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Abstract

With asymmetric climate policies, regulation in one country can be undercut by
emissions growth in another. Previous research finds evidence that regulation erodes
the competitiveness of domestic firms and leads to higher imports, but increased
imports need not imply increased emissions if domestic sales are jointly determined
with export sales or if emission intensity of manufacturing adjusts endogenously to
foreign demand. In this paper, we estimate for the first time how production and
emissions of manufacturing firms in one country respond to foreign demand shocks
in trading partner markets. Using a panel of large Indian manufacturers and an
instrumental variable strategy, we find that foreign demand growth leads to higher
exports, domestic sales, production, and CO2 emissions, and slightly lower emission
intensity. The results imply that a representative exporter facing the average observed
foreign demand growth over the period 1995-2011 would have increased CO2 emissions
by 1.39% annually as a result of foreign demand growth, which translates into 6.69%
total increase in CO2 emissions from Indian manufacturing over the period. Breaking
down emission intensity reduction into component channels, we find some evidence
of product-mix effects, but fail to reject the null of no change in technology. Back of
the envelope calculations indicate that environmental regulation that doubles energy
prices world-wide (except in India) would only increase CO2 emissions from India by
1.5%. Thus, while leakage fears are legitimate, the magnitude appears fairly small in
the context of India.
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1 Introduction

Global climate change represents a serious threat to human welfare, yet governments have
been remarkably slow in their efforts to curb Greenhouse Gas (GHG) emissions.1 A central
reason for the lack of GHG regulation is that emission reductions are a public good that
benefit everyone, while the costs of regulation are born mostly by firms and residents in
countries that impose the regulation. Lacking a comprehensive global commitment to
regulate GHGs, individual countries fear that unilateral efforts will erode competitiveness
relative to other nations and thus shift polluting activities to unregulated places. If this
“leakage” effect – or Pollution Haven Effect (PHE), as it is known in the academic literature
– is strong, then not only do firms in the regulated country lose competitiveness, but the
regulations may fail even to achieve their primary goal of lowering emissions.

While the argument that stricter environmental regulation in one country causes emis-
sions elsewhere to increase seems compelling intuitively, we have little ex-post empirical
evidence to support it.2 To date, the empirical literature has focused mainly on the rela-
tionship between environmental regulation and imports (Ederington & Minier, 2003; Ed-
erington et al., 2005; Levinson & Taylor, 2008; Branger et al., 2016; Aichele & Felbermayr,
2015) or FDI/plant entry (Eskeland & Harrison, 2003; Kellenberg, 2009; Hanna, 2010).
But mere changes in imports or plant location may not be sufficient to measure leakage
because (1) domestic and foreign sales may be jointly determined, which means that pro-
duction need not scale 1-for-1 with exports (Berman et al., 2015); and (2) increased foreign
demand may incentivize firms to invest in new technologies (Cui et al., 2015; Cherniwchan,
2017; Gutiérrez & Teshima, 2018) and/or adjust their product mix (Mayer et al., 2014,
2016; Barrows & Ollivier, 2018), which can both generate changes in emission intensity.
Thus, even if there is increased exports in one country as a result of regulation in another,
the overall impact on GHG emissions remains an open empirical question.

In this paper, we take as given that environmental regulation erodes the competitive-
1Regional regulatory markets have been established in many places in the world, including the EU,

California, the US East coast, South Korea, Australia, New Zealand, British Columbia, and Tokyo, among
others; but even for these programs, the cost of carbon remains very low, thereby limiting the extent of
GHG emission reductions.

2There is a large literature that estimates leakage ex-ante using computable general equilibrium models
(see Carbone & Rivers (2017) for a review). Also, several recent papers have explored the potential for
leakage from sub-national policies using simulation-based modeling. For example, Fowlie (2009), Bushnell
& Chen (2012), Bushnell et al. (2014), and Caron et al. (2015) explore leakage possibilities across states
due to California’s recently enacted carbon cap-and-trade system, with a focus on the electricity sector.
Fell & Maniloff (2018) study the ex-post impacts of a CO2 cap-and-trade program in select Northeastern
US states on emissions in other unregulated states in the electricity sector.
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ness of domestic firms – as previous research strongly indicates (Dechezleprêtre & Sato,
2017; Aichele & Felbermayr, 2015; Levinson & Taylor, 2008) – and investigate for the
first time in the literature what this change in competitiveness means for CO2 emissions
from manufacturing in another country. To address this question, we estimate elasticities
of exports, output, emissions, and emission intensity at the firm and firm-product level
in a developing country – India – to weighted average foreign import demand shocks in
trading partner destinations. Environmental regulation is one of many determinants of
import demand, but conditional on the identifying variation being orthogonal to unob-
served determinants of production and emissions in India, the product of the elasticity of
emissions with respect to foreign demand and the elasticity of foreign demand with respect
to environmental regulation delivers an estimate of leakage.

India offers two key advantages as an empirical context. First, Indian firms report
detailed information on output and energy inputs, from which we can compute CO2 emis-
sions per physical quantities of output at the firm and product-line level. We compute
CO2 emissions by multiplying self-reported energy usage statistics from the firms by CO2

content emission factors of different energy types, following a strategy from previous re-
search (Martin, 2012; Marin & Vona, 2017; Forslid et al., 2018; Barrows & Ollivier, 2018).
Second, India is a major emitter of CO2 emissions and the fastest growing emitter since
1980 of any large country. Hence, understanding the determinants of emissions growth
in India in particular are important for forecasting global CO2 emissions and designing
effective policy.

We relate changes in exports, production, and CO2 emissions in a sample of roughly
3000 large Indian manufacturing firms over the period 1996–2011 to changes in weighted
average foreign demand shocks of the products they produce. The strategy follows recent
work that takes changes in imports from countries other than the country studied as
proxies for destination-product specific taste or income shocks (Hummels et al., 2014;
Mayer et al., 2014, 2016). The identification assumption is that year-to-year import demand
growth in India’s destination markets is orthogonal to unobserved determinants of firm-
level manufacturing outcomes in India. To probe this assumption, we present placebo tests
on outcomes of non-exporting firms and test for differential trends in outcomes between
1990–1995 for firms that will see larger vs smaller foreign import demand growth over the
period 1996–2011.

Instrumenting year-to-year fluctuations in foreign demand between 1996 and 2011 with
base-year-weighted average foreign demand, we find in our sample that 10% higher firm-
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level weighted-average foreign demand leads to 5.72% higher export sales and 1.27% higher
domestic sales for exporters. Both results are statistically significant at the 1% level. We
also estimate that 10% higher firm-level weighted-average foreign demand leads to 2.14%
higher production (in physical quantities), and 1.64% higher CO2 emissions, for exporting
firms, statistically significant at the 1% level. In all cases, we fail to reject no corresponding
impact on non-exporting firms, which suggests that product-specific technological trends
do not drive the results. Further placebo checks confirm that outcome trends between
1990–1995 do not correlate with future demand shocks, which supports the parallel trend
assumption. The rise in domestic sales in response to higher foreign demand suggests
complementarities in production between foreign and domestic sales, as in Berman et al.
(2015), and the fact that production increases more than emissions means that average
emission intensity endogenously responds to foreign demand. Both points imply that
studying foreign import flows alone is insufficient to address the leakage question.

To put the magnitudes in context, our results imply (using partial equilibrium compu-
tations) that total CO2 emissions from manufacturing increased by 6.69% over the period
1995–2011 as a result of observed foreign demand growth, which accounts for 4.58% of
the total observed growth in CO2 emissions from manufacturing in India. By contrast, ig-
noring the endogenous fall in emission intensity leads one to overestimate this increase by
30%, and ignoring both emission intensity effects and complementarities between domestic
and foreign sales leads one to underestimate total CO2 impacts by 58%. Multiplying the
CO2 emissions trade elasticity by an elasticity of foreign import demand to energy prices
implies that doubling energy prices everywhere in the world except India would increase
CO2 emissions from Indian manufacturing by only 1.5%, or about 6.8 Megatons annually.

We next test for individual channels of emission intensity adjustment. We separate
changes in firm emission intensity into an across-product component and a within-product
component over time. The across-product component results from systematic shifts in
output shares across products with heterogeneous emission intensities of production. Mayer
et al. (2014, 2016) show how competition can systematically alter the product mix of
firms, leading to changes in firm-average productivity. Barrows & Ollivier (2018) extend
Mayer et al. (2014, 2016) to multiple inputs (including energy) and likewise show how
competition can alter product mix and firm-average emission intensity. The within-product
component reflects technological efficiency gains. Models from Bustos (2011) and Cui
et al. (2015) show how better market access can induce firms to invest in variable-cost-
savings technology, which may lower product-level emission intensity over time. Changes
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in managerial practices, fuel source, or quality of inputs could also contribute to within-
product effects (Cherniwchan, 2017; Gutiérrez & Teshima, 2018), though we refer to the
sum of all these effects broadly as “technology.”

To estimate the different channels, we employ two strategies. First, we estimate impacts
at the firm level separately for single-product and multi-product firms. By conditioning on
single-product firms, we rule out product-mix effects by construction. Hence, any remaining
emission intensity changes can be attributed to technological change. In this sample, we
fail to reject the null of no impact. By contrast, we find some evidence at the firm level
that emission intensity falls for multi-product firms, and that both product skewness and
product offerings increase with foreign demand. These results are consistent with previous
work on multi-product firms (Mayer et al., 2014, 2016), and imply that product mix may
explain the firm-level reductions in emission intensity.

Second, we estimate impacts on emission intensity at the firm-product level. With
emissions computed at the product-line level, we need not condition on single product
firms. In this sample, we again fail to reject the null of no change in emission intensity,
which again implies that technological adoption does not drive the emission reductions. A
potential concern is that firms do not adjust technology quickly enough to respond to year-
to-year demand variation, but robustness checks reveal similar results in a long difference
specification, which suggests that the baseline result is not merely an artifact of the time
scale. As in Barrows & Ollivier (2018), these result caution against interpreting firm-level
reductions in emission intensity as “technological upgrading”, pointing rather to changes in
allocations across product lines of heterogeneous emission intensity as the driver of within
firm changes over time.

Our work is closely related to the literature on the carbon content of trade (see for exam-
ple Aichele & Felbermayr (2015) and Sato (2014)). This literature computes emissions as
the product of industry-specific carbon intensities in different countries and trade volumes
and then estimates responses to environmental policy. A limitation of this approach is that
exporters tend to be cleaner than non-exporters (Holladay, 2016), so applying industry av-
erage intensity (based on the pooled sample of exporters and non-exporters) overstates the
carbon content of trade. Additionally, the carbon content approach computes intensity in
value, not physical quantities, and ignores impacts on domestic production. By examining
firm-level production data, we allow for heterogeneity in emission intensity and explicitly
estimate endogenous response to domestic sales.

Beyond the leakage literature, our paper also contributes to literatures on the impacts
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of trade on emissions either at the firm level (Martin, 2012; Cherniwchan, 2017; Gutiérrez
& Teshima, 2018) or at the regional and national levels (Antweiler et al., 2001; Frankel &
Rose, 2005; Bombardini & Li, 2016). Most of these papers estimate import competition
impacts via trade liberalization, or aggregate effects from trade openness (i.e., imports plus
exports divided by GDP). We instead isolate the export demand side impacts to speak
most directly to the leakage question. Two recent papers study the emission response from
US manufacturing to changes in domestic and foreign regulation and competitiveness.
Cherniwchan (2017) finds that SO2 and PM2.5 emissions levels from US manufacturing
decline following tariff reductions on US goods entering Mexico. By contrast Shapiro &
Walker (2018) find that changes in foreign competitiveness (which include environmental
regulations abroad) had little effect on the reduction in criteria air pollutant emissions
from US manufacturing over the 1990s and 2000s. A key difference between our study and
both Cherniwchan (2017) and Shapiro & Walker (2018) is that we study CO2 emissions in
a developing country, where the concern for leakage is the greatest. Closer to our setting,
Bombardini & Li (2016) studies how regional average export tariffs affect SO2 and PM2.5

concentrations in China. In contrast with all these papers, we are able to condition on the
export status of the firm and compute emissions per physical unit of production.

Finally, in studying the underlying mechanisms of emission intensity reductions, we
also relate to the large literature on the determinants of firm-level productivity. This
literature mostly estimates the responsiveness of innovation or Hicks-neutral total factor
productivity measures to various changes in trade, competitiveness and market conditions
(Bernard et al., 2011; Lileeva & Trefler, 2010; Bustos, 2011; Bloom et al., 2016; De Loecker
et al., 2016; Mayer et al., 2014, 2016). The literature hypothesizes that both technology
adoption and product mix contribute to firm-level changes in productivity. Our estimates
of emission intensity at the firm-product level represent the only product-level estimates
of efficiency that we are aware of in the literature, and allow us to provide a direct test of
the technological channel. Our results suggest like De Loecker et al. (2016); Bernard et al.
(2011); Mayer et al. (2014, 2016) that product mix matters for efficiency.

