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Abstract

Efficient management of biodiversity aims at allocating conservation
efforts in order to maximize diversity. Defining a diversity criterion is
however far to be trivial; there is not one but several indices that can be
used as biodiversity measures. This paper elicits and compares two in situ
criterions for biodiversity conservation, based on two biodiversity indices
stemming from different disciplines: Weitzman’s index in economics and
Rao’s index in ecology. Both indices combines differently pieces of infor-
mation about (1) species survival probability, and (2) measures of dissim-
ilarity between species. In order to truly have in situ protection criterions,
we add another layer of information about (3) the ecological interactions
between species. Considering a simple three species ecosystem, we show
that choosing one criterion or the other has policy implications, for they
sometimes deliver diverging protection recommendations. We unravel the
role played by the elements (1), (2) and (3) in the ranking, which allows
us to highlight some specificities of the in situ criterions. For example,
other things equal, Weitzman’s in situ ranking tends to favor “robust”
species, while Rao’s in situ ranking gives priority to “fragile” species.

Keywords: conservation priorities, ecological interactions, biodiversity
indices.

JEL Classification: C6, Q5.

1 Introduction

The science of biodiversity conservation has grown rapidly in recent decades.
Important progress has been made on two interconnected fronts. On the one
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hand, reflection has advanced on definitions and measures of biodiversity to pro-
duce what could be called a “biodiversity index theory” (for general overviews,
see Mangurran, 2004, Baumgartner, 2004, Aulong, Figuières and Erdlenbruch,
2005, 2008). On the other hand - and building on this first front - progress
has been made on how to maximize a biodiversity measure, or more gener-
ally a biodiversity-related goal, subject to a number of constraints. The chal-
lenge here is to understand the nature of a “solution” (e.g. the extreme policy
in Weitzman’s Noah’s ark metaphor, 1998) and, more recently, to better take
into account ecological interactions for real in situ policies (Baumgartner, 2004,
Simanier, 2008, van der Heide, van den Bergh and van Ierland, 2005, Cour-
tois, Figuières and Mulier, 2014). As a result, at least at the conceptual level,
we are not without means to rationalize in situ protection efforts. Actually,
the problem we still have to face is rather one of a plethora of means, for the
biodiversity index theory does not advocate a unique “superior” index of biodi-
versity. Rather it offers a range of meaningful indices, and one may expect that
using different indices as objective functions in optimization problems will lead
to different solutions. Which index to choose, then?

From a consequentialist point of view, answering this question requires to
compare the outcomes of different in situ optimization exercises, that differ
from one another with respect to the biodiversity index retained as the objective
function to be maximized. An important sub-class of indices, advocated in Wood
(2000), is based on data about pairwise dissimilarities between species (Rao,
1986, Weitzman, 1992, Solow, Polasky and Broadus, 1993, Hill, 2001, Gerber,
2011)1. Gerber (2011) provides a comparison of the last four indices, though
not in a context of in situ protection plans. And Rao’s index has been ignored,
despite its importance in ecology and biology.

Using the framework developed by Courtois et al. (2014) with ecological
interactions for in situ cost-benefit analysis, the originality of the present pa-
per is to scrutinize the consequences of using two diversity indices: Weitzman
(1992)’ s index, which is popular in several literatures including economics, and
Rao (1982)’ s index, mostly used in ecology and biology, but largely ignored by
economists. Will both indices lead to the same policy? They both account si-
multaneously for survival probabilities and dissimilarity measures. Rao’s index
is defined as the expected dissimilarity between two entities randomly drawn
from a collection, whereas Weitzman’s index, in the specific context we will an-
alyze, is the expected length of the evolutionary tree associated to the collection.
The axiomatic properties of both indices have been elicited (Rao, 1986, Bossert,
Pattanaik and Xu, 2002), which gives them some transparency as measures of
diversity.

Since our goal is to unravel and understand basic issues, we will simplify
the study whenever possible. Attention is restricted to a three-species ecosys-
tem2 with ecological interactions. Weitzman’s and Rao’s indices are used for

1This is a range of other important and related papers, among which Vane-Wright,
Humphries and Williams (1991), Crozier (1992), Faith (1992), Bossert, Pattanaik and Xu
(2003).

2As explained later, a two-species ecosystem would be even simpler, but would not allow
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the comparison of particularly simple preservation policies, where the manager
of a natural park has enough budget to care about at most one single species.
Which one should he choose, given the advantages it provides either for its own
sake or, indirectly, via ecological interactions?

The sketch of the paper is the following. In section 2 we model our in situ
prioritization criterions. After describing the characteristics of our three species
ecosystem, we define how both indices generally combine pieces of information
and how they may be used for ranking species for in situ conservation. Sec-
tion 3 aims at disentangling the role of the different aspects that compose the
criterions, namely (i) the autonomous survival probabilities, (ii) the dissimilar-
ities, (iii) the coefficients of ecological interactions. We end the paper with a
discussion on the limits and perspectives of this approach.

