂2Ct

∂x2

∂2Ct

∂X2

]
dXt, (J.8)

where by assumption (I.3) the term between parentheses is positive and the term between
brackets is negative. Since dXt ≤ 0 by the assumption of this proof, it follows from (J.8)
that dµt−1 > 0 also in that case.
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One can conclude that the rise in price yields dµt−1 > 0, whether xt decreases and
remains strictly positive or xt is and remains zero. The Maximum Theorem implies that
µt−1 is continuous40 across these cases, so that dµt−1 > 0 also holds as a result of the price
rise when xt decreases from a strictly positive level to zero.

As far as date t−1 is concerned, there are two possibilities. If xt−1 was and remains zero
following the price rise, dxt−1 = 0 so that (H.4) implies dXt−1 = dXt ≤ 0 by the maintained
assumptions. Therefore, dXt−1 ≤ 0 = dxt−1; the lemma applies in that case.

When xt−1 > 0, the maintained assumption dXt ≤ 0 implies by (H.4) that

dXt−1 ≤ dxt−1. (J.9)

On the other hand, the differentiation of (I.10) at t − 1 gives dµt−1 = −∂2Ct−1

∂x2 dxt−1 −
∂2Ct−1

∂x∂X
dXt−1, where

∂2Ct−1

∂x∂X
is strictly negative by assumption (H.1). Substituting for dXt−1

by use of inequality (J.9) thus yields

dµt−1 < −

[
∂2Ct−1

∂x2
+

∂2Ct−1

∂x∂X

]
dxt−1,

where the term between brackets is positive by assumption (H.2). We have shown above that
dµt−1 > 0, so that dxt−1 must be strictly negative. (J.9) thus implies dXt−1 ≤ dxt−1 < 0.

In the case where xt−1 decreases with the price rise in such a way that it becomes zero,
the latter inequality must be adjusted to dXt−1 ≤ dxt−1 ≤ 0; the lemma also applies. QED

Let us now examine the effect of the price change at the last extraction date S.

Lemma 9 Following the date-T price rise, at the date S of last strictly positive extraction,
dµS > 0 and dXS ≤ dxS < 0.

Proof. The date of last extraction may change as a result of the price rise considered in
Lemma 7. However it cannot be postponed. Date T of the price rise does not occur at a date
with no extraction; thus T is not posterior to the pre-change last extraction date. Therefore
if S is a date at which extraction had already stopped before the price rise, condition (I.12)

had to hold before the price rise; considering (I.17), this implies that µt = λ > pt−
∂Ct(0,XF )

∂x
,

where by Lemma 7 the price change induces dλ > 0 and dXF ≤ 0. It follows from (H.1)

that dXF ≤ 0 does not reduce the marginal cost ∂Ct(0,XF )
∂x

; as a result, no rise dxt > 0 can

40The Maximum Theorem applies to price changes in the context of this proof as explained shortly below.
The continuity of multipliers µt, for all dates t ≥ 0 follows because those multipliers are continuous
functions of xt and Xt variables and price parameters by (I.10), (I.13) and (I.14). Whether Problem
(H.3)-(H.7) is restricted (X0 −XF given) or not (XF free), the Maximum Theorem applies as follows,
when the parameters of interest are prices. The extraction possibility set defined by (H.4), (H.5) and
(H.7), is independent of price parameters, hence continuous. Price parameters also continuously affect the
objective (H.3). Even in the unrestricted problem, the finiteness of geological reserves X0 ensures that
developed reservesX0−XF ≥ 0 are finite. Thus the extraction possibility set is bounded, and is evidently
closed. Furthermore, the objective (H.3) is strictly concave by assumption and for any vector of prices,
the set of extraction possibilities is convex since the convex combination of two possible extraction paths
satisfying the exhaustibility constraint satisfies the exhaustibility constraint. The Maximum Theorem
thus applies, implying that the optimum extraction path (xt, Xt)t≥0 is a continuous function of any
component of the price vector.
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cause equality (I.10) to be satisfied. However, following the price rise, (I.10) must hold at
S by definition of the after-change last strictly-positive extraction date.