2 Background and Data

In this section, we present the empirical context, the firm-level production data, and the
international trade data from which we compute firm-level shocks.
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2.1 Background

In 2016, India was the third largest emitter of CO2 emissions (7% of world emissions),
behind China (29% of world emissions) and the US (14% of world emissions). Over the
period since 1980, India was also the fastest growing emitter of CO2 among large emitters
(initial share greater than 1% of world emissions), with an increase of 689% in total.3 A
large part of this growth was due to rapid expansion in manufacturing output. Following
trade liberalization and other market reforms in the early 1990s, real output from manu-
facturing grew 313% between 1995 and 2011 (see Goldberg et al. (2010a) for a discussion
of these reforms). Throughout most of the period, CO2 emissions were completely unreg-
ulated in India. State governments made some efforts to regulate criteria air pollutants
like PM2.5 and NOx, though regulation appears to have had limited effect (Greenstone &
Hanna, 2014).4

Over the same period, exports from India also grew substantially, especially to devel-
oped countries. Between 1995 and 2011, real value of exports grew 658%. Exports to the
US grew by a factor of 5, with similar increases in Belgium-Luxembourg, South Korea,
Hong Kong, and Singapore. Among destinations accounting for at least 1% of Indian ex-
ports in 1995, 7 of the top 10 growth rates occurred in countries considered “high income”
by the World Bank. By 2011, the United Arab Emirates accounted for the largest share of
Indian exports (12.0%), with the US (11.9%), China (6.6%), Singapore (5.4%) and Hong
Kong (3.7%) rounding out the top 5 destination markets. With much of the growth in
exports occurring with developed countries, the case of India represents a good opportu-
nity to study the potential of environmental regulation in rich countries to stimulate CO2

emissions in a poor, unregulated country.

2.2 Manufacturing Data

Our manufacturing data comes from the Prowess dataset, maintained by the Center for
Monitoring the Indian Economy (CMIE). This dataset is based on annual reports filed
publicly by large Indian manufacturers, which CMIE collects and digitizes. Registered
Indian firms are required to issue these reports annually as part of the Indian Companies
Act of 1956. Not all firms file reports every year and not all reports are readily available,

3Data come from the International Energy Agency.
4More recently, in 2010, the government introduced a nationwide carbon tax of 50 rupees per tonne

on coal, which has since increased to 450 rupees per tonne; though with our period of analysis ending in
2011, the tax is unlikely to have influenced the firms in our sample. We nevertheless include firm specific
energy prices as controls in our regressions, thus potentially capturing local regulation effects.
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but the sample in fact covers a very high share of output from the formal sector (around
80%) starting around the mid 1990s (De Loecker et al., 2016; Goldberg et al., 2010b).

In the annual reports, firms give detailed accounts of both inputs and outputs. On
the output side, firms report both value and quantity of sales by product line along with
the units of production. Firms list outputs by product names, which CMIE then assigns a
standardized product classification code of their own design. Previous work has treated the
CMIE product codes as unique identifiers of product offerings within the firm (De Loecker
et al., 2016; Goldberg et al., 2010b). However, we found upon inspection that in many
cases, CMIE assigns different product codes to products with identical or nearly identi-
cal text descriptions. This is particularly problematic when it happens within the same
firm. Additionally, in many cases firms report multiple product offerings within the same
CMIE product code. Hence, while we make use of the product classification for matching
to trade shocks, we treat the product text description supplied by the firm as the indi-
viduating identifier of products (see appendix for details). Prowess also reports the share
of revenue earned from exports, which will be useful for tracing demand shocks through
export behavior to production, as well as identifying non-exporting firms to use as placebo
checks.

On the input side, firms report most standard variables such as labor use, capital and
material inputs in value each year. Firms do not directly report environmental emissions;
but, they report detailed information about energy use.5 In particular, firms report annual
expenditure and consumption (with units) of different energy sources – coal, electricity,
fuel, wood, etc. Additionally, due to an unusual reporting requirement, firms also report
energy intensity of production (in units) by product line. This reporting requirement was
formalized in the 1988 amendment to the Companies Act, presumably due to government
interests in energy security. As a result, for many firms in the dataset, we observe annual
energy intensity of production by product line. This allows us to track technological
progress at the product-line level, which, to our knowledge, is not possible in any other
dataset.

To compute CO2 emissions, we follow previous work in multiplying energy consumption
by source-specific CO2 emissions factors (Martin, 2012; Marin & Vona, 2017; Forslid et al.,
2018; Barrows & Ollivier, 2018). The underlying assumption behind this strategy is that a
given source of energy (eg, coal, fuel, wood) has a fixed carbon content, and that burning
the energy source releases that carbon content regardless of the technology used to burn it.

5Additionally, the location of production is not reported in Prowess. Hence, it is impossible to match
production to ambient pollution levels.
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This assumption seems reasonable for the case of CO2 in India, where end-of-pipe carbon
capture technology is not widely used. By contrast, one would not want to make the same
assumption with respect to criteria pollutants such as NO2 or PM2.5, for example, for which
the emission content can vary significantly with the technology used.

With the two different energy reports, we construct two different datasets. First, we
construct firm-level CO2 emissions by multiplying quantities of individual energy sources
by CO2 emissions factors from the US EPA and then summing over energy sources. By
summing outputs over product line and merging, we then compute firm-level output, emis-
sions, and emission intensity. We refer to this first dataset as the “firm-level” dataset
because it is based on firm-level energy reports. Second, we compute product-level emis-
sion intensity by multiplying product-level energy intensity by the same CO2 emissions
factors from above and summing over energy types. We then merge these emission in-
tensities to the product level output information. We refer to this second dataset as the
“product-level” dataset. Whereas the firm-level dataset is useful for estimating impacts
on total output, emissions, and emission intensity, the product-level dataset is helpful for
decomposing average emission intensity changes into technology (within firm-product over
time) vs product mix (changes in output shares of products with heterogeneous emission
intensity). See the appendix for details on the data construction and discussion of the
product-level energy intensity data.

After merging input and output variables and cleaning for outliers, we have 3,217 firms
in the firm-level dataset. We report descriptive statistics in Table 1 by industry. Industry
classifications are based on the CMIE product classification codes, but these map fairly
well to the more broadly used National Industrial Codes, at the aggregate level at least.
The data span the years 1989–2011, with coverage increasing through the early part of the
1990s. In Table 1, we find fairly broad coverage across the entire manufacturing sector.
The average firm in the firm-level dataset generates 0.73 billion rupees in sales per year,
or about 16 million USD. The average firm also earns 9.3% of revenue from exports and
produces just under 2 different products per year.

In columns 5-7 of Table 1, we report descriptive statistics for the product-level dataset.
Here, we count fewer firms overall – 2,121 firms in total. There are two reasons that this
figure is smaller. First, not all firms report product-specific energy intensities. Second,
merging product-line inputs to product-line outputs is a complicated process and is not
possible in all cases, even when both data reports existed (see the appendix for details).
In the product-level dataset, the average firm generates 0.83 billion rupees in sales on 1.59
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products per year.
Table 2 presents descriptive statistics by export status for both datasets. Columns 1

and 2 report means and standard deviations of variables for firms that ever export over the
whole period, while columns 3 and 4 report the same for firms that never export. In column
5, we test for difference in means between the two groups and reports the result of a two-
sided t-test of the null of no difference. In panel A, we find that exporters in the firm-level
dataset generate more sales, more emissions, produce more products, but also have lower
emission intensity in value. Analogous results have been noted many times before in the
trade literature: exporters are bigger and more productive than non-exporters. We also
find that exporters produce more in terms of quantity and have lower emission intensity
in quantity, but since units of quantity vary across firms, these numbers are nonsensical.
In the regressions, we will condition on common units within the firm over time. Here, we
merely report the aggregate statistics for completeness. The results for sales, emissions,
and emission intensity in value also hold for the product-level dataset, though outliers
appear to be more of an issue in the product-level data.

Panel A of Table 2 also reports firm-specific energy prices and the Thiel index for
product output skewness. The energy prices are computed by dividing energy expenditures
by energy consumption quantities for each energy source (electricity, coal, diesel). We will
control for these firm-level prices in the regressions. These control variables capture at least
to some degree differences across space in energy supply and environmental regulation.
The number of products and the Thiel index will be used to measure product-mix effects,
following Mayer et al. (2014, 2016). The Thiel index is computed for firm i in year t as

Tit =
1

Nijt

∑
j∈∆it

xijt
x̄it

log

(
xijt
x̄it

)
(1)

with ∆it the set of products produced by firm i in year t, xijt the sales of product j in firm
i in year t, Nijt the number of products produced, and x̄it the average revenue of a product
sold by firm i in year t. Higher values of Tit indicate greater skewness in the product mix.

2.3 Trade Data

We take international trade flows from CEPII’s BACI dataset, which is a refinement of
UN COMTRADE data. The data reports values of bilateral trade flows at the 6-digit Har-
monized System (HS) product classification level from 1995 until 2011. For each product
code, we compute a weighted average foreign demand shock faced by Indian firms, and
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Table 2: Descriptive Statistics

Exporters Non-exporters Difference

Mean Sd Mean Sd
(1) (2) (3) (4) (5)

Panel A : Firm-Level Data

Sales Value Total (bill of rs) 1.096 ( 2.042 ) 0.401 ( 0.810 ) 0.695 ***
Sales Value Domestic (bill of rs) 0.961 ( 1.961 ) 0.401 ( 0.810 ) 0.560 ***
Sales Value Exports (bill of rs) 0.135 ( 0.284 ) - -
Production (various units) 123.7 ( 1184 ) 25.8 ( 434.6 ) -
Emissions (kt CO2) 55.99 ( 218.6 ) 34.1 ( 149.1 ) 21.94 ***
E/V (t/mill rs) 59.53 ( 473.9 ) 108.3 ( 538.4 ) -48.79 ***
E/Q (t/unit) 341.2 ( 980.8 ) 209.2 ( 718.7 ) -
# Products 2.116 ( 1.756 ) 1.733 ( 1.190 ) 0.383 ***
Thiel Index 0.955 ( 2.094 ) 0.734 ( 1.505 ) 0.221 ***
Elec Price (rs/kwh) 3.934 ( 0.890 ) 4.011 ( 0.883 ) -0.077 ***
Coal Price (rs/kt) 0.009 ( 0.089 ) 0.008 ( 0.017 ) 0.000
Deisel Price (rs/Mls) 0.041 ( 0.152 ) 0.052 ( 0.476 ) -0.011 **

# Firms 1759 1458
# Firms Years 13700 7154
Panel B : Product-Level Data

Sales Value Total (bill of rs) 1.449 ( 5.398 ) 0.397 ( 0.831 ) 1.052 *
Production (various units) 12.08 ( 58.86 ) 6.489 ( 43.76 ) -
Emissions (kt CO2) 96.95 ( 385.4 ) 38.57 ( 204.6 ) 58.38
E/Q (t/unit) 220.6 ( 335.0 ) 153.6 ( 223.1 ) -
E/V (t/mill rs) 770.1 ( 16691 ) 2642 ( 125067 ) -1872.2 ***

# Firms 1327 794
# Firms-products 2382 983
# Firms-product Years 20338 4869

Notes: Table reports firm-level (A) or product-level (B) descriptive statistics by export status. Exporters
are firms that ever export positive quantity at any time over the period. Data covers 1989-2011. Column
5 reports difference in mean as well as statistical significance for t-test. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels. For most variable, top/bottom 1% of values have
been removed.
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then merge these shocks to Prowess via the CMIE product classification code.
Formally, let Xodjt be the value of bilateral trade between origin o and destination d in

6-digit HS code j in year t. We compute import demand shock in destination d as

Xdjt =
∑
o∈∆o

Xodjt (2)

where ∆o is the set of exporting countries to d excluding India. Define sdjt as the share
of exports that flow to destination d in the total exports of j from India in year t, sdjt ≡
Xdjt/

∑
d∈∆d

Xdjt. Then we compute weighted average demand shocks

F̃Djt =
∑
d∈∆d

sdjtXdjt (3)

with ∆d the set of all destinations India exports j to in year t. These are similar to the
shocks computed by Mayer et al. (2014, 2016) to study the relationship between foreign
competition, product mix, and productivity, and are meant to capture demand-side shifts
in preference or income.