2 A class of in situ prioritization problems

Consider an ecosystem with three species. To each species i, i = 1, 2, 3, is at-
tached a survival probability Pi that, because of ecological interactions3, partly
depends on the survival probabilities of the two other species Pj , with j 6= i,
and partly on the protection effort it receives, xi ∈ {0, x}. The efforts consid-
ered in this paper are as simple as possible, of a binary nature, i.e. a species
is protected (xi = x) or not (xi = 0); and the entire available budget is just
enough to cover the protection of one species, no more, no less. Protection plans
for two or three species at the same time are not affordable. Without being too
specific for the moment - more details will be given in the following sections -
if X stands for a 3-dimensional vector of efforts, with components xi, and P
is the vector of linearly interdependent survival probabilities, with components
Pi, then the link between efforts and probabilities is a 3-dimensional vector of
functions P (X).

We compare conservation effort plans regarding to how well they perform
from the perspective of indices of expected biodiversity. We shall invoke al-
ternatively two different indices of expected biodiversity: Weitzman’s index,
noted W (P), and Rao’s index, R (P). Both belong to the family of expected
diversity measures aggregating dissimilarities between species. Both combine
in different ways: i) species survival probability, and ii) some measure of dis-
similarities between species. Given the link between interdependent probabili-
ties and efforts, P (X), we can then express in situ expected diversity indices,
W (X) ≡W (P (X)) , and R (X) ≡ R (P (X)) . Under this background, the orig-
inality of the present paper is to explore and compare optimal in situ protection
plans. Put differently, we solve the programs maxXW (X) and maxXR (X) and
compare their respective outcomes.

to study the role of dissimilarities on the results. At least three species are needed for that
purpose.

3The present paper belongs to a recent trend in the literature that tries to take into account
ecological interactions, via the modelling of interdependent probabilities (Baumgartner, 2004,
van der Heide, van den Bergh and van Ierland, 2005, Simanier 2008).
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Now let us enter deeper into details about P,W,R and X.

2.1 Interdependent survival probabilities of species

In the absence of ecological interactions and protection policies, each species i
has an autonomous survival probability qi ∈ [0, 1] , i = 1, 2, 3. In order to take
into account the ecological interactions and the protection efforts put in place,
those raw data have to be modified to arrive at interdependent survival prob-
abilities, denoted Pi ∈

[
P i, P i

]
, i = 1, 2, 3. We assume these probabilities are

linear functions of the protection efforts xi , i = 1, 2, 3, measured in terms of
probability variations, and of numbers rij ≡ ∂Pi/∂Pj , i 6= j representing the
marginal ecological impact of species j on the survival probability of species
i. We assume |rij | < 1, i.e. a variation in probability Pj has a less than pro-
portional impact on Pi. Overall, the system of interdependent probabilities of
survival for three species is as follows: P1 = q1 + x1 + r12P2 + r13P3

P2 = q2 + x2 + r21P1 + r23P3

P3 = q3 + x3 + r31P1 + r32P2

. (1)

For practicality, let us define the following vectors and matrices, denoted in bold
characters:

Q ≡

 q1
q2
q3

 , R ≡

 0 r12 r13
r21 0 r23
r31 r32 0

 , I ≡

 1 0 0
0 1 0
0 0 1

 ,

P ≡

 P1

P2

P3

 , P ≡

 P 1

P 2

P 3

 , P ≡

 P 1

P 2

P 3

 , X ≡

 x1
x2
x3

 .

In matrix form, the system (1) of probabilities reads as:

P = Q + X + R ∗P. (2)

Under the following assumption :

r23r32 + r12r21 + r13r31 + r12r31r23 + r21r13r32 < 1 ,

the system (2) can be solved4 to give:

P = [I−R]
−1 ∗ (Q + X) . (3)

4This is a sufficent condition for solvability. The necessary condition is:

r23r32 + r12r21 + r13r31 + r12r31r23 + r21r13r32 6= 1 .

We use the sufficient condition instead of the necessary condition because it leads to a more
natural dependence of probabilities with regards to the model parameters. See in Appendix
A the expressions for P1 (X) , P2 (X) and P3 (X).

Besides, one must ensure that the result is between 0 and 1. Two positions are possible
on this issue: 1) to assume that, in applications the estimates one can make of the model
parameters naturally guarantee this condition, 2) identify an upper bound for conservation
efforts that guarantees this property. An algorithm exists for this purpose. It is available from
the authors on request.
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Thus, a particular protection plan X induces a particular vector of survival
probabilities. Let P (X) ≡ [I−R]

−1∗(Q + X) refers to the affine mapping from
efforts into probabilities, i.e. the expression of the survival probability system
as a function of efforts. P (X) is a vector, each element of which can be given
explicitly (see Appendix A). Survival probabilities without protection policies
are therefore:

P = P (0 ∗ ι) , (4)

where ι is a three-dimensional vector with all components equal to 1, and there-
fore 0 ∗ ι is a vector made of 3 zeroes. In the absence of ecological interactions,
[I−R]

−1
is the identity matrix, and the bounds on probabilities are P = Q

and P = P + x ∗ ι = Q+x ∗ ι.

2.2 Species dissimilarities

Species are also characterized by their dissimilarities, which at a general level
can be described as pairwise distances between any two species. Those dis-
tances can be given different contents. They can measure genetic distances by
means of DNA-DNA hybridization (as in Krajewski, 1989, Caccone and Pow-
ell, 1989). Another possibility, used in phylogenetics, is to conceive species as
terminal nodes in a tree structure. Pairwise dissimilarities are then given by ad-
equate branch lengths (Faith, 1992, 1994). All these dissimilarity metrics have
in common to capture and measure the intuitive notion of “differences among
biological entities” (Wood, 2000). In order to fix ideas, it is here useful to re-
fer to the library metaphor as in Weitzman (1998), under which each species
is understood as a library, that is a collection of books. And a book itself is
a valuable piece of information. Hence, the dissimilarity or distance between
species i and j is measured by the number of books present in i but not in j.
Dissimilarities, or differences in books, do not influence directly each species
survival probabilities, but enters in a different way in the measure provided by
biodiversity indices.

