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Abstract

This study explores how investors’ optimism about the likelihood of pollution-
driven disaster occurrence affects asset prices. Environmental pollution re-
sulting from economic activities raises the probability of disaster occurrence.
However, the relationship between economic activities, pollution, and dis-
aster occurrence is difficult to ascertain. Thus, investors make decisions
based on subjective expectation; specifically, they subjectively evaluate the
probability of disaster occurrence to be lower than its objective probability.
As demonstrated in this study, the equity premiums under conditions of
objective expectation are significantly higher than those under subjective
expectation conditions only if a representative agent has high Intertemporal
Elasticity of Substitution (IES). This discrepancy in asset returns is related
to the propensity of individuals to discount events occurring in the “distant
future” as described in existing literature.

JEL classification: E71, G12, Q54
Keywords: Subjective Fxpectations, Disasters, FEquity Premium Puzzles,
Discount Rates, Climate Change.

1 Introduction

A rare disaster is a potential resolution of the equity premium puzzle even
in an exchange economy with a representative agent (cf. Rietz, 1988; Barro,
2006). Barro and Ursta (2017) use historical cross-country data to define
disasters as events that induce declines of more than 10% in cumulative
consumption. Most of the disaster episodes observed in the past 100 years
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have been in the form of financial crises and wars. Recently, many re-
searchers, Martin Weitzman in particular, have pointed out the potential
risks brought on by disasters caused by environmental pollution. Green-
house Gases (GHGs) and the associated climate effects are one representa-
tive example of pollution driving disaster occurrence. Accumulated GHGs
contribute to changes in global climate, which in turn lead to frequent Cat-
egory b hurricanes, severe droughts, and devastating bush fires. The rise
of average global temperatures also contributes to the spread of infectious
diseases and environmentally driven economic damages in industries such
as agriculture and fishery (cf. IPCC, 2012; Auffhammer, 2018).

This study outlines the proposition that the probability of pollution-
driven disasters is naturally time-varying, whereas investors do not perceive
it as such. On the one hand, as discussed in Xepapadeas (2005) and Karydas
and Xepapadeas (2019), environmental pollution is a by-product of produc-
tion processes. This study considers an economy where economic activities
endogenously determine the probability of pollution-driven disaster occur-
rence. Historically, high (low) economic growth rates have coincided with
high (low) levels of emissions. Therefore, disaster occurrence probability is
time-varying due to time-varying economic growth and, thereby, pollution
levels.

On the other hand, the interaction among economic activities, emissions,
pollution, and disaster occurrence is quite complicated and therefore diffi-
cult to ascertain. Thus, investors make decisions based on subjective, not
objective, probability. Similar to Abel (2002) and Weitzman (2007), we
evaluate asset prices, and how those may be determined by a representative
agent model with a subjective probability. This study introduces a subjec-
tive or “optimistic” probability evaluation in the following two senses. First,
investors subjectively perceive the probability of disaster occurrence to be
lower than its objective probability. Second, though the objective proba-
bility of disaster occurrence is time-varying, investors perceive it to be a
time-invariant Independent and Identically Distributed (IID) process.

The main findings of this study are as follows: (1) subjective and objec-
tive asset returns are different; (2) subjective risk-free rates are higher than
objective ones; and (3) subjective equity premiums are lower (higher) than
objective ones only if the representative agent has high (low) Intertemporal
Elasticity of Substitution (IES). Following Weitzman (2007), we consider
observed asset returns to be subjective. In contrast, we consider optimal
expected asset returns to be objective.

The discrepancy in asset returns is related to the propensity of individ-
uals to discount events occurring in the “distant future,” as discussed by
Weitzman (1998) and Weitzman and Gollier (2010). Weitzman and Gollier
(2010, p. 350) state that “the concept of discounting is central to economics,
since it allows effects occurring at different future times to be compared by
converting each future dollar into a common currency of equivalent present
dollars.” In the financial decision-making process, a risk-adjusted discount
rate, which is calculated as the sum of the risk-free rate and the equity
premium, is widely used for such discounting. For example, as discussed by



Dietz et al. (2018), an individual firm’s cost of equity is calculated using
the risk-free rate and the equity risk premium in the standard Capital Asset
Pricing Model (CAPM). This study points out that the equity risk premium
observed in financial markets fails to accurately price the risk associated
with pollution-driven disasters. Thus, the risky asset should be discounted
by the objective risk-adjusted discount rate; otherwise, the discounted value
of distant future events may be biased.