Two important points about identification bear mention. First, by leaving India’s own
exports out of equation (2), we have attempted to purge the equilibrium values Xdjt of
supply side effects that might jointly affect Indian exports and production. However, it is
possible that product-specific technology changes affect both Indian and non-Indian pro-
ducers similarly. In this case, equilibrium sales Xdjt may still correlate with unobservable
supply-side determinants of Indian production decisions. To address this possibility, we
rely on placebo tests for non-exporters. We will return to this point below in the empirical
strategy.

Second, even if Xdjt is exogenous to trends in production on the supply side, the export
shares sdjt from year to year may adjust endogenously to Xdjt. To address this endogeneity
concern, we compute an instrument for F̃Djt using base-period Indian export weights:

Z̃jt =
∑
d∈∆d

sdj0Xdjt (4)

where the average values over 1995–1997 serve as the base-year weights for the beginning
of the sample (1995–2004), and averages over 2002–2004 serve as base-year weights for the
end of the sample (2005–2011). The reason to change the weights for the latter period is
that trade patterns changed a lot over the period, and so export shares from 1995–1997
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may not be very informative for Indian firms later in the sample. We take the split-
sample weighting scheme as our baseline, though results are not substantially different if
we leave weights fixed at 1995–1997 values throughout. With weights fixed to base-period,
endogenous sorting across markets should not influence Z̃jt.

In Figure 1, panel A plots average F̃Djt by industry-year. All values are deflated to
the year 2000 and indexed to 1995. In panel A, we see that foreign demand increased
dramatically from the vantage point of Indian firms over the period. The average F̃Djt

index value reached 275 by 2011, or almost three times higher than 1995 levels. We
also see substantial variation across industries. Foreign demand for wood, paper, and
printing was practically flat throughout the whole period, while demand for chemicals
nearly quadrupled. The industry that saw the largest increase was nonmetallic minerals,
which increased more than 6-fold. This growth was mostly driven by demand for concrete.
Results below are robust to excluding this outlier.

Next, we map these product-code-level foreign demand shocks to manufacturing firms
in Prowess via the CMIE product classification code system. CMIE classifies product
names (reported by the firms) according to a 16-digit code they designed themselves.
CMIE provides a cross-walk between their 16-digit codes and the more-commonly used
National Industrial Codes (NIC), which can then be related to the HS codes via the cross-
walk from Debroy & Santhanam (1993) (see De Loecker et al. (2016) for an example).
However, the cross-walk from Debroy & Santhanam (1993) is fairly aggregated and relies
on the version of the NIC from the early 1980s. Mapping between Prowess codes and HS
codes via this cross-walk is probably sufficient when identifying variation is fairly constant
across products within an industry, but we hope to exploit differential growth rates across
products within an industry. As a result, we constructed our own cross-walk between the
CMIE product codes and HS revision 1996 (see appendix for details). Industry-average
indices are plotted in panel B of Figure 1. As in panel A, average foreign demand growth is
significant, substantial variation exists across industries, and nonmetallic minerals remains
an outlier.

Figure 2 presents descriptive statistics on annual growth rates in foreign demand after
passing through the cross-walk. In a slight abuse of notation, we will continue to use j to
index product codes in Prowess. There are 3,276 CMIE product codes in all to which we can
assign foreign demand values. The left panel in Figure 2 plots the cumulative distribution
function of year-over-year percentage growth rates. We find that about 25% of annual
foreign demand decline year-over-year. The median growth over the whole sample is 5.7%
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Figure 1: Foreign Demand Over Time
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Notes: Figure reports average weighted average foreign demand (F̃Djt) indices by industry where goods
are classified by HS rev 1996 (A) and Prowess product codes (B).

(i.e. 0.057). About 5% of annual demands at least double, and a handful of growth rates
reach enormous values (the right tale in Figure 2 left panel has been truncated at 200%).
In the regressions, we take the logarithm of F̃Djt to minimize the impact of outliers.

The right panel in Figure 2 presents the residual log weighted average foreign demand
after stripping out product code and industry-by-year fixed effects. Here, the only varia-
tion remaining results from within product code changes over time, controlling for arbitrary
industry-specific trends. This figure gives a sense of the variation that we exploit in the re-
gressions below. The standard deviation of this distribution is 0.783, which means that the
90th percentile of residual demand is 7.4 times higher than residual foreign demand at the
10th percentile, assuming log residual demand is approximately normally distributed.6 So

6The full calculation goes as follow: the 90th percentile of a normal distribution with mean 0 and
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Figure 2: Foreign Demand Variation
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Notes: Year-over-year and residual log foreign demand computed at product level (3,276 products) classified
by Prowess product codes. Right panel plots residuals after regressing log F̃Djt on product code fixed
effects and industry-by-year fixed effects. Left panel truncates year-over-year growth at 200%.

not only is there substantial variation in growth rates across industries, there is substantial
variation in growth within products over time, controlling for industry average growth.

3 Empirical Strategy

Our strategy is to estimate leakage by first estimating the elasticity of CO2 emissions to
foreign demand shocks in trading partner markets and then multiplying by an elasticity of
foreign demand to environmental regulation. Taking import demand as the explanatory
variable instead of environmental regulation circumvents the notoriously thorny problem of
quantifying heterogeneous environmental regulations across countries and products (Sato

standard deviation is approximately 1. The 10th percentile is -1. Exponentiating, we have that the
level of residual forewign demand at the 90th percentile is exp(1) = 2.78 and at the 10th percentile is
exp(−1) = 0.13. Hence, the ratio of the 90th percentile level to the 10th percentile level is 2.78/0.13 = 7.4
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et al., 2015). Additionally, techniques from the trade literature deliver plausibly exogenous
variation in foreign demand year-to-year, while environmental regulation tends to evolve
slowly and potentially endogenously to other determinants of production outcomes.

Here, we describe how we link our measures of foreign demand F̃Djt to firm level
information in Prowess and estimate elasticities of exports, emissions, production, and
emission intensity. We first describe our strategy for estimating impacts on firm-level
average outcome variables. We then describe how to separate average impacts into a
product-mix channel and a technology channel.

After passing demand shocks through our cross-walk between HS classification and
CMIE product codes, we can relate foreign demand shocks to outcomes in the firm-level
dataset by estimating

Log Yikt = αi + αkt + β ∗ Log F̃Dit + γWit + εikt (5)

where Yikt is an outcome for firm i in industry k in year t, αi is a firm fixed effect, and αkt

is an industry-by-year time shock that captures any common factor that affects all Indian
firms in the same industry equally, such as labor regulations, income shocks, and general
technological progress. Industries are defined as in Table 1. We associate each firm to a
single industry based on the product code responsible for the largest share of sales for the
firm over the whole period. The vector Wit represents firm-level controls for source-specific
energy prices. Firm-level foreign demand shocks F̃Dit are computed as a weighted average
of product-level shocks

F̃Dit =
∑
p∈∆it

ripjtF̃Djt (6)

where ripjt ≡ Xipjt∑
p∈∆i

Xipjt
the sales share of product p belonging to product classification j

in firm i’s total sales in year t, and ∆it the set of products offered by firm i in year t. We
distinguish between product p and product code j because sometimes firms list multiple
product offerings that CMIE assigns to the same product code.7

Conditional on the assumption that firm-level demand shocks evolve exogenously to
unobservable determinants of firm-level outcomes, OLS estimation yields an unbiased esti-
mate of β in (5). However, given the endogeneity concern with F̃Djt, we would not expect

7For example, the firm KAREEMS SILK INTL. LTD. reports separate sales and production information
for “Silk Tops” and “Silk Noils” in the same year, where CMIE codes both as 0601060000000000 “Silk fabrics,
processed”.
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the assumption to hold. Additionally, the firm-level shares ripjt might also adjust endoge-
nously to aggregate demand shocks. To control for endogenous shifts in Indian export
shares as well as firm-level product shares, we construct

Z̃it =
∑
p∈∆i0

ripj0Z̃jt (7)

where Z̃jt is computed in (4), and ripj0 ≡ Xipj0∑
p∈∆i0

Xipj0
the sales share of product p in firm

i’s total sales in base year t = 0, and ∆i0 is the set of products produced in base year
t = 0. Practically, we take the first year of entry of each firm as the base year to define the
product weights, and then exclude this year from the regressions. As in (4), by weighting
product-specific demand shocks with base-year shares, endogenous reallocation should be
limited in (7). We then instrument Log F̃Dit in (5) with Log Z̃it.

Having purged F̃Dit of endogenous share shifts with Z̃it, we can state the identifica-
tion assumption as E[Z̃it|αi, αkt,Wit, εikt] = 0. The major outstanding challenges to this
identification assumption revolve around product-specific technological trends. Though we
control for industry-specific time trends, it is possible that some product-specific technolog-
ical trends still drive both foreign demand and firm-level output and emissions. We address
this concern in two ways. First we present placebo estimates for non-exporters, defined as
firms that never export in any year throughout the sample. If there are product-specific
time trends that affect both foreign demand and production, then foreign demand shocks
should predict outcomes for non-exporting firms as well. Second, we test for differential
outcome trends for firms prior to 1995 that will see smaller vs larger foreign demand shocks
over the period 1995–2011. If firms operating in industries that happened to see large for-
eign demand shocks over the period 1995–2011 were on differential trends compared to
firms that saw smaller demand shocks over the same period, then estimates of (5) would
be biased. Additionally, we would expect to see differential growth trends by future foreign
demand shocks in the pre-period (1990–1995).

We next estimate foreign demand impacts directly at the product level using the
product-level dataset. Taking Yipjkt as output, emissions, or emission intensity generated
by firm i to make product p in product category j in year t, we estimate

Log Yipjkt = αip + αkt + β ∗ Log F̃Djt + γWit + εipjkt (8)

where αip is a firm-product fixed effect, αkt represents industry-specific time-varying shocks,
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and Wit again represents firm-level controls for source-specific energy prices. Similarly to
the firm-level regressions, we instrument Log F̃Djt with Log Z̃jt. If firms adopt emission
savings technology (Cui et al., 2015), then we should estimate β < 0 for emissions in (8).

Finally, we estimate separate impacts by country of origin of the foreign demand shocks.
Considering the origin of the demand shock is important for two reasons. First, the leakage
debate mainly centers on the erosion of competitiveness in rich countries due to relatively
lax environmental regulations in less developed countries. Hence, to the extent that our
results have implications for leakage, we want to check that foreign demand shocks specifi-
cally in rich countries induce changes in emissions in our developing-country firms. Second,
changes to foreign demand may be more or less salient to Indian firms depending on market
conditions of the destination (e.g., income), or there may be heterogeneous responses based
on the destination market.8 To separately identify effects based on destination markets,
we compute destination-specific demand shocks for US/Canada, EU, and the rest of the
world (ROW):

F̃D
l

jt =
∑
d∈∆d

sdjtD
l
djt (9)

for l ∈ {US/Canada,EU,ROW}. We then compute destination-specific instruments Z̃ l
jt

in a similar fashion, and destination-specific firm-level foreign demand and instruments by
replacing F̃Djt and Z̃jt with F̃D

l

jt and Z̃ l
jt in (6) and (7).

4 Results

In this section, we investigate how foreign demand affects the CO2 emissions of individual
Indian manufacturers. We first verify that foreign demand increases the export sales of
Indian firms. We then trace these effects through to domestic sales, production, and finally
CO2 emissions. Lastly, we explore the channels of adjustment in emission intensity.

4.1 First Stage

We begin by verifying that Z̃it meets the conditions of a valid instrument. Since Z̃it utilizes
base-year weights to weight both international trade flows and firm-level product-specific

8Multi-product models such as Mayer et al. (2014, 2016) allow for differential effects based on market
conditions.
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output shares, the exclusion restriction with respect to firm-level output and emissions
should be satisfied. However, to qualify as a valid instrument, we must also have that Z̃it

predicts F̃Dit.
Appendix Table A.1 presents estimates of the first stage. Panel A presents estimates

with the overall average foreign demand, while panels B-D present estimates for demand
originating in different countries. Columns 1-3 present results for the sample of exporters
and columns 4-6 presents results for non-exporters. Data span from 1996 to 2011, since
we exclude the first year a given firm is observed. All regressions include firm fixed effects,
industry-year effects, and firm-specific controls for energy prices. Standard errors are
clustered on the 4-digit product code responsible for the largest share of firm sales over the
period.9 In Table A.1, we find strong correlations between Log F̃Dit and Log Z̃it across all
samples, with F-statistics mostly above 20, which suggests that Z̃it has sufficient power to
serve as an instrument for F̃Dit.