We will assume that distances among species are ultrametric5, meaning that
the two greatest pairwise distances in our group of three species are equal. The

5There are two reasons to focus on the ultrametric case.
Firstly, when applied to a non ultrametric framework Rao’s index may lead to unpalatable

diversity rankings, where only few species are retained for conservation. In an extreme example,
with one variable measured as source of distinctiveness among species, quadratic entropy is
equal to the variance and retains species showing the extreme values of this variable (Pavoine
et al., 2004, 2005). By contrast, in the ultrametric case Rao’s index reaches its maximum
value when all species are granted some protection.

Secondly, Weitzman (1992) constructed his diversity function using a complex iterative pro-
cess. But this calculation boils down to the simple computation of the expected length of the
evolutionary tree when distances are ultrametric. In addition, Solow and Polasky (1994) shows
that apart from ultrametric distances, Weitzman’s index is not strictly monotone relatively
to distances used. Indeed, in a three species case (which is the case developed in this pa-
per), Weitzman’s measure of diversity is equivalent to the sum of the largest and the smallest
distance. It is thus insensitive to any modification of the intermediary distance.
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ultrametric property is possessed by all dissimilarities which can be directly as-
sociated with rooted trees in which all the end nodes are equidistant from the
root of the tree (Van de Peer, 2003). Ultrametric distances provides an inter-
esting framework for comparing both indices outcomes while keeping matters
as simple as possible, especially as we introduce potential interactions among
species of this tree.

In the three species case, ultrametric dissimilarities translate into a phyloge-
netic tree representation with proportional branches as shown in Figure 1 below,
and where:

Figure 1: An ultrametric tree with three species

• Ei, is the number of “books” specific to species (library) i and only species
i (with i = 1, 2, 3),
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• J, is the number of “books” species 1 and 2 have in common,

• G, is the number of “books” common to 1, 2 and 3 (later we set G arbi-
trarily close to zero, and thus species 3 has no common books with species
1 and 2).

The number of “books” contained in libraries 1, 2 and 3 are:

M1 = E1 + J +G ,

M2 = E2 + J +G,

M3 = E3 +G.

Denoting dij the distance between species i and j, we obtain the following
values for our distances between species 1, 2 and 3 in the ultrametric case :

d12 = d21 = E1 = E2 = E,

d13 = d31 = d23 = d32 = E2 + J = E1 + J = E3

Notice that those distances are symmetric, dij = dji , ∀i, j. And distances
between three species i, k, l are ultrametric if and only if for all i, k, l we can
verify :

dkl ≤ max (dki, dil) .

When J = 0 there are no common genes between species 1 and 2. Thus
we get back to a case very similar to the two-species case, in which the tree
representation is as in Figure 2.

Figure 2: An ultrametric tree with three species and J = 0

In this setting where J = 0, ecological interactions and survival probabili-
ties are the only parameters discriminating the three species. Indeed, the three
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species are here perfectly substitutable from the point of view of their dissimilar-
ities. As J raises away from 0, we are able to represent the role of dissimilarity
among species for both indicators since E1 = E2 6= E3.

2.3 Definitions of in situ indices for biodiversity

The indices used in this paper are built on the space of ecological and dissimi-
larity parameters presented so far. Denote Ω this space, and

e = (Q,R,x, E, J,G) ∈ Ω ,

a particular element of this parameters space.

Weitzman’s index for in situ protection When applied in our three-
species ecosystem with ultrametric distances, Weitzman’s expected diversity
index is the expected length of the evolutionary tree depicted earlier. More
precisely:

• If no species disappears, an event that occurs with probability P1P2P3,
the length of the total tree, or the total number of different books if the
three libraries are available, is E1 + E2 + J + E3 +G,

• if only species 1 survives, an event occurring with probability (1− P2) (1− P3)P1,
the length of the tree is E1 + J +G,

• if only species 1 and 2 survives, an event with probability P1P2 (1− P3),
the length of the tree is E1 + E2 + J +G,

• and so on...

Therefore, the expected length of the tree is:

W (P) = P1P2P3 (E1 + E2 + J + E3 +G) + (1− P2) (1− P3)P1 (E1 + J +G)

+ (1− P1) (1− P3)P2 (E2 + J +G) + (1− P1) (1− P2)P3 (E3 +G)

+ P1P2 (1− P3) (E1 + E2 + J +G) + P1P3 (1− P2) (E1 + J + E3 +G)

+ P2P3 (1− P1) (E2 + J + E3 +G) .

Given that G is arbitrarily close to zero and can be neglected, after tedious
algebra Weitzman’s expected diversity boils down to a simple expression:

W (P) = P1 (E1 + J) + P2 (E2 + J) + P3E3 − P1P2J

= (P1 + P2 + P3) (E + J)− P1P2J.