2 The Model and its Equilibrium

Following Mehra and Prescott (1985), among others, we model an economy
in which a representative agent consumes fruit from a single Lucas tree.
We use Cy and Y; to denote consumption and output, respectively, in time
period t. There are two financial assets: a risk-free asset f;, and a risky
equity share of Lucas tree e;. ¢; and @); denote, respectively, the risk-free
asset and the equity share of Lucas tree prices in time period ¢. f; and e;
indicate the outstanding positions of these two financial assets. Y; is used
to denote the dividend on Lucas tree in time period t. The representative
agent has a time-additive utility u(C}) in time period ¢, where C; denotes
consumption. Given the above setup, the representative agent maximizes
the following lifetime utility:

max  Ejp [ i e_ptu(C't)} )

{et+1,ft+1}t>0 =0

subject to Cy = Yier + Qier — er41) + ft — ¢ ft41, where Ejy denotes the
expectation operator conditional for ¢ = 0. The Euler equations, or first-
order conditions, for e;11 and f;y1 are expressed as follows:

' (Cipn)

Qe = E [6’ pTCS(Qt—&-l"‘Yt-i-l)]a (1)
. _ U/(Ct 1)

gt = Et[e pTC:)}' (2)

Because the economy in this example is a closed one, market clearing con-
ditions are given by C; = Y;, e, = 1, and f; = 0.

2.1 Environmental Pollution and Disasters

The two states, s; € {n,d}, are the normal and disaster states respectively.
Output depends on the state the economy is in: Y; = Y(s¢). The stochastic
process for the logarithm of output is:

InY(sir1) =InY(se) + g+ In(1 —b)&(se+1), (3)

where g is the growth rate and b denotes the scale of the disaster. If there
is a disaster in period t+1 (i.e., s441 = d), then £(s;41) = 1; otherwise (i.e.,
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St+1 =n), £(s¢+1) = 0. Note that we do not add IID process shocks, which
are typically included in standard consumption asset pricing models. These
IID process shocks are considered to be business cycle shocks. That is, we
focus on the effect the risk of pollution-driven disaster occurrence has on
asset prices.

We use P, to denote the pollution stock in period ¢, and Y; to denote
the output in period t. According to Xepapadeas (2005), the pollution ac-
cumulation equation is written as Py = mY; + mP;, where m denotes the
pollution decay parameter and m denotes the parameter for emissions gen-
erated by production. For analytical tractability, we set m = 0; therefore,
the relationship between pollution and output can be written as:'

Piy1 =mY;. (4)

We assume that the pollution-output ratio, p; = %, affects the proba-
bility of disaster occurrence Pr(si+1 = d|s¢) = f(pt), where f'(p;) > 0 and
f"(pt) > 0. Since equation (4) can be rewritten as py;11 = m%, the prob-
ability of disaster occurrence depends only on the previous output growth
rate.

As described in (3), the output growth rate can only take two values,
where YtTf =eY if 5411 = n and YtT:l = (1 —0b)eY if 5441 = d. Therefore, the
pollution-output ratio can take only two values: p, = me™9 in state n and
Pg = ”1’6__; in state d. The probability of disaster occurrence in state n is
given by m = f(py), and that in state d by 0 = f(pg). We denote e = 0 —,
and note that € > 0 because f/(p;) > 0. The stationary probability of the
economy being in a disaster state is ¢ = 1.