4.2 Impacts on Exports and Domestic Sales

Next, we estimate the relationship between foreign demand and firm-level exports. If ex-
ogenous variation in F̃Dit represents neutral growth in taste/income in foreign markets,
then it is reasonable to expect that Indian exports should rise with foreign demand. How-
ever, it is possible that higher (instrumented) F̃Dit reflects shifts in taste towards India’s
competitors since India’s own exports are left out of F̃Dit. In this case, we might expect
Indian exports to fall with foreign demand.

In Table 3, we present IV estimates of (5). In column 1, we take log export value as
the dependent variable. We find that a positive foreign demand shock is associated with
higher export value. This result holds in the full sample of exporters (panel A) and when
broken down by multi-product vs single-product firms (panels B and C). In both the full
sample and the multi-product sample, the point estimate is significant at the 1% level. A
similar pattern holds in the OLS (see Table A.3), but our focus is on the IV results. Both
independent and explanatory variables are expressed in logs, so the point estimates are
interpretable as elasticities: a 10% increase in foreign demand leads to a 5.72% increase in
firm-level export sales, conditional on the identification assumption.

9The CMIE product code follows a “tree-structure”, so that all products that begin with the same string
of digits belong to a common family. For example, all products that begin with the same 4 digits are part
of a common group. We cluster on this aggregate product category to allow for correlation in the error
term across closely related products, which is more precise than doing so on the industry.
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Table 3: Foreign Demand and Exports

Exporters Non-Exporters

Dep Var: Log(Exp. Val) Log(Dom. Val) Log(Dom. Val)
(1) (2) (3)

Panel A : Full Sample
Log F̃Dit 0.572∗∗∗ 0.127∗∗∗ -0.061

(0.153) (0.044) (0.090)

R squared 0.777 0.890 0.905
mdv 0.342 2.096 1.448
# Obs 5647 8400 3337
# Firms 957 1203 661

Panel B: >1-prod Firms
Log F̃Dit 0.539∗∗∗ 0.101∗∗ -0.044

(0.180) (0.050) (0.091)

R squared 0.769 0.882 0.913
mdv 0.427 2.295 1.634
# Obs 3880 5737 1992
# Firms 620 776 381

Panel C: 1-prod Firms
Log F̃Dit 0.433∗ 0.287∗ -0.342

(0.252) (0.152) (0.287)

R squared 0.829 0.903 0.890
mdv 0.151 1.667 1.178
# Obs 1761 2663 1336
# Firms 337 427 279

Notes: Table reports estimated impacts of log F̃Dit on log export and log domestic value for
exporters and log domestic value for non-exporters using the firm-level dataset. All regressions
instrument log F̃Dit with base-year-weighted foreign demand shocks log Z̃it. Data span 1996–
2011. Panel B restricts to multi-product firms, and Panel C to single-product firms. All
regressions include firm fixed effects, controls for energy prices, and industry-by-year fixed
effects. Standard errors are clustered on the 4-digit product code responsible for the largest
share of firm sales over the period. Top/bottom 1% of outcome variable values have been
removed. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

In Table A.4 , we break out elasticities by origin of the foreign demand shocks, con-
sidering shocks in the US/Canada in column 1, shocks in the EU in column 2, and shocks
from everywhere else in column 3. Concerns for leakage tend to center on regulation in
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rich countries displacing production to unregulated poor countries. In accordance with this
scenario, we find in column 1 that demand shocks in the US and Canada have large and
statistically significant impacts on Indian exports in the full sample and for multi-product
firms. By contrast, demand shocks in the EU have only modest effects on Indian exports.
Due to their trade patterns, Indian firms seem to be more responsive to US/Canadian
shocks than to the EU shocks.

Next, we test for impacts on domestic sales. Most leading models of international
trade (such as Mayer et al. (2016); Bernard et al. (2011), among others) feature segmented
markets, which imply that conditions in foreign markets do not affect sales in the domestic
market. However, some recent empirical work suggests that complementarities or frictions
may cause foreign and domestic sales to be determined jointly. Berman et al. (2015)
hypothesize that increased export sales relaxes liquidity constraints for the firm, which
lowers the marginal cost of production overall, thus increasing domestic sales. Using a panel
of French exporters, they find robust empirical evidence in support of the complementarity
of foreign and domestic sales. Alternatively, if firms face short-run credit constraints, then
a firm might not be able to increase production year-to-year in the face of higher foreign
demand. Instead, to meet higher foreign demand, firms might reallocate sales away from
the domestic market. Evidence of credit constraints from Feenstra et al. (2014) would be
consistent with such a mechanism.

In column 2 of Table 3, we estimate the impact of foreign demand shocks on domestic
sales for exporters. We find that not only do export sales increase with foreign demand,
but domestic sales increase as well: a 10% increase in foreign demand leads to a 1.27%
increase in domestic value of sales. We fail to reject the null of no impact at the 1% level.
OLS results also yield positive and statistically significant impacts on domestic sales (see
Table A.3). These estimates point to complementarity between export and domestic sales,
as hypothesized by Berman et al. (2015), and imply that import flows alone are insufficient
to estimate leakage. In particular, total physical production and emissions should increase
by more than what is needed simply to meet the export demand, all else equal (holding
emission intensity constant). Since we do not observe production broken down by market
destination, we cannot test this claim directly. Nevertheless, the estimates in column 2
gives good reasons to believe the overall scale of production increased by more than just
the increase in foreign shipments.

The results in columns 1 and 2 rely on the parallel trends assumption – that absent
foreign demand shocks, the firms that were exposed to larger foreign demand shocks would
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have developed similarly to firms that saw smaller demand shocks. As mentioned above,
a possible problem with this assumption could be that differential pre-existing product-
specific trends lead both export sales and domestic sales to increase with foreign import
demand. To address this concern, we first estimate placebo impacts on domestic sales
for non-exporters. If demand shocks stimulate increases in output and emissions purely
through exports, and if demand shocks are orthogonal to pre-existing trends, then we
should not see any impact on non-exporters.10 Second, we test for pre-period trends
directly. Our production data in Prowess go back to 1989, while the trade data only start
in 1995. Hence, we have 6 years of production data prior to the beginning of the period for
which we can measure trade shocks. Relating the firm-level trends in exports between 1989
and 1995 to the growth in foreign demand between 1995 and 2011, we can test whether
firms that saw greater increases in foreign demand from the mid-1990s through the 2000s
were already trending differently in the early 1990s relative to the other firms.

For both placebo tests, we fail to reject the null of no differential trends. First, in
column 3 of Table 3, we find negative point estimates on domestic sales of non-exporters,
which we fail to reject as different from 0. Had common technological trends driven the IV
estimates in columns 1 and 2, we would have found positive coefficients. Second, in Table
A.2 panel A, we fail to reject that exports of firms that experienced greater foreign demand
growth between 1995 and 2011 weren’t already differentially trending up before 1995. In
column 1 of Table A.2, we compute the change in average log export value between 1991–
1992 and 1994–1995 for exporters that appear in both periods. We exclude the years 1989
and 1990 because of very low coverage, and we take averages to get a better reading of
export value growth and to include as many firms as possible. The explanatory variable is
the change in average log foreign demand between 1995–1997 and 2009–2011, instrumented
with the analogous difference in averages for base-year weighted demand. Restricting to
exporters with positive export flows in both periods leaves very few firms with which to
test for pre-period trends. Nevertheless, we fail to reject no difference in pre-trends.

10This placebo check relies on the assumption that non-exporters have access to similar technological
trends as exporters. While there is evidence that one of the channels through which exporters gain access to
new technologies is precisely through exporting (De Loecker, 2013), there is also evidence that technological
adoption spills over to firms in the same industry/region (Bloom et al., 2013). Thus, even if there is some
“learning by exporting”, one still might expect at least some of the technological trend to spill over to
domestically-oriented firms.
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4.3 Impacts on Production and Emissions

With exports and domestic sales responding positively to foreign demand, we might expect
production and emissions to increase as well. But even with an increase in production,
emissions need not increase if emission intensity adjusts endogenously to foreign demand.
Here, we trace the export and domestic sales impacts through to CO2 emissions, produc-
tion, and CO2 intensity of production.

In Table 4, we estimate (5) by IV taking CO2 emissions, production (in physical units),
and CO2 intensity of production as dependent variables. Columns 1-3 report estimates for
exporters and columns 4-6 report placebo checks on non-exporters. To give meaningful
interpretations to estimates involving production, we restrict the sample to firms that
report outputs in the same physical units both across products and over time. Most
physical units are reported in tonnes, so this restriction does not drop many firms. For
consistency, we make this restriction throughout, even when estimating impacts on export
and domestic sales. As in Table 3, we present estimates on the full sample (panel A),
multi-product firms (panel B), and single-product firms (panel C). All regressions include
firm fixed effects, industry-specific time trends, and firm-specific energy price controls. The
top and bottom 1% of values are excluded, and standard errors are clustered on the 4-digit
product category responsible for the greatest share of sales for the firm throughout the
period.

In panel A of Table 4, we find that firm-level CO2 emissions and physical quantity
of production both increase with foreign demand shocks, while CO2 intensity declines
slightly. Point estimates imply that a 10% increase in foreign demand leads to 1.64% higher
CO2 emissions and to 2.14% higher production volumes, both statistically significant at
the 1% level. The impact on emission intensity is not precise in the full sample, but it
is precisely estimated for the multi-product firm sample. OLS estimates in Table A.5
yield similar findings, though smaller coefficients. Additionally, in columns 4-6, we find
small and statistically insignificant impacts on non-exporters, which again supports the
identification assumption. Moreover, in Table A.2 panel A, we fail to reject no difference
in pre-period trends in all 3 outcome variables (columns 2-4). These estimates imply that to
the extent that environmental regulation erodes competitiveness and increases net imports
from developing countries, CO2 leakage is a legitimate concern in India.

A few recent studies provide useful benchmarks for our results. Aichele & Felbermayr
(2015) estimate that trade flows increased by 5% and embodied carbon emissions by 8%
between committed and non-committed trade partners after Kyoto was signed. Our re-
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Table 4: Emissions in the Firm-Level Dataset

Exporters Non-Exporters

Log(CO2) Log(Q) Log(CO2
Q ) Log(CO2) Log(Q) Log(CO2

Q )
(1) (2) (3) (4) (5) (6)

Panel A: Full sample
Log F̃Dit 0.164∗∗∗ 0.214∗∗∗ -0.050 -0.037 -0.019 -0.017

(0.045) (0.060) (0.036) (0.078) (0.081) (0.070)

R squared 0.945 0.974 0.982 0.944 0.963 0.969
mdv 9.104 10.065 -0.961 8.626 9.701 -1.075
# Obs 8400 8400 8400 3337 3337 3337
# Firms 1203 1203 1203 661 661 661

Panel B: >1-prod Firms
Log F̃Dit 0.094∗ 0.179∗∗ -0.085∗∗ -0.035 0.012 -0.047

(0.056) (0.071) (0.042) (0.109) (0.096) (0.074)

R squared 0.942 0.968 0.977 0.947 0.959 0.966
mdv 9.309 10.114 -0.805 8.866 9.929 -1.063
# Obs 5737 5737 5737 1992 1992 1992
# Firms 776 776 776 381 381 381

Panel C: 1-prod Firms
Log F̃Dit 0.407∗∗ 0.278∗ 0.130 -0.151 -0.302 0.151

(0.189) (0.147) (0.095) (0.200) (0.260) (0.130)

R squared 0.949 0.986 0.990 0.943 0.969 0.975
mdv 8.662 9.960 -1.298 8.277 9.345 -1.068
# Obs 2663 2663 2663 1336 1336 1336
# Firms 427 427 427 279 279 279

Notes: Table reports estimated impacts of log F̃Dit on log CO2 emissions, log production in quantity
(Q), and log CO2 emission intensity in quantity (CO2

Q ) for exporters and non-exporters using the firm-level

dataset. All regressions instrument log F̃Dit with base-year-weighted foreign demand log Z̃it. Data span
1996–2011. Panel B restricts to multi-product firms, and Panel C to single-product firms. All regressions
include firm fixed effects, controls for energy prices, and industry-by-year fixed effects. Standard errors
are clustered on the 4-digit product code responsible for the largest share of firm sales over the period.
Top/bottom 1% of outcome variable values have been removed. Asterisks indicate statistical significance
at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

sults indicate that impacts on CO2 from production could be either higher or lower than
the estimate on embodied carbon emissions from Aichele & Felbermayr (2015). First,
we find that exporters are cleaner than non-exporters, hence taking an average sectoral
emission intensity would over-estimate carbon leakage. Second, domestic and export sales
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Table 5: Percentage Change in Emissions from Median Foreign Demand Growth

Annualized ∆ in CO2 Total ∆ in CO2 Share of Total ∆ in
for Exporters 1995-2011 CO2 from Manufac.