Since the goal is to rank protection priorities while taking into account eco-
logical interactions, the above index has to be modified in order to incorporate

8



the later information. We obtain the desired qualification by plugging the rela-
tion P (X) between efforts and probabilities into W (P). This results in what
may be further called Weitzman’s in situ biodiversity index :

W (X) ≡ W ◦ P (X) ,

= [P1 (X) + P2 (X) + P3 (X)] (E + J)− P1 (X)P2 (X) J . (5)

As shown in Appendix B, we can rewrite more synthetically this expression
under a matrix form:

We (X) = XT ∗AW
e ∗X + XT ∗BW

e + cW , (6)

where XT is the transposed vector of X.
In this formula, Aw

e and Bw
e are, respectively, a matrix and a vector whose

components are complex combinations of parameters included in the element
e ∈ Ω. Details are given in Appendix B. Note that if the vector e changes, so
does expression (6). Hence we explicitly mention this dependence via subscripts,
as in the notations We,A

W
e ,B

W
e .

Rao’s index for in situ protection Rao’s index is the expected distance

between any two species randomly drawn from a given set of species. In our
three-species ecosystem it is:

R (P) = P1P2 (E1 + E2) + P1P3 (E1 + E3 + J) + P2P3 (E2 + E3 + J) ,

= 2P1P2E + 2P1P3 (E + J) + 2P2P3 (E + J) ,

= 2 [(P1P2 + P1P3 + P2P3)E + (P1 + P2)P3J ] .

Considering again the relation P (X) between efforts and probabilities, Rao’s in
situ biodiversity index is:

R (X) ≡ R(P (X)) = 2

[
(P1 (X)P2 (X) + P1 (X)P3 (X) + P2 (X)P3 (X))E

+ (P1 (X) + P2 (X))P3 (X) J

]
.

(7)
In Appendix C it is shown that this index boils down to a simple matrix ex-
pression:

Re (X) = XT ∗AR
e ∗X + XT ∗BR

e + cR , (8)

where AR
e and BR

e are, respectively, a matrix and a vector made of combinations
of parameters. The notation emphasizes again a dependence with respect to the
vector e of parameters.

9



2.4 Simple in situ protection projects: necessary and suf-

ficient conditions for optimality

Our purpose is to compare three different extremely simple policies: preserving
either species 1, or 2 or 3, referred to as

• Project 1:
XT

1 = [x, 0, 0] ,

• Project 2:
XT

2 = [0, x, 0] ,

• Project 3:
XT

3 = [0, 0, x] .

Ranking of projects according to Weitzman’s index: For a given vector

e of parameters, project 1 is preferred over project 2 and project 3, according
to Weitzman’s in situ index for protection iff:

We (X1) ≥ max {We (X2) ,We (X3)} . (9)

The formal framework developed so far allows to express the necessary and
sufficient condition on parameters for this ranking to hold:

[x, 0, 0]∗AW
e ∗

 x
0
0

+[x, 0, 0]∗BW
e ≥ max



[0, x, 0] ∗AW
e ∗

 0
x
0

+ [0, x, 0] ∗BW
e ;

[0, 0, x] ∗AW
e ∗

 0
0
x

+ [0, 0, x] ∗BW
e


.

Ranking of projects according to Rao’s index: If Rao’s criterion is used
to rank priorities, then project 1 is favored iff the value of Rao’s in situ index
is higher than its value when preserving species 2 or species 3.:

Re (X1) ≥ max {Re (X2) ,Re (X3)} , (10)

or equivalently:

[x, 0, 0]∗AR
e ∗

 x
0
0

+[x, 0, 0]∗BR
e > max



[0, x, 0] ∗AR
e ∗

 0
x
0

+ [0, x, 0] ∗BR
e ;

[0, 0, x] ∗AR
e ∗

 0
0
x

+ [0, 0, x] ∗BR
e


.
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Mutatis mutandis, the same kind of formal statements can indicate the nec-
essary and sufficient conditions on parameters for project 2 or 3 to be selected
by each criterion. And we are also in position to study more in depth special
cases, for the particular interest they convey and/or because their simplicity is
helpful to grasp the logic of the two in situ rankings.

3 Disentangling the underlying logics of in-situ
priorities

If a species is favored, of course this is because it differs from the other ones in
some way. Heterogeneity is the key that explains rankings. This section ranks the
policies under several configurations of parameters ej , chosen in order to isolate
the role played by heterogeneity in particular factors. It turns out that the
two indices deliver opposite conservation recommendations when heterogeneity
comes from autonomous survival probabilities, whereas they largely agree when
heterogeneity comes from dissimilarities and ecological interactions.

From a technical point of view, for a given vector of parameters ej , the entire
difficulty boils down to the computation of differences such as:

Wej (Xk)−Wej (Xl) ,

Rej (Xk)−Rej (Xl) ,

for k, l = 1, 2, 3. Then, to achieve the desired conclusions, it remains to ana-
lyze the sign of these differences. Although their calculus presents no conceptual
difficulties, and always ends up in closed-form expressions, the computational
steps are tedious. They have been performed by a software for symbolic calcu-
lations (Xcas). Our Xcas spreadsheets are available on request, and an example
is given in Appendix D.

3.1 When the indices disagree

3.1.1 The influence of autonomous survival probabilities (Q)

Let us first examine the case in which autonomous survival probabilities are the
unique source of heterogeneity among species, and look at the ranking estab-
lished by both indicators in this specific situation.