The stochastic process considered here is similar to the one described by
Saito and Suzuki (2014). However, they assume that investors can correctly
determine the time-varying probability of disaster occurrence. Our analysis
assumes that investors cannot perfectly understand the objective probabil-
ity of disaster occurrence due to the complicated nature of the relationship
between economic activities, emissions due to pollution, and disaster oc-
currences. Thus, investors make decisions based on subjective probability
instead. We denote subjective probability as 7#* and 8*. In particular, we
assume that investors underestimate the probability of disaster occurrence:
™ <7 = f(pn) and ¢* < e = f(pa) — f(pn). In addition, investors do not
know whether or how the damage induced by disasters affects the proba-
bility of disaster re-occurrence. Thus, they subjectively estimate that the
probability of re-occurrence would be 8* = 7* or ¢* = 0* — n* = 0. That
is, investors consider that pollution-driven disasters follow an IID process.
Therefore, we make the assumption that investors are optimistic about the

effects of pollution-driven disasters.

Assumption 1 The subjective probability is denoted as 7 < ® = f(pp)

'If we set 1 to a positive value, the pollution-output ratio becomes a state variable and evolves
over time. In this case, asset prices described below cannot be solved analytically. However,
altering this assumption will not change the main result of this paper qualitatively. We will
discuss this point in Section 4.



and 0* = n*. Thus, ¢* = 0.

2.2 Risk-Free Rates and Equity Premiums Equi-
librium

Like Weitzman (2007) and Suzuki (2014), we assume that actual asset prices
are determined by the Euler equations under a subjective probability. On
the other hand, optimal asset prices are determined by the Euler equations
under an objective probability.? Thus, we compare asset prices under these
two scenarios.

Suppose that z;41 denotes the Stochastic Discount Factor (SDF). Ac-
cording to equations (1) and (2), the return on an asset i, denoted by Ri_H,
must satisfy the following pricing equation:

1 = Bz R4, (5)

1

where Ry | = % denotes the return on equity, and R{ 1= o

denotes the risk-free rate.

We assume that disaster episodes follow a Markov process, and that
the representative agent has a power or a Constant Relative Risk Aversion
(CRRA) utility. When these conditions are met, asset prices are a function
of the current state of the economy. Hereafter, the expectation operator
conditional on the current state s is denoted by Fl-|.

The risk-free rate conditional on state s is determined by the following
equation: Rf: = m, where z,+ denotes the SDF as one moves from
state s to §’. The unconditional safe asset return expectation is R/ =
(1 —¢)Rh + VR

The price of a Lucas tree in state s is QJs. By using the price-dividend
ratio in state s, defined as ws = %, we can represent the ex-post return on
Y (s') wy+1

equity as one moves from state s to s’ as follows: RS, = V() e From

equation (5) and the above definition, we can derive the following equation:
Y (s

or = oo 5 o 1)) 0

We can use this equation to compute the price—dividend ratio in each of the
two states.

The conditional expected equity returns can be written as follows: Rf, =
(1-m)R;, + R, and R; = (1 — 0)Rg, + 0R,;. Thus, the unconditional

expected equity return is R® = (1 — )R}, + Y R,

2 Asset prices under objective probability are optimal in the following sense. Suppose that
the social planner maximizes the representative agent’s expected lifetime utility subject to the
resource constraints. This maximized lifetime utility is considered as an optimal level. It is
natural that the social planner uses the objective probability. Thus, the optimal level of lifetime
utility equals the level of lifetime utility that results from the representative agent’s optimization
problem with the objective probability.



The unconditional expected equity premium is: II = R® — R/. Simple
manipulation of this expression yields the following unconditional expected
equity premium:

COVy [Tpst, R ]
En [mns/]

covg|Tas, RGy] }

+ Eglrgy]

m=—{1-v) (7)

2.2.1 Asset Prices Under Objective Probability

AN it
Based on a power utility function, the SDF is given by x4y = e7” [1{,((58))} ,

where —p denotes the subjective discount rate and v denotes the coefficient
of Relative Risk Aversion (RRA), which is equivalent to the reciprocal of
the IES.