(%) (%) (%)
(1) (2) (3)

Full Adjustment 1.39 6.69 4.58
Constant Emission Intensity 1.82 8.73 5.98
+ Constant Domestic Sales 0.80 3.86 2.64

Notes: Table reports estimated percentage change in annualized CO2 emissions for a representative
exporter (column 1) and total change in CO2 emissions from manufacturing over the period 1995-2011
(column 2) due to the median annualized increase in foreign demand over the period 1995 - 2011 (8.5% an-
nually). Column 3 reports the share of (2) in total observed change in CO2 emissions from manufacturing
over 1995-2011 (145% increase).

evolve symmetrically, hence ignoring the domestic response would under-estimate carbon
leakage. Third, firms’ emission intensity decline with trade shocks, hence assuming an
exogenous emission intensity would over-estimate carbon leakage. Our study thus provides
a complementary perspective to Aichele & Felbermayr (2015), acknowledging that firm
heterogeneity matters for carbon emissions.

Next, in the context of US manufacturing, Cherniwchan (2017) finds that firm-level
emission levels of PM2.5 and SO2 fall with greater access to the Mexican market as a
result of NAFTA, while Shapiro & Walker (2018) find no change in emissions as a result of
changes in foreign competitiveness. Cherniwchan (2017) ascribes the decline in emissions
levels to an enormous drop in emission intensity. While we also find that emission intensity
falls with foreign demand (column 3), the effect is not nearly large enough to overturn a
large scale effect. Hence, in our developing-world setting, we find a positive increase in CO2

emission levels. The results from Shapiro & Walker (2018) are harder to compare to our
findings because “foreign competitiveness” in Shapiro & Walker (2018) is driven mostly by
productivity growth abroad, historically. Still, to the extent that environmental regulations
reduce foreign competitiveness abroad, the results from Shapiro & Walker (2018) suggest
that they should have hardly any impact on US emissions. For the case of CO2 emissions
from India, we find that this is not the case.

To put the magnitude of these point estimates in perspective, we compute in Table 5
the change in annualized CO2 emissions for an exporter who would have seen the median
annualized growth in foreign demand for its products (column 1), and the resulting change
in total CO2 emissions over the period 1995–2011 (column 2) from the manufacturing
sector. In the first row of Table 5, we allow for endogenous adjustment of both domestic
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sales and CO2 intensity to foreign demand growth. The annualized median growth in
foreign demand over the period 1995–2011 was 8.5%. Multiplying this figure by the point
estimate in column 1 of Table 4 yields 0.085*0.164*100= 1.39% annual increase in CO2

emissions for exporters facing the median foreign demand growth. Multiplying this number
by the share of output in manufacturing that is generated by exporters in an average year
and summing over the 16-year period (1995–2011), we estimate that total CO2 emissions
from manufacturing increased 6.69% as a result of foreign demand growth.11 In column 3,
we divide the total increase in CO2 emissions from foreign demand by the observed increase
in CO2 emissions from manufacturing as reported by the International Energy Agency
(145% growth between 1995 and 2011).12 Hence, the increase due to foreign demand
represents 4.58% of the total increase.

In rows 2 and 3 of Table 5, we illustrate the importance of accounting for endogenous
changes in emission intensity and domestic sales by repeating the aggregate computations
under different constraints. In the second row, we assume that exporter CO2 emission in-
tensity does not adjust with foreign demand growth. Here, we multiply average annualized
foreign demand growth by the point estimate in column 2 of Table 4 – implicitly assum-
ing that emissions scale 1-for-1 with production. We find that the annualized emissions
from exporters increase by 1.82% and total CO2 emissions from manufacturing increase
by 8.73%, or 5.98% of the observed increase, under this assumption. Finally, in the third
row of Table 4, we further impose that only production for exports are affected by foreign
demand growth. Thus, we multiply median annualized demand growth by the export elas-
ticity from column 1 in Table 3, and by the average export share in revenue for an exporter
(16.5%). The assumption in this scenario is that CO2 emissions scale 1-for-1 with export
sales growth. Under this assumption, we find that annualized emissions from exporters
increase 0.80% and total CO2 emissions from manufacturing increase 3.86%, or 2.64% of
the observed increase. Hence, had we ignored endogenous CO2 intensity adjustments, we
would have over-estimated the total increase in emissions by about 30%, and had we also
ignored the complementary increase in domestic sales, we would have under-estimated the
total increase by 58%.

One drawback of the estimates in Table 5 is that we implicitly assume no entry or
11We compute the share of sales that comes from exporters from auxiliary data in the nationally repre-

sentative Annual Survey of Industries (ASI). The ASI reports export share only for the year 2009. In this
year, we calculate that exporters account for 30% of total sales. Hence, we compute 0.3*1.39*16 = 6.69%
increase.

12We compute CO2 emissions from manufacturing as the CO2 emissions from “Other industrial combus-
tion” as reported by the IEA.
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exit.13 A large literature on heterogeneous firms shows that changes in market conditions
can have complex effects on firm entry and exit (Melitz, 2003; Melitz & Ottaviano, 2008;
Bernard et al., 2011). An increase in regulation or general demand growth in one country
will likely encourage entry in other countries, especially entry of multinational affiliates
(Eskeland & Harrison, 2003; Kellenberg, 2009; Hanna, 2010). In this case, the estimates of
Table 5 would tend to understate the emissions response as well as the emission intensity
changes, since multinationals tend to use cleaner production processes.

4.4 Channels of Emission Intensity Adjustment

We next study the underlying causes of firm-average emission intensity adjustments. We
begin by separately estimating emission intensity effects on multi-product and single-
product firms in the firm-level dataset. If product mix and technology yield different
impacts on emission intensity, then we might expect heterogeneous impacts on single vs
multi product firms. We then estimate product-mix impacts and the technology channel
directly.

First, in Table 4, we separately estimate emission intensity effects on multi-product and
single-product firms. In panel C, we restrict to firms that only produce a single product over
the entire period. Since product mix is ruled out by construction, any change in emission
intensity can be attributed to technological change. In contrast, in panel B, we estimate
impacts for multi-product firms only, for which both technology and product-mix could
play a role. In column 3 of Table 4 panel C, we find that emission intensity for single-
product firms increases with foreign demand, though the point estimate is statistically
indistinguishable from 0. By contrast, in panel B, we find that the emission intensity of
multi-product firms falls for exporters, and we can reject the null of no impact at the
5% level. The point estimates in column 3 imply that a 10% increase in foreign demand
translates into 0.5% lower emission intensity overall, and 0.85% lower emission intensity for
multi-product firms only. The fact that emission intensity falls for the multi-product sample
and not the single-product sample suggests that product mix likely plays an important role
in determining average emission intensity.

Next, we address product mix directly by estimating impacts on skewness and number
of products offered in the firm-level dataset. In Table 6, we regress the Thiel index and the
number of products on instrumented foreign demand for exporters (columns 1-2) and non-

13Our sample, however, allows us to consider entry in the export market, since we call an exporter a
firm that ever exports during our period of analysis.
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exporters (column 3-4) for multi-product firms only. Foreign demand shocks could lead to
changes in both measures, and if different product lines are produced with different levels
of emission intensity, then product mix could explain the average reductions in emission
intensity observed in Table 4. All regressions include firm fixed effects, industry-by-year
effects, and firm-specific energy prices.

In panel A, we find that both skewness and number of products increase with foreign
demand for exporters, though the coefficients are imprecisely estimated. By contrast,
in panel B, we find that both skewness and number of products increase strongly when
demand shocks originate in the US/Canada, and that the null of no impact is rejected
at the 1% level. Also, in panel B, we find no such impact on non-exporters. The results
echo findings from Mayer et al. (2016), in which it was also found that foreign demand
growth leads to increased skewness in production. If output shares skew towards lower-
emission intensity products or if newly added products have lower emission intensity, these
product-mix effects could explain the result in panel B of Table 4.

Lastly, we explore the technology channel directly by exploiting the product-specific
energy reports. With outcomes already computed at the firm-product level, we need not
make any restriction on the sample. In Table 7, we estimate (8) by IV for exporters
(columns 1-3) and non-exporters (columns 4-6). All regressions control for firm-product
and industry-by-year effects, as well as energy prices. The industry corresponds to the
2-digit CMIE code of the product. Standard errors are clustered on the 4-digit CMIE code
and the firm.

In columns 1 and 2, we find that both CO2 emissions and physical output at the product
level increase with foreign demand for exporters, as in the firm-level dataset. We can
reject the null of no impact at the 1% and 5% level, respectively. OLS results yield similar
results (see Table A.7), though smaller point estimates. In the non-exporter sample, we
find small and statistically insignificant impacts (columns 4 and 5), which again suggests
that product-specific trends do not drive the result. Also, in panel B of Table A.2, we
fail to reject no difference in pre-1996 trends in emissions or output in the product-level
dataset.

Moving to emission intensity, in column 3 we fail to reject the null of no impact for
exporters. The point estimate in column 3 is very near 0, and statistically indistinguishable
from 0 at conventional levels. Thus, similarly to the single-product firm results, the findings
suggest that technological change is not responsible for the CO2 emissions reductions in
Table 4. This conclusion contrasts with previous work that ascribes changes in firm-level
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Table 6: Product Mix

Exporters Non-Exporters

Thiel # Products Thiel # Products
(1) (2) (3) (4)

Panel A
Log F̃Dit 0.156 0.221 0.129 0.004

(0.193) (0.215) (0.204) (0.150)

R squared 0.810 0.849 0.829 0.835
mdv 1.367 2.652 1.163 2.184
# Obs 5737 5737 1992 1992
# Firms 776 776 381 381

Panel B
Log F̃DUS/CAN

it 0.218∗∗∗ 0.259∗∗∗ 0.077 0.020
(0.068) (0.051) (0.078) (0.067)

R squared 0.810 0.850 0.832 0.838
mdv 1.390 2.678 1.217 2.239
# Obs 5533 5533 1832 1832
# Firms 764 764 369 369

Panel C
Log F̃DEU

it 0.116 0.148 0.357∗∗ 0.303
(0.076) (0.102) (0.164) (0.189)

R squared 0.813 0.851 0.822 0.825
mdv 1.374 2.664 1.220 2.232
# Obs 5562 5562 1843 1843
# Firms 768 768 374 374

Notes:Table reports estimated impacts of log F̃Dit on Thiel index and #
products for exporters and non-exporters using the firm-level dataset. All re-
gressions instrument log F̃Dit with base-year-weighted foreign demand shocks
log Z̃it. Data span 1996-2011. Panel B restricts to demand shocks from the
US/Canada, and Panel C to EU shocks. All regressions include firm fixed ef-
fects, controls for energy prices, and industry-by-year fixed effects. Standard
errors are clustered on the 4-digit product code responsible for the largest
share of firm sales over the period. Asterisks indicate statistical significance
at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

emission intensity to changes in technology (Cui et al., 2015; Cherniwchan, 2017; Gutiérrez
& Teshima, 2018). In this rare case where we observe input intensity directly in the data,
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Table 7: Emissions in the Product-Level Dataset

Exporters Non-Exporters

Log(CO2) Log(Q) Log(CO2

Q
) Log(CO2) Log(Q) Log(CO2

Q
)

(1) (2) (3) (4) (5) (6)
Log F̃Djt 0.055∗∗∗ 0.056∗∗ -0.001 0.019 -0.026 0.044

(0.016) (0.025) (0.015) (0.101) (0.062) (0.052)

R squared 0.941 0.968 0.989 0.938 0.962 0.986
mdv 9.332 9.998 6.242 8.544 9.427 6.025
# Obs 13013 13013 13013 2666 2666 2666
# Firm-Products 1653 1653 1653 523 523 523
# Firms 1062 1062 1062 455 455 455

Notes: Table reports estimated impacts of log F̃Djt on log(CO2), log production in quantity (Q),
and log CO2 emission intensity in quantity (CO2

Q ) for exporters and non-exporters using the product-

level dataset. All regressions instrument log F̃Djt with base-year-weighted foreign demand shocks log
Z̃jt. Data span 1995-2011. All regressions include firm-product fixed effects, industry-by-year fixed
effects, and energy prices controls. Regressions are clustered on the 4-digit product code and the
firm. Top/bottom 1% of outcome variable values have been removed. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

and hence can isolate technological effects from product-mix, we fail to find evidence of
the technological upgrade channel.14

One potential concern is that firms do not adjust technology fast enough to respond to
year-to-year fluctuations in demand. To address this possibility, we follow recent works in
the climate impacts literature that estimate technological adoption from “long difference”
estimates using annual data (Dell et al., 2012; Burke & Emerick, 2016). In Table 8, we
relate the change in exports, emissions, production, and emission intensity over the entire
period to similar long-difference changes in foreign demand for exporters. For all variables,
we take averages over 3-year periods from the beginning of the period (1995-1997) and the
end of the period (2009-2011), and take the log difference between the two. Hence, we
compare changes in average outcomes to changes in average foreign demand conditions.
Given the length of the period, one would expect that firms have enough time to adjust their
technology. All regressions control for long differences in energy prices, and the change in

14Another possible explanation for the null result on emission intensity is that firms do adopt new
technologies that both increases total input efficiency and lowers energy-use efficiency. A flexible production
function such as CES would allow for such countervailing effects. However, the negative across-firm
correlation between total factor productivity and emission intensity found in many studies would suggest
that input efficiency and emissions efficiency are complementary (Martin, 2012; Shapiro & Walker, 2018;
Holladay, 2016).
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average current-year foreign demand is instrumented with the change in base-year-weighted
demand.