Thus S can only be advanced or left unchanged by the price rise. Then the equalities
µS = λ and XS+1 = XF hold as per (I.17) and (I.8) respectively. Thus Lemma 7 im-
plies dµS > 0 and dXS+1 ≤ 0; the latter is equivalent by (H.4) to dXS ≤ dxS. Totally
differentiating (I.10) and substituting dXS by use of the latter inequality yield

dµS ≤ −

[
∂2CS

∂x2
+

∂2CS

∂x∂X

]
dxS, (J.10)

where the term between brackets is positive by assumption (H.2). Since dµS > 0 in this
case, it follows from inequality (J.10) that dxS < 0, which remains compatible with xS > 0.
Therefore, dXS ≤ dxS < 0. QED

Lemma 10 immediately follows from the combination of Lemma 9 with Lemma 8’s
recurrence.

Lemma 10 As a result of the date-T price rise, dµt > 0 and dXt ≤ dxt ≤ 0, for all
t = T + 1, ..., S.

Let us now examine the effects of the price rise at the date T when it occurs. We will
establish the following lemma.

Lemma 11 As a result of the date-T price rise, dxT > 0, dXT ≤ dxT , and dµT > 0.

Proof. By Lemma 10,
dXT+1 ≤ dxT+1 ≤ 0, (J.11)

where dXT+1 ≤ 0 implies
dXT ≤ dxT .

The law of supply prevails at date T , which implies, under Lemma 7’s assumption that
xT > 0, the strict inequality

dxT > 0. (J.12)

From Lemma 10, dµT+1 > 0. Let us now show that dµT > 0.
Consider first the case xT+1 = 0 before and after the price change; by (I.13), µT = µT+1.

It follows that dµT = dµT+1 > 0.
Now consider the case where xT+1 was strictly positive before the price change and

remains so. Then, (I.10) holds; dµT+1 > 0 implies

dxT+1 <
−∂2CT+1

∂x∂X

∂2CT+1

∂x2

dXT+1. (J.13)

Taking (I.15) at t = T + 1 and using (I.10) to eliminate µT+1 gives

dµT = −

[
∂2CT+1

∂x2
+

∂2CT+1

∂x∂X

]
dxT+1 −

[
∂2CT+1

∂X2
+

∂2CT+1

∂X∂x

]
dXT+1,
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where the first term between brackets is strictly positive by assumption (H.2). Substituting
dxT+1 by use of inequality (J.13) and rearranging, one obtains

dµT >

(
∂2CT+1

∂x2

)−1
[(

∂2CT+1

∂x∂X

)2

−
∂2CT+1

∂x2

∂2CT+1

∂X2

]
dXT+1,

where by assumption (I.3) the term between parentheses is strictly positive and the term
between brackets is strictly negative. Since dXT+1 ≤ 0, the latter inequality implies that
dµT > 0.

Finally consider the situation where xT+1 was strictly positive before the change and
decreases so as to become null with the price change. By the Maximum Theorem (see
Footnote 40), the continuity of xT+1 with the price guarantees that the above results apply
in that situation. QED

The analysis will now turn to the effect of the price change on quantities at dates that
precede the date T of the change. We will first establish the following recurrence, that will
be used shortly below.

Lemma 12 If, as a result of the price rise, dµt ≤ 0 and dXt+1 ≤ 0 for some t = 0, ..., T−2,
then dµt+1 ≤ 0 and dXt+2 ≤ 0.

Proof. For some t = 0, ..., T − 2, assume that dµt ≤ 0 and dXt+1 ≤ 0 as a result of the price
rise.

Consider first the case where xt+1 was zero before the price rise and remains so after-
wards. In that case, by (I.13), µt = µt+1. It follows that dµt+1 = dµt ≤ 0. Moreover,
differentiating (H.4) gives dXt+2 = dXt+1 − dxt+1. With dxt+1 = 0 in that case and
dXt+1 ≤ 0 by the maintained assumption, it follows dXt+2 ≤ 0.