Consider a class of conservation problems summarized by the list of param-
eters eq, in which J ≥ 0, r12 = r21 = r, r13 = r31 = r23 = r32 = 0, and q1 6= q2.
The vector Q and the matrix R become:

Qeq ≡

 q1
q2
0

 , Req ≡

 0 r 0
r 0 0
0 0 0

 .
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Actually, if we focus on the ranking between species 1 and 2, the model boils
down to a two-species ultrametric case. Tedious computations arrive at:

Weq (X1)−Weq (X2) =
Jx

(1 + r)
2 (q1 − q2) , (11)

Req (X1)−Req (X2) =
2Ex

(1 + r)
2 (q2 − q1) . (12)

So, Weitzman’s ranking of the two policies is sensitive to J − featuring indiffer-
ence when J = 0 − whereas Rao’s ranking is not. Assuming J > 0, from (11)
and (12) we can deduce:

Proposition 1 Let the class of conservation problems be given by the list of
parameters eq and let J > 0. In this case, the two diversity indices deliver
opposite rankings:

• Weitzman’s in-situ ranking preserves the “strongest” species, i.e.

Weq (X1) RWeq (X2) ⇔ q1 R q2 ,

• whereas Rao’s in situ ranking preserves the “weakest” species, i.e.

Req (X1) R Req (X2) ⇔ q2 R q1 .

Ecological interactions have little importance in this first example, since both
species are placed in an identical ecological role. Results are simply consistent
with the logics embodied in the indicators alone. Weitzman’ seeks the longest
expected tree and only one species can be protected. If either species 1 or species
2 goes extinct, E ”books” are lost but E + J are safe. It is wise then to affect
protection resources on the species which is initially the most safe, unless J = 0
because in this case, clearly, Weitzman’s criterion is indifferent regarding which
species should be afforded protection efforts. For Rao, however, the question is:
how to choose the combination of probabilities leading to the highest expected
dissimilarity? Put more precisely, in this two-species problem Rao seeks the
largest product P1 (X)P2 (X). This is best achieved when the policy helps the
weakest species.

3.1.2 Robustness: three species

Those results are somehow robust to the introduction of a third and similar
species into the framework, provided that the only source of heterogeneity
among species is still their autonomous survival probability. To achieve this,
we must keep the same distances between species 1, 2 and 3, and thus J = 0
(otherwise, heterogeneity also goes through dissimilarities) and G = 0, and
where q3 can take any arbitrary value. That is, we have to consider a slightly
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different list of parameters e′q, and perform again all the computations. It turns
out that:

We′q
(X1)−We′q

(X2) =We′q
(X1)−We′q

(X3) = 0 ,

in other words, Weitzman’s criterion proves to be indifferent between the three
conservation policies. As for Rao’s index, one finds:

Re′q (X1)−Re′q (X2) =
2Ex

(r + 1)
2 (q2 − q1) ,

Re′q (X1)−Re′q (X3) =
2Ex

(r + 1)
2 (q3 − q1) ,

Re′q (X2)−Re′q (X3) =
2Ex

(r + 1)
2 (q3 − q2) ,

from which one directly deduces that the weakest species is the highest in the
ranking.

In a next step, we will examine the role of dissimilarity, discarding any
heterogeneity in terms of autonomous survival probabilities and species inter-
actions.

3.2 When the indices agree

3.2.1 The influence of dissimilarity (E3 6= E1 = E2)

Dissimilarities between species play a different role depending on the indicators.
In a two-species and ultrametric framework, such dissimilarities are necessar-
ily identical (E1 = E2 = E) and cannot lead by themselves to differences in
rankings (species are perfectly substitutable from the point of view of their dis-
similarity). The role of dissimilarity only appears as a third species is added
into the framework, and provided that the number of common genes between
species 1 and 2 gets away from zero (J > 0) ( figure 1). Indeed in this case,
E1 = E2 = E and E3 6= E since E3 = E + J .

Consider the parameter vector eJ in which q1 = q2 = q3 = q > 0 and
rij = 0,∀i 6= j. In the absence of ecological interactions and in the ultrametric
case where E1 = E2 = E,E3 = E + J , the matrices Q and R become:

QeJ ≡

 q
q
q

 , ReJ ≡

 0 0 0
0 0 0
0 0 0

 .

Key pieces of information are:

WeJ (X1)−WeJ (X2) = 0 ,

WeJ (X3)−WeJ (X1) =WeJ (X3)−WeJ (X2) = Jqx > 0 , (since J > 0, x > 0),

ReJ (X1)−ReJ (X2) = 0 ,

ReJ (X3)−ReJ (X1) = ReJ (X3)−ReJ (X2) = 2Jqx > 0.

And a conclusion immediately appears:
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Proposition 2 Let the class of conservation problems be given by the list of
parameters eJ . In this three-species ecosystem where dissimilarities are the only
source of heterogeneity among species, the two diversity indices deliver the same
rankings:

• They are indifferent between preserving the two least (and equivalently)
dissimilar species (species 1 or 2).

• They recommend to preserve the most dissimilar species (species 3).

This result is intuitive. If only species 1 (or 2) disappears, there remains
2 (E + J) “books”. But if species 3 only disappears, the number of safe “books”
falls down to a lower 2E + J . However, in Section 4.1 it is proved that the
property emphasized in Proposition 2 is fragile, more precisely it holds only when
ecological interactions are not too strong (even if all those ecological interactions
are not a source of heterogeneity).