Table 8: Long Difference Results

Dep Var: ∆ Log(Exports) ∆Log CO2 ∆Log Q ∆Log (E/Q)
∆= 2009-2011 / 1995-1997 (1) (2) (3) (4)
Panel A: Firm Level

∆ Log F̃D 0.482 0.165∗ 0.277∗ -0.113
(0.335) (0.097) (0.142) (0.103)

# Firms 144 220 220 220

Panel B: Firm-Product Level

∆ Log F̃D 0.138 0.171∗∗ -0.033
(0.090) (0.085) (0.039)

# Firm-Products 360 360 360
Notes: Table presents long difference estimates in the firm-level dataset (panel A) and product-level
dataset (panel B). All explanatory variables and dependent variables are computed as the difference
between 2009-2011 averages and 1995-1997 averages. In panel A, ∆ Log F̃Di is instrumented with ∆

Log Z̃i, while in panel B ∆ Log F̃Dj is instrumented with ∆ Log Z̃j . Long differences for energy prices
are included in all regressions. Sample is restricted to exporters, and panel A restricts to firms with
constant units over the period. Top and bottom 1% of outcome variable values have been removed.
Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

In panel A of Table 8, we find that exports, emissions, and production all increase
in the long difference in the firm-level dataset. Emission intensity also declines, though
the impact is imprecisely estimated. In panel B, we estimate the long difference effect
on emissions, production, and emission intensity in the product-level dataset. Production
and emissions also increase, and the impact on emission intensity is small and statistically
insignificant. Again, these results indicate that investments in emission-saving technology
are not a primary driver of demand-induced emission reductions.

5 Implications for Leakage

The elasticities estimated in the previous section bear directly on the leakage question only
to the extent that environmental regulation erodes competitiveness of domestic firms, and
hence raises import demand. We rely on the conclusion of a recent review by Dechezleprêtre
& Sato (2017) that environmental regulation in fact erodes the competitiveness of firms
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to motivate our question, but we still need an estimate of the elasticity of foreign demand
to environmental regulation in our context to carry our results through to leakage. To
this end, we adapt the methodology recommended by Sato et al. (2015) of using industry-
specific energy prices as a proxy for environmental regulation to estimate the elasticity
of foreign demand in India’s trading partner markets to regulations in those countries.
The argument in Sato et al. (2015) is that environmental regulations primarily impact the
energy prices faced by manufacturers, so the elasticity of competitiveness to energy prices
proxies fairly well for the elasticity of competitiveness to regulation. Additionally, energy
prices depend on international prices of fuel, which are plausibly exogenous for individual
firms.

Formally, we multiply fuel-share-weighted energy prices EPjkdt for 6-digit HS product
j belonging to industry k in destination market d in year t by India’s export weights to
compute the weighted average foreign energy prices paid by competitors to Indian firms
operating in product market j, exactly as we did to construct foreign demand shocks:

ẼP jt =
∑
d∈∆d

sdjtEPdjkt (10)

with sdjt the export share in product j of Indian sales to destination d computed from
BACI. Country-by-industry specific fuel prices come from Sato et al. (2015) for the years
1995–2011 for 12 sectors and 46 countries. We match each 6-digit HS codes to one of the
12 sectors in Sato et al. (2015) and compute ẼP jt. We then compute base-year-weighted
instruments for ẼP jt as we did for foreign demand

Z̃EP jt =
∑
d∈∆d

sdj0EPdjkt (11)

with base-year weights sdj0 computed as averages over 1995–1997 for the early period and
2002–2004 for the later period, as before. We then estimate

Log Yjt = αj + αt + β ∗ Log ẼP jt + εjt (12)

where Yjt is either F̃Djt or aggregate Indian exports from BACI. We estimate (12) by OLS
and by IV while instrumenting ẼP jt with Z̃EP jt.

Before we proceed to the estimates of (12), it is important to note that ẼP jt is not nearly
as precisely estimated as F̃Djt. This is a key reason that we focus on the elasticity with
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respect to foreign demand, and not international energy prices, at the firm level. Energy
prices are only available for 46 markets and 12 industries in Sato et al. (2015). Hence,
many destination markets are left out of the computation of ẼP jt, and there is much
less variation across product categories. Additionally, energy prices are missing for many
country-industry-years. This means that impacts are identified from fewer observations.
We therefore use (12) only to get a sense of the relationship between foreign demand and
regulation in our context, but rely on F̃Djt to estimate elasticities at the firm level.

Table 9: Aggregate Trade Flows and Energy Prices

Log(Foreign Demand) Log(Exports)

OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

Log ẼP jt 0.267∗∗∗ 0.307∗∗∗ 0.004 0.163∗∗∗
(0.006) (0.045) (0.007) (0.055)

Log F̃Djt 0.286∗∗∗ 0.709∗∗∗
(0.009) (0.019)

R squared 0.835 0.842 0.833 0.829 0.826 0.800
mdv 9.324 9.351 7.644 7.691 7.378 7.581
# Obs 52599 51771 52636 51800 79905 75357
# HS6 Codes 3365 3325 3366 3326 4976 4892

Notes: Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

In Table 9, we present estimates of (12). Data cover the years 1995–2011. An obser-
vation is a 6-digit HS code by year. All regressions include 6-digit HS code fixed effects
and year fixed effects. Standard errors are clustered on the 6-digit HS code. Columns 1
and 2 present impacts on Log F̃Djt, while columns 3 and 4 present impacts on aggregate
Indian exports. Columns 1 and 3 present OLS estimates, while columns 2 and 4 instrument
current-year energy prices with base-year-share weighted averages.

In column 1 of Table 9, we find that current-year average demand indeed increases with
energy prices. We can reject the null of no impact at the 1% level. IV estimates in column 2
yield slightly larger impacts, also statistically significant at the 1% level. These estimates
provide a reassuring check that environmental regulation would likely stimulate import
demand for India’s trading partners. Additionally, in column 4, we find direct evidence
that energy prices raise Indian exports. Indeed, the point estimate is statistically significant
at the 1% level and economically important: doubling energy prices abroad raises Indian
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exports by 16.3%. Finally, it is instructive to compare the results in columns 3 and 4 to
analogous results in columns 5 and 6 taking Log F̃Djt as the explanatory variable. We find
that foreign demand growth has a much stronger impact on Indian exports than energy
prices. The IV estimates in column 6 are statistically significant at the 1% level, and more
than 4 times larger than in column 4. This finding echoes results in Dechezleprêtre & Sato
(2017): environmental regulation matters for trade flows, but the effect is overwhelmed by
other determinants of trade. This is another reason to estimate emission response at the
firm level with respect to foreign demand instead of regulation or energy prices.

Taking the point estimates seriously, the results imply that if environmental regulation
doubled energy prices everywhere in the world except for India, import demand in the
average Indian destination market would increase by 30.7%. Multiplying this estimate by
the results in Section 5 yield that doubling energy prices everywhere in the world except
for India would raise emissions from Indian manufacturing by 1.5% annually, or about 6.8
Megatons of CO2 each year. While this figure is not trivial, it seems likely that the reduction
in CO2 emissions in regulated countries from doubling energy prices would overwhelm this
value. This allows us to conclude that leakage fears for India are real, but not necessarily
of large magnitudes.

6 Conclusion

In this paper, we study the second part of the leakage mechanism – i.e., the relationship
between foreign demand and emissions from production. Previous work finds significant
impacts of environmental regulation on domestic competitiveness (Dechezleprêtre & Sato,
2017) and import demand (Aichele & Felbermayr, 2015; Levinson & Taylor, 2008). We take
these impacts as given and ask: What do they imply for CO2 emissions from manufacturing
in a developing country? Research suggests that CO2 emissions need not scale 1-for-1 with
exports because of complementarities between foreign and domestic sales, and because
emission intensity adjusts endogenously with foreign demand. Using detailed firm and firm-
product level output and energy-use data from Indian manufacturing firms, we estimate
the elasticity of CO2 emissions to foreign demand and study the underlying mechanisms
of adjustments to CO2 intensity.

We find that foreign demand increases firm-level exports, domestic sales, production,
and CO2 emissions. Back of the envelope calculations suggest that the magnitudes are
economically significant. We estimate that a representative export firm that saw foreign
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demand grow at the median observed rate over the period 1995–2011 would have increased
CO2 emissions by 1.39% annually. This figure translates into 6.69% total increase in CO2

emissions from manufacturing over the period 1995-2011 because of foreign demand growth,
which equals 4.58% of the observed growth in CO2 emissions from manufacturing in India.
Had we ignored endogenous changes to domestic sales and emission intensity, we would
have underestimated this figure by 58%. We also find that emissions are most sensitive
to demand originating in the US and Canada, which suggests that leakage fears are most
warranted in those countries, at least with respect to India.

Next, we find that foreign demand growth triggered a modest reduction in firm-level
average emissions intensity, especially for multi-product firms and for demand shocks orig-
inating in the US and Canada. Decomposing this firm-level average effect into an across-
product effect and a within-product effect, we find some evidence of endogenous reallocation
towards cleaner products, but fail to reject the null of no impact for technological change
within firm product. Using long-difference estimates yields similar results. Therefore,
these results suggest, like Barrows & Ollivier (2018), that researchers should take caution
in ascribing firm-level average changes in emission intensity to technological adoption.

In a final exercise, we compute leakage as the product of the elasticity of CO2 emis-
sions to foreign demand and the elasticity of foreign demand to environmental regulation.
Proxying environmental regulation with weighted average energy prices in India’s trading
partner markets, we find that an environmental regulation that doubles average energy
prices would only increase CO2 emissions from manufacturing in India by 1.5%, or 6.8
Megatons per year. This result echoes previous conclusions from the literature that en-
vironmental regulation matters for trade flows, but the effect is overwhelmed by other
determinants of trade. In our context, we can see that CO2 emissions in India are sensitive
to regulation elsewhere in the world, but also that leakage rates are fairly modest.
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Table A.1: First Stage Impacts on Current-year Foreign Demand

Exporters Non-Exporters

All Firms MP Firms SP Firms All Firms MP Firms SP Firms
(1) (2) (3) (4) (5) (6)

Panel A: All Country Average

Log Z̃it 0.306∗∗∗ 0.292∗∗∗ 0.396∗∗∗ 0.279∗∗∗ 0.280∗∗∗ 0.314∗∗∗

(0.028) (0.031) (0.083) (0.028) (0.037) (0.089)

R squared 0.923 0.901 0.960 0.927 0.911 0.960
F-stat 45.5 27.9 6.7 28.5 19.1 55.7
# Obs 8400 5737 2663 3337 1992 1336
# Firms 1203 776 427 661 381 279

Panel B: US/Canada

Log Z̃it 0.567∗∗∗ 0.528∗∗∗ 0.759∗∗∗ 0.584∗∗∗ 0.487∗∗∗ 0.840∗∗∗

(0.052) (0.057) (0.079) (0.107) (0.098) (0.100)

R squared 0.962 0.945 0.994 0.967 0.951 0.994
F-stat 34.5 22.5 88.7 39.2 32.3 87.0
# Obs 8122 5533 2589 3108 1832 1263
# Firms 1186 764 422 636 369 265

Panel C: EU

Log Z̃it 0.376∗∗∗ 0.367∗∗∗ 0.447∗∗∗ 0.275∗∗∗ 0.265∗∗∗ 0.314∗∗∗

(0.041) (0.042) (0.092) (0.055) (0.050) (0.104)

R squared 0.943 0.925 0.978 0.943 0.918 0.982
F-stat 21.0 20.1 13.9 8.5 21.3 11.4
# Obs 8173 5562 2611 3137 1843 1284
# Firms 1191 768 423 645 374 270