Second, consider the case where extraction xt+1 initially was and remains strictly positive
with the price rise so that (I.10) holds. Taking (I.15) at t + 1, substituting for dµt+1 using
(I.10), and differentiating, we obtain

dµt = −

[
∂2Ct+1

∂x2
+

∂2Ct+1

∂x∂X

]
dxt+1 −

[
∂2Ct+1

∂X2
+

∂2Ct+1

∂X∂x

]
dXt+1,

where the first term between brackets is strictly positive by assumption (H.2). Thus dµt ≤ 0
implies

dxt+1 ≥
−
[
∂2Ct+1

∂X2 + ∂2Ct+1

∂X∂x

]

[
∂2Ct+1

∂x2 + ∂2Ct+1

∂x∂X

] dXt+1. (J.14)

On the other hand, the differentiation of (I.10) at t+ 1 yields

dµt+1 = −
∂2Ct+1

∂x2
dxt+1 −

∂2Ct+1

∂x∂X
dXt+1, (J.15)

where −∂2Ct+1

∂x2 is strictly negative by (I.3). Substituting for dxt+1 using (J.14) and rear-
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ranging, one obtains

dµt+1 ≤

[
∂2Ct+1

∂x2

∂2Ct+1

∂X2 −
(

∂2Ct+1

∂x∂X

)2]

[
∂2Ct+1

∂x2 + ∂2Ct+1

∂x∂X

] dXt+1,

where the coefficient of dXt+1 is strictly positive by (H.2) and (I.3). Thus the assumption
dXt+1 ≤ 0 implies dµt+1 ≤ 0.

With dµt+1 ≤ 0, (J.15) implies

dxt+1 ≥
−∂2Ct+1

∂x∂X

∂2Ct+1

∂x2

dXt+1,

where the coefficient of dXt+1 is positive and lower than unity by (H.2), while dXt+1 ≤ 0
by the maintained assumption. It follows that dxt+1 ≥ dXt+1, which by (H.4) implies
dXt+2 ≤ 0.

Last, by continuity (see Footnote 40 on the Maximum Theorem), the above results also
hold across cases, when xt+1 becomes strictly positive or becomes zero following the price
rise. QED

We can now show the following result.

Lemma 13 As a result of the price rise, dµ0 > 0 and, for all t = 1, ..., T , either dµt > 0
or dXt+1 > 0.

Proof. As a result of Lemma 12’s recurrence, if dµt ≤ 0 and dXt+1 ≤ 0 for some t ≤ T − 2,
then dµT−1 ≤ 0 and dXT ≤ 0. Suppose, as an assumption to be contradicted, that dµT−1 ≤
0 and dXT ≤ 0. Differentiating (I.15) at t = T , we have

dµT−1 = dµT −
∂2CT

∂X∂x
dxT −

∂2CT

∂X2
dXT .

On the left-hand side, dµT−1 ≤ 0 by assumption. On the right-hand side, the last term is
positive by (I.3) and by the maintained assumption dXT ≤ 0; dµT > 0 by Lemma 11; and
the second term is strictly positive by Lemma 11 and (H.1). Thus the right-hand side is
strictly positive while the left-hand side in non positive. This contradiction implies that
dµT−1 ≤ 0 and dXT ≤ 0 do not hold simultaneously so that either dµT−1 > 0 or (non
exclusive) dXT > 0.

Now use the following contrapositive of Lemma 12’s implication: If as a result of the
price rise, for some t = 0, ..., T − 2, dµt+1 > 0 or (non exclusive) dXt+2 > 0, then either
dµt > 0 or (non exclusive) dXt+1 > 0. By backward recurrence, starting from the result
established above that either dµT−1 > 0 or (non exclusive) dXT > 0, it follows that, for all
t = 0, ..., T −1, either dµt > 0 or (non exclusive) dXt+1 > 0. At date t = 0, we have already
shown by differentiation of (I.10) where X0 is given, that dµ0 > 0 is equivalent to dx0 < 0,
also equivalent by (H.4) to dX1 > 0. Therefore, “dµ0 > 0 or (non exclusive) dX1 > 0” is
equivalent to “dµ0 > 0 (and dX1 > 0).” QED
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The following lemma will conclude the proof of Proposition 7.2.