3.2.2 The influence of ecological interactions

This dimension carries with it all the complexity of the web of life. For instance,
the interactions between two species can be considered as unilateral, e.g. species
1 impacts species 2 but not vice versa, or bilateral, e.g. species 1 impacts
species 2 and species 2 impacts species 1. There are 22 = 4 possibilities to
consider. But as soon as one contemplates a three-species ecosystem, there are
33 = 27 potential pairwise interactions between species (not even speaking of
the additional difficulty linked to the intensity of the ecological interactions).
The number of possibilities quickly explodes with the number of species. In
face of this complexity, our strategy will be to focus on two illustrative cases
of particular interest. And, to simplify matters, we assume away any role for
dissimilarities, i.e. G = 0 and J = 0.

Ecological interactions in a two-species ecosystem Consider a situation
with two interacting species, 1 and 2 (the third species doesn’t interact, neither
with species 1 nor with species 2). Consider a parameter vector eR2 where
r12 6= r21, all the other rij being equal to zero, and q1 = q2 = q, q3 = 0. The
matrices Q and R become :

QeR2
≡

 q
q
0

 , ReR2
≡

 0 r12 0
r21 0 0
0 0 0

 .

The computation of the biodiversity criterions reveals:

WeR2
(X1)−WeR2

(X2) =
Ex

1− r12r21
(r21 − r12) ,

ReR2
(X1)−ReR2

(X2) =
2Ex (2q + x)

(1− r12r21)
2 (r21 − r12) .
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Thus, we can establish:

Proposition 3 Let the class of conservation problems be given by the list of
parameters eR2. The two criteria deliver the same ranking of policies X1 and
X2. They recommend to preserve the species with the largest marginal benefit
on the survival of the other species:

WeR2
(X1) T WeR2

(X2) ⇔ r21 T r12 ,

ReR2
(X1) T ReR2

(X2) ⇔ r21 T r12 .

The two criteria recommend to preserve the species with the largest marginal
benefit on the survival probability of the other species. In fact, this is as if
the criteria aimed at maximizing the survival probability of the ecosystem as a
whole. This result can be illustrated using the principal categories of interactions
between our two species.

i) Predation: species 2, a predator, feeds on species 1, its prey. By definition we
have r21 > 0 and r12 < 0. Both criteria recommend to preserve the prey -
here species 1 - since its interaction coefficient is larger ( r21 > 0 > r12).

ii) Mutualism: species 1 and 2 impact positively on each other. By definition
we have r12 > 0 and r21 > 0. Both criteria recommend to preserve the
species with the largest marginal benefit on the survival probability of the
other species.

iii) Competition: species 1 and 2 have to share a common resource in the same
living area that cannot fully support both populations. By definition we
have r12 < 0 and r21 < 0. Both criteria recommend to preserve the species
with the lowest negative impact on the other species.

Ecological interactions in a three-species ecosystem As a third species

is introduced, the impact of interactions on criteria recommendations is more
tricky to study as there is an interplay of effects due to combinations of inter-
relations. In order to illustrate this complexity we consider a simple ecosystem
made of three interacting species characterized by unilateral interactions. We
assume a single species, say species 1, impacts the two other ones but these two
impact neither each other nor species 1. A possible illustration of this configu-
ration is a predator-prey in which species 1 a predator negatively impacts two
preys, species 2 and 3, but does not need them to survive, because other foods
are available to him.

Define a vector eR3 such that E1 = E2 = E3 = E, J = 0, q1 = q2 = q3 = q
and all interaction coefficients beside r21and r31 are null. The only distinction
between the three species is how they interact. Matrices Q and R become :

QeR3
≡

 q
q
q

 , ReR3
≡

 0 0 0
r21 0 0
r31 0 0

 .
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And relative performances of policies are measured by:

WeR3
(X1)−WeR3

(X2) = Ex(r21 + r31) , (13)

WeR3
(X1)−WeR3

(X3) = Ex(r21 + r31) , (14)

WeR3
(X2)−WeR3

(X3) = 0 , (15)

ReR3
(X1)−ReR3

(X2) = 2Ex

[
r21r31 (2q + x) + r21 (3q + x)

+r31 (2q + x)

]
, (16)

ReR3
(X1)−ReR3

(X3) = 2Ex

[
r21r31 (2q + x) + r21 (2q + x)

+r31 (3q + x)

]
, (17)

ReR3
(X2)−ReR3

(X3) = 2Exq (r31 − r21) . (18)

Weitzman’s criterion recommends to preserve species 1 rather than species
2 and 3 iff:

WeR3
(X1) > max(WeR3

(X2) ,WeR3
(X3)).

The above expressions (13) and (14) show that this is true iff r21 + r31 > 0 ,
that is if the cumulated impact of species 1 on the survival probability of the
two other species is larger than the cumulated impact of these species on all
other species (which is null here as we assume r12 = r13 = r23 = r32 = 0). This
result somehow confirms Proposition 3 as it recommends to put conservation
efforts on the species which is the more beneficial (or the less detrimental) to
the survival of the species composing the ecosystem.

Similarly, Rao’s criterion recommends to preserve species 1 rather than
species 2 and 3 when:

ReR3
(X1) > max(ReR3

(X2) ,ReR3
(X3)).