When the price of a risk-free asset is objectively evaluated, it is written
as g, = ipjojj and g4 = %, where a =1 — (1 —0)7. Note that a < 0
if v+ > 0. Thus, the unconditional risk-free rate is written as a function of 7

and e:
ePt9 1 —am — [1 + a(l — 27)]e + a’e

l—ar l—ar—[1+a(l—7)e+ae’

Rl (m,e) = (8)

The equation (6) can be expressed by the following system of equations:

wp = (1—m)B(wp+1)+7B6(wg+ 1),
wi = (I—-m—¢)Blwp+1)+ (m+¢e)B0(wg+1),

where 3 = exp{—p-+(1—7)g}, and 6 = (1—b)!~7. Thus, the price-dividend
ratios are expressed as follows:

1—(1—0)r— pde
1= B+ B(L—0) — B(1— B)oe’
1—(1-8)m—(1—-5+pBd)
1= B+ B(1—0)r — B(1— B)oe”

The associated unconditional equity premium is written as a function of 7
and e:

Wn = B (9)

wg = B (10)

am ay(m)z* + as(m) T an(m)? + an(m)e + apl)
B ha(m)et + ha(m)ed + ha(m)e? + hi(m)e + ho(m)’

(7, e) = —e? (11)

where the definitions of a4(7), ag(7), az(nw), ai(w), ao(w), ha(mw), hg(w),
ho(m), hi(m), and ho(m) are as listed in the Appendix.
2.2.2 Asset Prices Under Subjective Probability

Investors’ subjective expectations of the probability of disaster occurrence
are expressed by 7* < f(py) and disaster occurrence follows an IID stochas-
tic process €* = 0. Thus, the risk-free rate is written as follows:

P9

R/* = R (7*,0) = (12)

1—anr*



The equity premium under subjective probability, IT*, is expressed as fol-
lows:

gab T — 2

Bl—[a+(1=00)r +a(l—06)r?2

IT* = II(7*,0) = —

Therefore, we put forward the following two propositions.

Proposition 1 Suppose that m and € are sufficiently low. The risk-free rate
under the subjective probability is higher than the one under the alternate
condition if, and only if, e < V7 — a~! holds.

OR (ﬂ' 0)

Proof. Note that < 0 holds, and that

ORI (7,0) ORI (m,e)
Oe N Oe
holds. Thus, based on the variational argument, we can prove that the value
fBRf(w,O)d BRf(w,O)d : ti ED
of == —=dr + =5 de is negative. (Q.E.D)
The reasoning behind Proposition 1 is quite straightforward. Increases
in m and ¢ indicate that the consumption process is exposed to higher prob-

abilities of disaster occurrence. When risk is high, the demand for assets
and the price of the risk-free assets increase, and the risk-free rate decreases.

le—o = e”Tar < 0

Proposition 2 Suppose that m and € are sufficiently small. The equity
premium under the subjective probability is lower than the one under the
alternate condition if § < 0* holds, where §* > 1 and is defined as follows:

21 — (1 = 37)(1 —b) + /27 + (1 = 37)(1 — b)]2 + 8 (1 — 2m)bB~"

0 = ym

Proof. Based on the variational argument, we can prove that the value of
8H(7r 0)d + BH(W 9 ge is positive if § < §* holds. That is, marglnal increases
in both s and 5 from subjective probabilities 7* and €* = 0 increase the

equity premium. Because of 6H§Z 0 = (mger’e)]azo, we can demonstrate

that aH(rre)|E 0 > (<)0 if, and only if, § < (>)§*. From equation (11),
8H (7€)

. Now that 7 is sufficiently small, we consider

am athg—aghi
|€ =0 — eg? h2

that 7J is approximately 0 when j > 2. Thus,

Sign(% le= 0) ~ —216%—[(1-37)(1—b)—27])6+(1—27)b+(1—37) B(1-b) 5"

sign(%—g\520> ~ ( is a quadratic equation of §, and the coefficient of the
second order term is negative. This quadratic equation has two roots, one
is positive §* and the other is negative. Thus, s1gn(M|g_ ) > ()0
is equivalent to 0 < (>)6*, and 6* > 1. On the other hand, using the
approximation of 7/ ~ 0 with j > 2, w ~ —69%% > 0.