Lemma 14 As a result of the date-T price rise, dµt > 0 and dXt+1 > 0, for all t =
0, ..., T − 1.

Proof. By Lemma 13, dµ0 > 0, and therefore, dX1 > 0. Assume that for some t = 0, ..., T−2,
dµt > 0 and dXt+1 > 0; we will show that this implies dµt+1 > 0 and dXt+2 > 0.

First consider the situation where xt+1 = 0 before and after the change in price. In that
case, by (I.13), µt = µt+1, which immediately shows that dµt+1 > 0. Also, the differentiation
of (H.4) with dxt+1 = 0 implies dXt+2 = dXt+1 > 0.

Second, consider that xt+1 was strictly positive and remains so after the change. In that
case, (I.10) holds at t + 1. Suppose, as an assumption to be contradicted, that dµt+1 ≤ 0.
On the one hand, by the total differentiation of (I.10) at date t+1, dµt+1 ≤ 0 is equivalent
to

dxt+1 ≥
−∂2Ct+1

∂x∂X

∂2Ct+1

∂x2

dXt+1. (J.16)

On the other hand, totally differentiating (I.15) at t + 1 and substituting for dµt+1 from
(I.10) yield

dµt = −

[
∂2Ct+1

∂x2
+

∂2Ct+1

∂x∂X

]
dxt+1 −

[
∂2Ct+1

∂X∂x
+

∂2Ct+1

∂X2

]
dXt+1, (J.17)

where the first term between brackets on the right-hand side is strictly positive by assump-
tion (H.2). Using (J.16) and simplifying it follows that

dµt ≤

(
∂2Ct+1

∂x2

)−1
[(

∂2Ct+1

∂x∂X

)2

−
∂2Ct+1

∂x2

∂2Ct+1

∂X2

]
dXt+1, (J.18)

where assumption (I.3) implies that the coefficient of dXt+1 is strictly negative. Thus
the lemma’s assumption that dXt+1 > 0 implies dµt < 0, which contradicts the other
lemma’s assumption that dµt > 0. Thus the maintained assumption dµt+1 ≤ 0 implies a
contradiction and one must conclude that dµt+1 > 0.

We still have to show that dXt+2 > 0. By (I.10), the rise dµt+1 > 0 requires a strict
reduction in ∂Ct+1

∂x
, that is

dxt+1 <
−∂2Ct+1

∂x∂X

∂2Ct+1

∂x2

dXt+1. (J.19)

By assumptions (H.2) and (I.3), the coefficient of dXt+1 in the above inequality is strictly
positive and lower than unity. Since dXt+1 > 0 as maintained assumption, it follows from
(J.19) that dxt+1 < dXt+1. The latter inequality finally implies by (H.4) that dXt+2 > 0.

Given that the maintained assumption dµt > 0 and dXt+1 > 0 is satisfied at t = 0
(Lemma 13), Lemma 14 has been proven both when extraction xt+1 is and remains null or
when it is and remains strictly positive. By continuity (see the application of the Maximum
Theorem in Footnote 40), it follows that Lemma 14 also holds across cases, that is when
xt+1 becomes null or becomes strictly positive following the price rise. QED
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Let us now sum up the results. As a consequence of the rise in pT , Xt increases by
Lemma 14, implying that cumulative supply X0 − Xt decreases, at all dates t = 1, ..., T .
By the law of supply (Lemma 11), date-T instantaneous supply xT not only increases but
increases in such a way that the subsequent cumulative supply X0 − XT+1 is higher than
before the price rise. However instantaneous supply xt decreases at all subsequent dates
t > T by Lemma 10. Hence, defining cumulative supply as excluding date-T supply yields
the second point of Proposition 7.