From expressions (16) and (17), this is true iff r21r31 (2q + x) + r31 (2q + x) +
r21 (3q + x) > 0 and r21r31 (2q + x) + r21 (2q + x) + r31 (3q + x) > 0. In case
species 1 impacts positively species 2 and 3, preservation effort is put on species
1. Otherwise, interpreting the criterion is more tricky as one of the above in-
equality may not hold. In such a case, effort is then put on the species which is
the more (negatively) impacted by species 1. We find again a confirmation of
the result forwarded by Proposition 3. However, the decision rule depicted here
is not anymore a simple additive formula but a combination of additive and
multiplicative components (r21r31) making interpretation fastidious. Adding
interrelations or species in the analysis increases complexity as it increases com-
plementarities and multiplicative effects.

4 Interactions between effects

4.1 Autonomous survival probabilities and dissimilarities

Now let us have a look at the combination of autonomous survival probabilities
and dissimilarity. Consider a slight departure of parameters configuration eq

16



of Section 3.1.1. In the new list of parameters eqJ , the unique difference comes
from parameter J which is not null anymore, J > 0, and rij = r, when i 6= j.
The vector Q and the matrix R are:

QeqJ ≡

 q1
q2
q3

 , ReqJ ≡

 0 r r
r 0 r
r r 0

 .

And the relative performance of policies can be deduced from:

WeqJ (X1)−WeqJ (X2) =
Jx

(1 + r)
2 (q1 − q2) , (19)

WeqJ (X1)−WeqJ (X3) =
Jx [r (q1 + q3 + x) + q2 (1− r)]

(1 + r)
2

(2r − 1)
, (20)

WeqJ (X2)−WeqJ (X3) =
Jx [r (q2 + q3 + x) + q1 (1− r)]

(1 + r)
2

(2r − 1)
, (21)

ReqJ (X1)−ReqJ (X2) =
2Ex

(1 + r)
2 (q2 − q1) , (22)

ReqJ (X1)−ReqJ (X3) =
2Jx [r (3q3 − q1 − q2) + rx− (q3 − q1 − q2)]

(1 + r)
2

(2r − 1)

+
2Ex

(1 + r)
2 (q3 − q1) , (23)

ReqJ (X2)−ReqJ (X3) =
2Jx [r (3q3 − q1 − q2) + rx− (q3 − q1 − q2)]

(r + 1)
2

(2r − 1)

+
2Ex

(1 + r)
2 (q3 − q2) . (24)

When the choice is between species 1 and 2, one finds again the proper-
ties that Weitzman’s logic promotes robustness, whereas Rao’s index opts for
weakness.

The conclusions are more subtle when the third species is at stake, and
they depend on the importance of ecological interactions: Weitzman prefers
species 3 only if r < 1/26. In other words, dissimilarity prevails when ecological
interactions are not too strong. And the conclusion is even more complex when
it comes to Rao’s index. Whatever the choice, it is reversed when r crosses the
value 1/2.

Now, as a particular case let the autonomous probabilities of survival be all

6The value r = 1/2 is forbidden. For this paricular value, the system of interdependent
probabilities (2) cannot be solved.
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identical. The relative performances of policies (19) to (24) simplify to:

We′qJ
(X1)−We′qJ

(X2) = 0 , (25)

We′qJ
(X1)−We′qJ

(X3) =
Jx [r (q + x) + q]

(1 + r)
2

(2r − 1)
, (26)

We′qJ
(X2)−We′qJ

(X3) =
Jx [r (q + x) + q]

(1 + r)
2

(2r − 1)
, (27)

Re′qJ (X1)−Re′qJ (X2) = 0 , (28)

Re′qJ (X1)−Re′qJ (X3) =
2Jx [r (q + x) + q]

(1 + r)
2

(2r − 1)
, (29)

Re′qJ (X2)−Re′qJ (X3) =
2Jx [r (q + x) + q]

(1 + r)
2

(2r − 1)
. (30)

There is indifference between policies 1 and 2, whatever the index used as an
objective function. And the most dissimilar species, species 3, is always granted
priority when r < 1/2, for both indices. But rankings are reversed if ecological
interactions are too strong (r > 1/2).

4.2 Ecological interactions and dissimilarities

Now, combine the heterogeneity of ecological interactions and dissimilarities.
Consider a parameters configuration eRJ in which J > 0, and rij = 0, except
for r12 and r21 that can be arbitrarily chosen. The vector Q and the matrix R
are:

QeRJ
≡

 q
q
0

 , ReRJ
≡

 0 r12 0
r21 0 0
0 0 0

 .
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And the relative performance of policies can be deduced from:

WeRJ
(X1)−WeRJ

(X2) = x
(E + J) (1− r12r21)− J (2q + x)

(1− r12r21)
2 (r21 − r12) , (31)

WeRJ
(X1)−WeRJ

(X3) = x (E + J)

(
1 + r12 − r12r21 − r212r21

)
r21

(1− r12r21)
2 (32)

−xJ (r12q + 2q + x) r21 + q

(1− r12r21)
2 , (33)

WeRJ
(X2)−WeRJ

(X3) = x (E + J)

(
1 + r21 − r12r21 − r12r221

)
r12

(1− r12r21)
2 (34)

−xJ (r21q + 2q + x) r12 + q

(1− r12r21)
2 , (35)

ReRJ
(X1)−ReRJ

(X2) =
2Ex(2q + x)