Thus, the value of Wdﬂ + %de is positive if § < §*. (Q.E.D.) .
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Proposition 2 states that the magnitude of the relationship between IT*
and IT depends on the value of § = (1 — b)'~7. In particular, the threshold
value of 0* is greater than 1. It is well-known that the reciprocal of IES
v plays a crucial role in determining the equity premium. When v = 1
and 0 = 1, the price-dividend ratio is independent of the current state:

ws = /8#?1&;,8)5' We can easily demonstrate that % < % < 0. Thus,

sign(%\gzo > 0 holds if 6 = 1. On the other hand, when 6 > 1 and

v > 1, wqg > wy holds. That is, the ex-post return on equity from state n
to state d R; ; increases due to an increase in the price—dividend ratio in
state d, and the positive covariance between consumption growth and equity
returns decreases. As a result, equity premiums decrease.

2.3 Recursive utility analysis

We compute asset prices using recursive utility, as discussed by Weil (1989)
and Epstein and Zin (1991). Let x denote the reciprocal of the IES. The

recursive utility function indicates that the SDF can be written as x,y =
11—~ —
1—y N —XT—y _eX=X
-1 | Y(5) I=x p©1=
e "ivx [Y(s)} Rss *
equity premiums under the recursive utility, we must compute the asset

prices numerically.

Because there are no closed form solutions of

3 Numerical Results

We conduct a numerical evaluation to investigate how optimism about the
likelihood of pollution-driven disaster occurrence alters asset prices. How-
ever, it is difficult to determine the size and frequency of damage from
pollution-driven environmental disasters because such events have not been
observed enough. Thus, we do not argue that our pollution-driven disaster
model quantitatively explains the behaviors of risk-free rates and equity pre-
miums. Nonetheless, we argue that the calibrated standard representative
agent model is vulnerable to small changes in disaster occurrence probabil-
ity m and €. In other words, observed asset prices could be far from optimal
ones.

3.1 Calibration Parameters

Barro and Urstia (2017) use Barro-Ursua macroeconomic data to define
disasters as events that induce declines of 10% or more in cumulative con-
sumption. However, it is difficult to use this data to estimate the extent of
damage from pollution-driven environmental disasters, because most disas-
ter episodes observed in the past 100 years are in the form of financial crises
and wars. Thus, we have selected calibration parameters in order to ensure
our numerical results are comparable to those in existing literature on the
equity premium puzzle. In particular, we set the value of b to 0.325 so that



a disaster occurrence changes consumption by approximately —0.33.2 We
also set the value of 7* to 0.02 and the value of €* to 0.00 in the benchmark
case, while 7 is set to 0.03 and ¢ to 0.03 in the high probability of disaster
case. Following Barro (2006), we assume that p = 0.03, g = 0.025. For the
CRRA rate, we use v = 1, as the log utility function, and v = 5, which
is widely used in asset pricing literature. The IES coefficients x~! are set
to 1 and 0.2, respectively. In addition, we compute asset prices under the
recursive utility, where v = 5 and xy~! = 2. These preference parameters
are widely employed outside of this study (cf. Bansal et al., 2014).

3.2 Quantitative Results

Columns (1a)—(1d) of Table 1 report results based on v = 1 and xy~! =1
(i.e., results based on the log utility function). Columns (2a)—(2d) of Table
1 report results based on the CRRA utility function with high RRA (y = 5)
and low IES (x~! = 0.2). Columns (3a)—(3d) of Table 1 report results
based on the recursive utility function with high RRA (y = 5.0) and high
IES (x~! = 2). Columns (1a), (2a), and (3a) of Table 1 report results based
on low 7 of 0.02 and low ¢ of 0.00. Columns (1b), (2b), and (3b) of Table
1 report results based on low 7 of 0.02 and high & of 0.03. Columns (1c),
(2¢), and (3c) of Table 1 report results based on high 7 of 0.03 and low ¢ of
0.00. Columns (1d), (2d), and (3d) of Table 1 report results based on high
7 of 0.03 and high ¢ of 0.03.