K Costly adjustment in NRR extraction

For simplicity, we focus on a single deposit whose reserves X are developed at date 0. The
deposit is identical to those described in Section 2, except that, at the development date 0,
a capital investment K ≥ 0 can be made by the producer so as to lower the extraction cost
over the exploitation period. The extraction cost becomes

Ct(xt, K),

with the same properties as in Section 2, except that

∂Ct(x,K)

∂K
< 0,

∂2Ct(x,K)

∂x∂K
< 0 and

∂2Ct(x,K)

∂K2
> 0.

The first two assumptions reflect that more investment in extraction capacity makes ex-
traction less costly, while the third one means that this investment is subject to decreasing
returns to scale.

In a long-run perspective, not only the developed reserves X but also the capital in-
vestment K are free. In that context, the problem of the deposit’s competitive producer
is

max
(xt)t≥0,X,K

∑

t≥0

(ptxt − Ct(xt, K))− E(X)−K (K.1)

subject to the binding exhaustibility constraint

∑

t≥0

xt = X. (K.2)

Assuming that the problem is well-behaved, the first-order conditions associated with
this problem are

pt −
∂Ct(xt, K)

∂xt

= λ, ∀t ≥ 0 (K.3)

for the choice of extraction, where λ denotes the co-variable associated with (K.2),

E ′(X) = λ (K.4)
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for the choice of developed and exploited reserves, and,

−
∑

t≥0

∂Ct(xt, K)

∂K
= 1 (K.5)

for the choice of capacity.
Consider the latter first. It tells that the profit-maximizing investment in capacity

equates the marginal cost to the sum of cost reductions generated by the marginal capac-
ity unit. Assume, for simplicity, that these reductions are proportional to the extracted
quantity at each date:

∂2Ct(xt, K)

∂K∂xt

≡ β < 0. (K.6)

In this context, the total differentiation of (K.5) implies

∑

t≥0

∂2Ct(xt, K)

∂K2
dK = −

∑

t≥0

dxt,

where the binding exhaustibility constraint (K.2) implies that
∑
t≥0

dxt0dX . It follows a

positive relationship between a capacity change dK and a change dX in developed reserves:

dK =
−β

∑
t≥0

∂2Ct(xt,K)
∂K2

dX. (K.7)

At the same time, the reserve supply condition (K.4), the same as in Section 2 in ab-
sence of capacity choice, implies the following positive relationship between a change dX
in developed reserves and a change dλ in the implicit reserves’ value:

dX =
1

E ′′(X)
dλ. (K.8)

(K.7) and (K.8) means that not only developed reserves X and their implicit price λ—as
in Section 2—but also capacity K evolve hand in hand.

Let us now consider (K.3), which implicitly defines an extraction supply function of the
same kind as (10), except that it now positively depends on K:

xt = xt(pt, λ,K), ∀t ≥ 0. (K.9)

In this context, cross-price effects are driven by changes in λ and K, holding the own price
pt unchanged. The differentiation of (K.3) yields the relationship between the function’s
variables

dxt =
dλ+ βdK

−∂2Ct(xt,K)
∂x2

t

,
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which, using (K.7) and (K.8), becomes

dxt =
1

−∂2Ct(xt,K)
∂x2

t


1−

β2

E ′′(X)
∑
t≥0

∂2Ct(xt,K)
∂K2


 dλ.

Clearly, a price rise at any date T induces a rise in reserves’ implicit value λ. Therefore,
the function (K.9) exhibits negative cross-price effects if and only if

β2

E ′′(X)
∑
t≥0

∂2Ct(xt,K)
∂K2

< 1.

This condition is more likely to be satisfied when E ′′(X) and ∂2Ct(xt, K)/∂K2 are high,
reflecting rapidly decreasing returns to scale in X and K, as when reserves limitations are
difficult to overcome by investments in the development of new reserves or capacity.

32