Panel D: Other Countries

Log Z̃it 0.315∗∗∗ 0.294∗∗∗ 0.432∗∗∗ 0.302∗∗∗ 0.289∗∗∗ 0.393∗∗∗

(0.027) (0.022) (0.073) (0.031) (0.027) (0.099)

R squared 0.890 0.864 0.937 0.903 0.890 0.932
F-stat 45.0 63.3 10.4 25.7 31.2 107.5
# Obs 8391 5728 2663 3336 1991 1336
# Firms 1203 776 427 661 381 279

Notes: Table reports estimated first-stage impacts of log Z̃it on log F̃Dit for exporters and non-
exporters using the firm-level dataset. Data span 1996-2011. All regressions include firm fixed effects,
controls for energy prices, and industry-by-year fixed effects. Standard errors are clustered on the 4-digit
product code responsible for the largest share of firm sales over the period. Asterisks indicate statistical
significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A.2: Testing for Pre-Period Trends

Dep Var: ∆ Log Exp. Val. ∆Log CO2 ∆Log Q ∆Log (E/Q)
∆= 1994-1995 / 1991-1992 (1) (2) (3) (4)
Panel A: Firm Level

∆ Log F̃D -0.144 -0.023 0.057 -0.080
(0.606) (0.089) (0.080) (0.082)

# Firm 60 109 109 109

Panel B: Firm-Product Level

∆ Log F̃D 0.075 0.055 0.020
(0.078) (0.068) (0.033)

# Firm-Products 143 143 143
Notes: Table presents long difference estimates in the firm-level dataset (panel A) and product-level
dataset (panel B). All dependent variables and controls are computed as the difference between 1994–
1995 averages minus 1991–1992 averages. Current-year foreign demand shocks are computed as the
difference between 2009–2011 averages minus 1995–1997 averages and instrumented with base-year
weighted foreign demand. Sample is restricted to exporters, and panel A restricts to firms with constant
units over the period. Top and bottom 1% of outcome variable values have been removed. Asterisks
indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A.3: Foreign Demand and Exports, OLS

Exporters Non-Exporters

Dep Var: Log(Exp. Val) Log(Dom. Val) Log(Dom. Val)
(1) (2) (3)

Panel A : Full Sample
Log F̃Dit 0.224∗∗∗ 0.067∗∗∗ 0.033

(0.048) (0.016) (0.023)

R squared 0.782 0.878 0.901
mdv 0.349 2.042 1.391
# Obs 6592 9801 4381
# Firms 1103 1362 864

Panel B: >1-prod Firms
Log F̃Dit 0.290∗∗∗ 0.065∗∗∗ 0.035

(0.054) (0.020) (0.026)

R squared 0.770 0.870 0.903
mdv 0.434 2.225 1.570
# Obs 4573 6764 2633
# Firms 725 886 497

Panel C: 1-prod Firms
Log F̃Dit 0.029 0.091∗∗∗ 0.001

(0.076) (0.033) (0.051)

R squared 0.831 0.893 0.904
mdv 0.158 1.634 1.118
# Obs 2016 3037 1740
# Firms 378 476 366

Notes: Table reports estimated impacts of log F̃Dit on log export and log domestic value for
exporters and log domestic value for non-exporters using the firm-level dataset. Data span
1996–2011. Panel B restricts to multi-product firms, and Panel C to single-product firms.
All regressions include firm fixed effects, controls for energy prices, and industry-by-year fixed
effects. Standard errors are clustered on the 4-digit product code responsible for the largest
share of firm sales over the period. Top and bottom 1% of outcome variable values have been
removed. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A.4: Foreign Demand and Exports, By Destination

Dep Var: Log(Export Value) Log(Domestic Value)

(1) (2) (3) (4) (5) (6)

Panel A : Full Sample
Log F̃D

US/CAN
it 0.238∗∗∗ 0.016

(0.078) (0.025)

Log F̃DEU
it 0.156∗ 0.022

(0.085) (0.031)

Log F̃DOther
it 0.429∗∗∗ 0.079∗∗

(0.109) (0.038)

R squared 0.787 0.787 0.782 0.889 0.888 0.890
# Obs 5478 5526 5641 8122 8173 8391
# Firms 936 947 957 1186 1191 1203

Panel B: >1-prod Firms
Log F̃D

US/CAN
it 0.253∗∗∗ -0.002

(0.089) (0.028)

Log F̃DEU
it 0.105 0.031

(0.096) (0.035)

Log F̃DOther
it 0.438∗∗∗ 0.074

(0.104) (0.049)

R squared 0.777 0.776 0.773 0.881 0.880 0.882
# Obs 3763 3793 3874 5533 5562 5728
# Firms 606 613 620 764 768 776

Panel C : 1-prod Firms
Log F̃D

US/CAN
it 0.137 0.095∗

(0.128) (0.055)

Log F̃DEU
it 0.375∗∗∗ -0.060

(0.093) (0.080)

Log F̃DOther
it 0.013 0.156

(0.211) (0.114)

R squared 0.836 0.836 0.833 0.903 0.903 0.904
# Obs 1707 1727 1761 2589 2611 2663
# Firms 330 334 337 422 423 427

Notes: Table reports estimated impacts of log F̃Dit disaggregated by export destination on log
export value and log domestic value for exporters and non-exporters using the firm-level dataset.
All regressions instrument log F̃Dit with base-year-weighted foreign demand shocks log Z̃it.
Data span 1996–2011. Panel B restricts to multi-product firms, and Panel C to single-product
firms. All regressions include firm fixed effects, controls for energy prices, and industry-by-year
fixed effects. Standard errors are clustered on the 4-digit product code responsible for the largest
share of firm sales over the period. Top and bottom 1% of outcome variable values have been
removed. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A.5: Emissions in the Firm-Level Dataset, OLS

Exporters Non-Exporters

Log(CO2) Log(Q) Log(CO2
Q ) Log(CO2) Log(Q) Log(CO2

Q )
(1) (2) (3) (4) (5) (6)

Panel A: Full sample
Log F̃Dit 0.067∗∗∗ 0.065∗∗∗ 0.001 0.017 0.014 0.002

(0.018) (0.023) (0.021) (0.015) (0.027) (0.023)

R squared 0.939 0.972 0.980 0.938 0.962 0.969
mdv 9.025 9.986 -0.961 8.511 9.727 -1.216
# Obs 9801 9801 9801 4381 4381 4381
# Firms 1362 1362 1362 864 864 864

Panel B: MP Firms
Log F̃Dit 0.075∗∗∗ 0.067∗∗ 0.008 0.009 0.012 -0.003

(0.019) (0.029) (0.027) (0.021) (0.034) (0.028)

R squared 0.936 0.965 0.974 0.938 0.954 0.963
mdv 9.213 10.015 -0.801 8.744 9.896 -1.152
# Obs 6764 6764 6764 2633 2633 2633
# Firms 886 886 886 497 497 497

Panel C: SP Firms
Log F̃Dit 0.050 0.068∗∗∗ -0.018 0.018 -0.007 0.025

(0.032) (0.021) (0.025) (0.043) (0.044) (0.017)

R squared 0.947 0.985 0.989 0.945 0.974 0.979
mdv 8.605 9.923 -1.318 8.162 9.463 -1.300
# Obs 3037 3037 3037 1740 1740 1740
# Firms 476 476 476 366 366 366

Notes: Table reports estimated impacts of log F̃Dit on Log(CO2), Log production in quantity
(Q), and Log CO2 emission intensity in quantity (CO2

Q ) for exporters and non-exporters using the
firm-level dataset. Data span 1996–2011. Panel B restricts to multi-product firms, and Panel C
to single-product firms. All regressions include firm fixed effects, controls for energy prices, and
industry-by-year fixed effects. Standard errors are clustered on the 4-digit product code responsible
for the largest share of firm sales over the period. Top and bottom 1% of outcome variable values
have been removed. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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Table A.6: Emissions in the Firm-Level Dataset, By Destination

Exporters Non-Exporters

Log(CO2) Log(Q) Log(CO2

Q
) Log(CO2) Log(Q) Log(CO2

Q
)

(1) (2) (3) (4) (5) (6)

Panel A

Log F̃DUS/CAN
it 0.049 0.093∗∗ -0.044∗ 0.044 0.005 0.039

(0.033) (0.040) (0.024) (0.031) (0.024) (0.036)

R squared 0.943 0.974 0.983 0.943 0.962 0.969
mdv 9.041 10.012 -0.971 8.539 9.548 -1.009
# Obs 8122 8122 8122 3108 3108 3108
# Firms 1186 1186 1186 636 636 636

Panel B

Log F̃DEU
it 0.044 0.040 0.004 0.074 -0.000 0.075

(0.030) (0.033) (0.025) (0.078) (0.091) (0.059)

R squared 0.943 0.975 0.982 0.942 0.963 0.969
mdv 9.054 10.016 -0.962 8.565 9.583 -1.019
# Obs 8173 8173 8173 3137 3137 3137
# Firms 1191 1191 1191 645 645 645

Panel C

Log F̃Dother
it 0.142∗∗∗ 0.166∗∗∗ -0.024 -0.005 0.028 -0.033

(0.041) (0.050) (0.041) (0.053) (0.072) (0.057)

R squared 0.945 0.975 0.982 0.944 0.963 0.969
mdv 9.107 10.068 -0.961 8.626 9.700 -1.074
# Obs 8391 8391 8391 3336 3336 3336
# Firms 1203 1203 1203 661 661 661

Notes: Table reports estimated impacts of log F̃Dit by export destination on Log(CO2), Log pro-
duction in quantity (Q), and Log CO2 emission intensity (CO2

Q ) for exporters and non-exporters using

the firm-level dataset. All regressions instrument log F̃Dit with base-year-weighted foreign demand
shocks log Z̃it. Data span 1996–2011. All regressions include firm fixed effects, controls for energy
prices, and industry-by-year fixed effects. Standard errors are clustered on the 4-digit product code
responsible for the largest share of firm sales over the period. Top and bottom 1% of outcome variable
values have been removed. Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10%
∗ levels.
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Table A.7: Emissions in the Product-Level Dataset, OLS

Exporters Non-Exporters

Log(CO2) Log(Q) Log(CO2

Q
) Log(CO2) Log(Q) Log(CO2

Q
)

(1) (2) (3) (4) (5) (6)

Log F̃Djt 0.020∗∗∗ 0.021∗∗ -0.001 -0.000 -0.005 0.005
(0.007) (0.010) (0.005) (0.021) (0.018) (0.006)

R squared 0.941 0.968 0.989 0.938 0.962 0.986
mdv 9.323 9.997 6.234 8.528 9.439 5.997
# Obs 13157 13157 13157 2703 2703 2703
# Firm-Products 1659 1659 1659 527 527 527
# Firms 1062 1062 1062 456 456 456

Notes: Table reports estimated impacts of log F̃Djt on Log(CO2), Log production in quantity (Q),
and Log CO2 emission intensity (CO2

Q ) for exporters and non-exporters using the product-level dataset.
Data span 1995–2011. All regressions include firm-product fixed effects, controls for energy prices, and
industry-by-year fixed effects. Regressions are clustered on the 4-digit product code and the firm. Top
and bottom 1% of outcome variable values have been removed. Asterisks indicate statistical significance
at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.
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B Data Appendix

In this appendix, we discuss individuating products in the output data, computing CO2

emissions from energy-use data, merging product-specific emission intensity to product-
specific outputs, diagnostic checks on the product-specific emissions calculations, and con-
structing trade shocks from trade data. The first four steps rely on our previous work
(Barrows & Ollivier, 2018). Hence, we provide summaries of the procedures here and
direct the reader to Appendix A of Barrows & Ollivier (2018) for more details. As the
construction of the trade shock is novel, we describe it in more depth.

B.1 Individuating Products in the Output Data

Firms report value and quantity of sales each year individuated by text descriptions (e.g.
“t-shirts”). CMIE assigns each product string a single 16-digit product classification code,
which we will use to map to trade shocks. However, the CMIE codes are not ideal for
individuating products. First, CMIE sometimes assigns different product codes to the
same text description over time. Second, CMIE sometimes assigns the same product codes
to multiple text descriptions within the same firm-year. Our assumption is that if the
firm separately reports output information for two (potentially closely related) product
descriptions, then we should treat them as different products, even if CMIE does not
distinguish between them in terms of product codes. Hence, we take the firm-supplied
product string name as the identifier of a firm-product.