[Table 1 is inserted here.]

Based on the log utility function, pollution-driven disasters with low 7
and low € (outlined in Column (1a) of Table 1) generate equity premiums as
high as 0.32%. The equity premiums are even higher if 7 or € increases in
value. For example, the model with low 7 and high € (outlined in Column
(1b)) generates equity premiums of 0.33%; the model with high 7 and low
e (outlined in Column (1c)) generates equity premiums of 0.47%, and the
model with high 7 and high ¢ (outlined in Column (1d)) generates equity
premiums of 0.49%. This is consistent with Proposition 1 because § = 1
when v = 1.

In the case of CRRA utility, where the coefficient of RRA is equal to 5
and the coefficient of IES to 0.2, pollution-driven disasters with low 7 and
low £ (outlined in Column (2a)) generate equity premiums as high as 3.78%.
In the context of the equity premium puzzle, these values of approximately
4.0% are considered to indicate good performance. It is well known that
the asset pricing model with IID disaster occurrence process generates high
equity premiums. However, the risk-free rate amounts to 4.00%, which is
higher than the historically observed value of 1.0%. As discussed in Propo-
sition 1, because w > 0, the model with high 7 and low & (outlined
in Column (2c¢)) generates much higher equity premiums (5.13%). On the

3Suzuki (2014) employs this value as a severe scenario of this sort of disaster as seen in Table
2, column (2) and (6) of page 273.



other hand, because M0 0, the model with low 7 and high ¢ (out-

lined in Column (2b)) generates much lower equity premiums (2.89%). The
model with high 7 and high & (outlined in Column (2d)) generates equity
premiums of 3.91%, close to those of pollution-driven disasters with low 7
and low e (outlined in Column (2a)).

In the case of recursive utility, where the coefficient of RRA equals 5.0
and the coefficient of IES equals 2.0, the equity premium equals 3.67%, and
the risk-free rate equals 0.95% (outlined in Column (3a)). That is, these
values are quite favorable in terms of the equity premium and the risk-free
rate. The equity premiums are higher if 7 or € increases. For example, in the
model with low 7 and high € (outlined in Column (3b)) equity premiums are
4.38%; in the model with high 7 and low € (outlined in Column (3c)) equity
premiums are 5.18%; and in the model with high 7 and high ¢ (outlined in
Column (3d)) equity premiums are 6.11%. These high equity premiums are
mainly driven by a reduction in the risk-free rates. That is, the risk-free
rates in the scenarios outlined above are 0.95%, 0.36%, -0.45%, and -1.20%
respectively.

We must note the risk-free rate and the price-dividend ratio results. On
the one hand, as argued in Proposition 1, the risk-free rate decreases due
to increases in 7 and . In particular, as shown in (2c), (2d), (3c), and
(3d) in Table 1, the risk-free rate takes negative value. The risk-free rate
is reciprocal of the price of risk-free asset; the risk-free price is high when
investors have strong demand for assets. High 7 and € cause investors hold
risk-free asset more and raise the price of risk-free asset above one, which
results in the negative risk-free rate. In other words, investors would like to
pay insurance premium to hold risk-free asset.

On the other hand, Table 1 summarizes the positive price-dividend ra-
tios, confirming that a unique competitive equilibrium exists in all cases. As
shown in (2b) and (2d) in Table 1, price-dividend ratios in state d is higher
than that in state n. These are consistent with Proposition 2 because IES
is lower than 1. In addition, how are these results related to welfare should
be explained, provided that there is well known relationship between the
price—dividend ratio and welfare as explained by Weitzmann (2007). In our
model, the sum of the price-dividend ratio and one ws + 1 equal the lifetime
utility to current utility ratio. Since utility level take negative value when
utility function is CRRA and IES is higher than 1 (v > 1), lifetime utility
also takes negative value. Thus, higher value in the lifetime utility to cur-
rent utility ratio means that lifetime utility takes lower values in the case of
high IES. Opposite is true when IES is lower than one.

4 Discussion and Conclusions

We explore the effect of investors’ optimism about the likelihood of occur-
rence of pollution-driven disasters on asset prices. We theoretically demon-
strate that this optimism causes an increase in risk-free rates and a decrease
in equity premiums. We confirm these quantitative asset pricing results

10



using a calibrated standard representative agent model. In particular, the
disaster model with recursive utility and high TES performs well. However,
these results are vulnerable to small changes in the probability of disaster
occurrence. That is, there are discrepancies in the risk-free rates and equity
premiums depending on the current condition. These discrepancies have sig-
nificant implications in terms of the behaviors of long-term discount rates:
under an objective probability, eligible discount rates do not equal equity
premiums, and whether eligible discount rates are higher than market equity
premiums depends on the IES.

Our primary purpose is to relate economic activity to the probability
of disaster endogenously. The assumption that the pollution stock depends
only on the previous output level makes the stochastic process tractable.
If we consider the case that pollution stock accumulates over time, the
pollution-output ratio becomes a state variable and evolves over time. Thus,
the objective probability of disaster is time-varying even if the disaster has
never occurred. In this case, because asset prices under objective expecta-
tion depend on the distribution of the pollution-output ratio, they have no
analytical solutions. However, we have to note that the qualitative results
in Proposition 1 and 2 are unchanged. This is because we consider that
investors cannot understand such a complicated stochastic process correctly
and the optimistic subjective probability determines the asset prices. On
the other hand, accumulated pollution stock would have some significant
quantitative implications. This should be the issue in the future research.
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Appendix: Definition of notations
as(m) = maXa, az(m) = mA2 + A1, a2(m) = nora + mAL + Mo, ar(m) =

pi2, ho(m) = p2 — p1, ha(m) = i — pro, ho(m) = (1 —am)*[1— (1= 8)x]?, 1o =
(1=m)b,m = aBf(1-b)(1—m)—b, 2 = —aB(1-b), Ao = (1—am)[1—(1-0)n],
M =61-8)—a+a{2(1-6)+B6}r—a(l—86)7%, Ay = a(1—-0)(1—7)—(1—
@)B3, o = M2, 1 = —(1—am){1-(1-0)7}H{1+a—35+2B85—2a(1—6+368)7},
po = (1—am)[(1—30+36)(a+B8) +aBs — {a(l—35+30)%+ (1 —68)aBs}],
and pus = —(1 — am)apé(l — o + 59).
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Table 1: Asset Price Results

(1) CRRA utility with high TES: v =1
(la) (1b)  (Ic) (1d)
RF (%) 465 462 415 4.10
11 (%) 032 033 047  0.49
Wn, 33.84 33.84 3384 33.84
Wa 33.84 33.84 3384 33.84
(2) CRRA utility with low IES: v =5
(2a)  (2b) (20 (2d)
RF (%) 4.00 370 -1.39 -1.80
IT (%) 3.78 289 513 391
Wn, 18.23 22.16 46.84 148.43
W 1823 24.71 46.84 165.52
(3) Recursive utility: v =5, x~ T = 2
(3a)  (3b)  (3¢) (3d)
RF (%) 095 036 -045 -1.20
I (%) 3.67 438 518  6.11
Wn, 36.96 35.21 3171  29.95
W 36.96 34.72 31.71  29.54

~ is used to denote the coefficient of RRA, and x the reciprocal of IES, R/ the unconditional
risk-free rates, and Il the equity premiums. w, is the welfare measure in state n, and wy is the
welfare measure in state d. Calibration parameters are as follows: p = 0.03 is the subjective time
discount rate, g = 0.025 is the trend growth rate, and b = 0.325 is the shock size of disasters.
7 = 0.02 and € = 0.00 in (1a), (2a), and (3a), 7 = 0.02 and £ = 0.03 in (1b), (2b), and (3b),
7 =0.03 and € = 0.00 in (1c), (2¢), and (3c), and 7 = 0.02 and € = 0.03 in (1d), (2d), and (3d).
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