As described in Barrows & Ollivier (2018), an issue with the output data is that output
units are not always constant within firm-product over time. We attempt to standardize
units as much as possible, but then drop any observations from the analysis which we
cannot compute in constant units. See Barrows & Ollivier (2018) for more details.

B.2 Computing Emissions from Energy-Use Data

While firms in Prowess do not report emissions directly, we can compute CO2 emissions
from energy-use data conditional on the assumption that CO2 emissions are directly pro-
portional to the quantity of an energy source consumed (Martin, 2012; Marin & Vona,
2017; Forslid et al., 2018; Barrows & Ollivier, 2018). At the firm level, firms report the
total quantity of each energy source consumed each year (e.g., liters of diesel, KwH of elec-
tricity, etc.). At the product level, firms report energy intensity of production by output
product – the amount of each energy source used to generate a single unit of the good. For
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both reports, we translate physical quantities of energy consumed into physical quantities
of CO2 emissions and sum over energy sources to compute firm-level or product-level emis-
sions. Source specific emissions factors come from the US EPA 2012 Climate Registry De-
fault Emissions Factors (http://theclimateregistry.org/wp-content/uploads/2015/01/2012-
Climate-Registry-Default-Emissions-Factors.pdf), and are reported in Table B.1.15

In computing CO2 emissions, several issues arise. We describe in detail each issue and
our treatment of it in Barrows & Ollivier (2018), but mention them briefly again here.
First, output units are not always the same across energy sources within the firm-year or
firm-product-year. We standardize output units as much as possible, but must in the end
drop observations for which standardization is not possible. Second, we are not able in
every case to assign a meaningful CO2 emissions factor to all energy reports. Emissions
factors are reported for a specific unit of energy source consumed or mmBTU of energy.
For a given energy source reported, if we can not convert the reported unit to match the
unit in Table B.1, then we can not convert energy consumption into CO2 emissions. We
first attempt to standardize units, and then drop any observations for which we cannot
match units with the EPA report. Third, we drop outputs which appear to be intermediate
inputs used by the firm in later stages of production.

15In the EPA report, CO2 intensities are reported per unit of energy source (e.g., short ton of Lignite),
and per mmBTU of energy. The energy types and CO2 emissions factors from Table 12.1 in the US EPA
2012 Climate Registry Default Emissions Factors are listed in Table B.1. There are 25 energy sources
described in Table 12.1. Electricity generation for India is reported in Table 14.4. The table reports 951 g
CO2 per KwH for Indian electricity. Applying conversion of 1 KwH equals 0.0034095 mmBTU yields 278
kg CO2 per mmBTU.
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Table B.1: CO2 emission factors

Kg CO2 per Unit Unit of Kg CO2 per MMBTU
Energy Source of Energy Source Energy Source of Energy Source
Acetylene 0.1053 scf 71.61
Agricultural Byproducts 974.9 short ton 118.17
Anthracite 2597.82 short ton 103.54
Biogas (Captured Methane) 0.0438 scf 52.07
Coke 2530.59 short ton 102.04
Coke Oven Gas 0.0281 scf 46.85
Distillate Fuel Oil No. 1 10.18 gallon 73.25
Distillate Fuel Oil No. 2 10.21 gallon 73.96
Electricity 278.00
Fuel Gas 0.0819 scf 59.00
Kerosene 10.15 gallon 75.20
Kraft Black Liquor 1131.11 short ton 94.42
LPG 5.79 gallon 62.98
Lignite 1369.28 short ton 96.36
Lubricants 10.69 gallon 74.27
Motor Gasoline 8.78 gallon 70.22
Naptha (<401 deg F) 8.5 gallon 68.02
Natural Gas (US average) 0.0545 scf 53.02
Petroleum Coke (Liquid) 14.64 gallon 102.41
Petroleum Coke (Solid) 3072.3 short ton 102.41
Propane (Liquid) 5.59 gallon 61.46
Residual Fuel Oil No. 6 11.27 gallon 75.10
Solid Byproducts 2725.32 short ton 105.51
Wastewater Treatment Biogas 52.07
Waxes 9.57 gallon 72.60
Wood and Wood Residuals 1442.64 short ton 93.80

Notes: The first column lists the energy source as named by the EPA. Prowess does not use exactly the same
naming convention, so we mapped by hand these energy types to the energy types listed in Prowess. The
second column reports kg CO2 associated with a given unit of energy type in column 1, where the unit is
reported in column 3. For most energy types, we use the CO2 intensity listed in column 2. However, for some
observations, we were unable to standardize units across the two datasets. In some cases, we were able to use
an alternative CO2 intensity reported per mmBTU. We list this alternative CO2 intensity in column 4.
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B.3 Merging Product-specific data to Output data

To compute firm-product-level emissions, we merge CO2 emission intensity to product-level
outputs. While there is no unique product-level identifying code on which to match, both
energy intensity and product-level outputs report text descriptives of the products and
CMIE has labeled products in both datasets with the 16-digit product codes. Hence, we
could match either on exact string name or on the 16-digit product code. However, upon
inspection, it seems clear that neither string names nor product codes are consistent across
the two datasets.

Our strategy is first to match on exact string name of the product. Then, with all the
products that fail to match on exact string name, we match by hand the inputs to the
outputs based on the product descriptions. For example, in one case, a product described
as “Shopping Bags/CarryBags” in the output dataset is merged to a product called “Plastic
Bags” in the energy dataset. Though the names are not exactly the same, it seems clear
from looking at the range of products described for the given firm that these two reports
refer to the same outputs. By considering approximate matches such as this example, we
increase the size of the matched input-output product-level dataset substantially.

B.4 Diagnostic checks of Product-specific Emissions Calculations

Our test of the technological channel relies mostly on the product-specific energy reports,
from which we compute emission intensity and emissions above.16 While firms are required
by the 1988 Amendments to the Companies Act to report product-specific energy inten-
sities, there are no formal mechanism to ensure accurate reporting. Additionally, there
may be significant costs to breaking down energy use by product line for the firms. Hence,
firms may not have strong incentives to report product-wise energy use accurately. Lacking
independent audit reports of the energy-use data, we cannot say how accurate the reports
are. However, we can perform diagnostic checks on the product-specific energy data and
test alternative assumptions. We perform these tests in the appendix of Barrows & Ollivier
(2018), but summarize them here.

Suppose that firms want to comply with the reporting requirement but do not want to
pay the cost to learn how energy-use breaks down by product. Three reasonable hypothesis
emerge. First, the firms could report pure noise for the energy intensity figures. If there is
no penalty for false reporting and/or no mechanism for ensuring accurate reporting, then

16We also test for technology effects using the firm-level energy reports for single-product firms, though
this sample is by definition not representative.
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it is certainly possible that firms could follow this strategy. Second, firms might employ
some cheap heuristic for determining product-specific energy use. The most obvious choice
would be to break down energy use by sales share of the products. Sales share is not
difficult to calculate (and is in fact already required in the reports). So simply dividing
total energy use by sales share would be a very cheap way to determine the product-wise
energy intensity. Finally, firms might pick some value for energy intensity (either accurate
or not) and report the same value every year. If firms followed the first or the third
strategy, one would not expect the reported energy intensity to respond to foreign trade
shocks, regardless of whether firms adjusted their technology.

To address these three hypothesis, we perform several tests in Barrows & Ollivier (2018).
First, if firms report pure noise, then the computed emission intensity should not correlate
with any variable. This hypothesis is easily rejected in Barrows & Ollivier (2018) by the
strong correlation between emission intensity and product sales share rank within the firm.
In Barrows & Ollivier (2018), we find that larger products have lower emission intensity.
This relationship would be highly unlikely if the product-specific energy reports were pure
noise.

Second, in Barrows & Ollivier (2018), we test for whether product-specific energy use
is driven entirely by sales share. It is quite likely that higher-sales products should use
more energy. However, if the energy reports are accurate, we would not expect sales share
to explain all the variation in energy use. In Barrows & Ollivier (2018), we compute for
each energy source (e.g., electricity, coal, diesel) the share of energy use devoted to a given
product based on the product-specific energy reports. We then regress this variable on
the sales share of the product within the firm-year. In Barrows & Ollivier (2018), we find
that energy-use share is increasing in sales share, but that sales share does not perfectly
predict energy-use share. To address measurement errors, we also instrument sales share
with lagged sales share. In all specifications, we found point estimates away from 1. We
take this as evidence that the product-specific energy data reflect more than just the sales
share.

Finally, we can reject the hypothesis that firms do not adjust energy-use intensity
year-to-year simply by noting the large amount of variation in emission intensities within
product-line over time.

In summary, while we cannot say for sure how accurate the product-specific energy
reports are without an audit, we test the three most obvious hypothesis for how the firms
could misreport the information, and find compelling evidence against all three hypothesis.
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B.5 Merging Trade Data to Prowess

To test for impacts of foreign demand, we must merge trade shocks to the product-level
information in Prowess. International trade flows are classified in BACI according to the
Harmonized System (HS) revision 1996, of which there are 5,132 6-digit codes (sections
1-21), while products in Prowess are classified according to CMIE’s own 16-digit coding
system. Previous work has merged trade data to Prowess by first mapping HS codes to
National Industrial Classification codes (NIC) via a crosswalk from Debroy & Santhanam
(1993), and then to CMIE’s codes via a crosswalk provided by CMIE (see De Loecker
et al. (2016) for an example). However, the cross-walk from Debroy & Santhanam (1993)
is aggregated to the 3-digit level (for the most part), and relies on the version of the NIC
from the early 1980s. Hoping to exploit differential growth rates in foreign demand at a
more granular level, we construct our own cross-walk between the CMIE product codes
and HS revision 1996.

We aim to assign one or more HS codes to each of 3,324 distinct 16-digit CMIE product
codes based on the descriptions of the products. While descriptions in the two datasets
are usually not exactly the same, both classifications hew fairly closely to the ISIC classi-
fication, which means that product ordering and text descriptions are often quite similar
in the two datasets. We thus match HS codes to CMIE product codes by hand as follows.

We first attempt to match one or multiple 6-digit HS codes to a given 16-digit CMIE
product code. Sometimes, there is no obvious 6-digit match. In these cases, we exploit
the fact that the HS follows a tree-like structure, so that all products with the same first
four digits belong to a common family of products. Thus, while there may be no 6-digit
code that matches to a 16-digit CMIE code, there may be a 4-digit HS code. Finally, if
no 4-digit code can be matched to a CMIE code, we match to the 2-digit HS code. See
Table B.2 for an example. Here, one can see that some CMIE products match to 6-digit
HS codes, while other products can only be matched to the broader 4-digit group. In the
full crosswalk, we match 3,276 distinct product codes to at least a 2-digit HS code.

Next, we translate foreign demand computed for 6-digit HS codes in BACI into 16-
digit CMIE codes. When a single 6-digit HS code matches to a 16-digit CMIE code, then
translating between the two classification systems is simple. However, as is illustrated in
Table B.2, in some cases, multiple 6-digit codes match to the same 16-digit CMIE code,
and sometimes CMIE codes only match to a 4-digit or even 2-digit HS code. In these cases,
we must take averages over shocks computed at the 6-digit level.

Index 6-digit HS codes by h6, 4-digit HS codes by h4, 2-digit HS codes by h2, and 16-
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digit CMIE codes by c. Foreign demand and instruments F̃Dh6,t and Z̃h6,t are computed
in Section 2.2. Suppose that a given CMIE product c matches to multiple 6-digit HS
codes. This could be because the CMIE code is less detailed than the 6-digit HS codes,
or because there is uncertainty with respect to which 6-digit HS code best describes the
CMIE product code. To assign a foreign demand in this case, we take a simple average
over shocks computed at the 6-digit level:

Θ̃c,t =
∑

h6∈∆c

Θ̃h6,t (B.1)

for each Θ ∈ {FD,Z} and each h6 that matches to the CMIE code c.
Next, suppose we cannot match any 6-digit codes to a CMIE code, but can match an

entire 4-digit category. In this case, we simply take the simple average of foreign demand
and instruments over all 6-digit codes in the 4-digit code:

Θ̃c,t =
∑

h6∈∆h4

Θ̃h6,t (B.2)

for each Θ ∈ {FD,Z} and each h6 in the aggregate h4. Then, if multiple 4-digit codes
match to a CMIE code, we again take a simple average over the 4-digit codes

Θ̃c,t =
∑

h4∈∆c

Θ̃h4,t (B.3)

We then follow the same procedure to compute shocks for CMIE codes that match to
2-digit HS codes.

In an abuse of notation, in the main text we refer to both BACI codes and CMIE codes
as j, though in reality when considering shocks computed in the CMIE coding system, a
product j potentially refers to simple averages over multiple 2-digit, 4-digit, or 6-digit HS
codes.
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