(1− r12r21)2
(r21 − r12) , (36)

ReRJ
(X1)−ReRJ

(X3) = 2x (E + J)
q
(
r12r21

2 + r12
2r21 + 2r12r21 − r12 − 1

)
(1− r12r21)

2 (37)

+2x
Er21 (qr12 + q + x)− Jq (1 + r21)

(1− r12r21)
2 , (38)

ReRJ
(X2)−ReRJ

(X3) = 2x (E + J)
q
[
r12r21

2 + r12
2r21 + 2r12r21 − r21 − 1

]
(1− r12r21)

2 (39)

+2x
Er12 (qr21 + q + x)− Jq (1 + r12)

(1− r12r21)
2 . (40)

When the comparison only involves species 1 and 2, that are perfectly substi-
tutable from the point of view of their dissimilarities, and for low values of J the
conclusion is clear-cut: both indices favor the species with the largest ecological
impact. When species 3 is at stake, conclusions are ambiguous. In order to fix
ideas, assume that all ecological impacts are non-negative (r12 ≥ 0, r21 ≥ 0).
Then, for example, Both Weitzman and Rao prefer species 3 over species 1 (or
species 2) when the ecological impact of the latter is sufficiently weak. But in-
dices may also diverge. For instance, when the autonomous survival probability
q is sufficiently close to 0, Rao clearly drops species 3 in favor of any of the
other two. A conclusion that cannot be drawn from Weitzman’s index under
the same condition on q.

4.3 Autonomous survival probabilities and ecological in-
teractions

Finally, combine the heterogeneity of autonomous survival probabilities with
heterogenous ecological interactions. Consider a parameters configuration eqR
in which J ≥ 0, r12 and r21 can take any values, and all the other rij are null.
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The vector Q and the matrix R are:

QeqR ≡

 q1
q2
0

 , ReqR ≡

 0 r12 0
r21 0 0
0 0 0

 .

Computations for rankings of species 1 and 2 arrive at:

WeqR (X1)−WeqR (X2) = J
x (1 + r12r21)

(1− r12r21)
2 (q1 − q2)

+ J
2x

(1− r12r21)
2 (q2r12 − q1r21) (41)

+
x [(E + J) (1− r12r21)− Jx]

(1− r12r21)
2 (r21 − r12) ,

ReqR (X1)−ReqR (X2) =
2Ex (1 + r12r21)

(1− r12r21)
2 (q2 − q1)

− 4Ex

(1− r12r21)
2 (q2r12 − q1r21) (42)

+
2Ex2

(1− r12r21)
2 (r21 − r12) .

Of course, when r21 = r12 = r, one finds again the results of Section 3.1.1.
Recall that Weitzman selects the strongest species - with the largest qi - for
protection, whereas Rao prefers the weakest species (Proposition 1).

As soon as r21 6= r12, these results have to be qualified. They are now more
complex functions of, not only the qis, but also the rijs. In order to grasp these
qualifications, pretend that species 1 is the strongest (q1 > q2). We know from
Proposition 1 that, when r21 = r12 = r, Weitzman (respectively Rao) suggests
species 1 (resp. species 2) should be protected. Now, imagine that r21 = 0 < r12.
On this basis alone, if q1 and q2 were identical, both Weitzman and Rao would
prefer species 2 (see Proposition 3). But if q1 > q2 , from expressions (41) and
(42) Rao clearly prefers species 2, whereas Weitzman’s conclusion is ambiguous.
Eventually its answer reveals a trade-off between two opposite effects, and this
trade-off depends, among other things, on the importance of J , the number of
common ”genes” between species 1 and 2.

Under different circumstances, Rao’s ranking can also be ambiguous. Assume
that r21 = 0 < r12 and q1 < q2. Then Weitzman clearly prefers species 2.
But Rao’s ranking embodies two opposite logics, one in favor of species 2 (the
more ecologically beneficial), and the other in favor of species 1 (the weakest
species).The final choice will reveal Rao’s trade-off between those two opposite
forces. And, as can be deduced from expression (42), contrary to Weitzman’s
trade-off it does not depend on J .
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5 Conclusion

This paper modifies Weitzman’s and Rao’s biodiversity indices in order to incor-
porate information about ecological interactions, so that they are more suitable
for in situ protection plans. Using alternatively the qualified Weitzman’s and
Rao’s indices, a simple framework allows us to analyze and compare the cor-
responding best conservation plans. And we can disentangle, for each in situ
index of biodiversity, the role played by three drivers: i) autonomous survival
probabilities Q, ii) ecological interaction R and, iii) dissimilarity J , each being
considered in strict isolation or in combinations.

There are three important outcomes:

1. the two indices, stemming from different academic backgrounds, clearly
combine the pieces of information Q, R and J in different ways to mea-
sure biodiversity. As a consequence, the two indices do not systematically
deliver the same conservation recommendations. They disagree when the
difference between species comes from autonomous survival probabilities,
whereas they largely agree when heterogeneity comes from dissimilarities
and/or ecological interactions.

2. When ecological interactions matters for the ranking, the favored species is
the one that sustains the best ecological chain. In general, the introduction
of ecological interactions among more than two species can lead to complex
conclusions.

3. When the three drivers are combined, the policy advocated by each index
reveals a specific trade-off between Q, R and J .

From a practical point of view, an interesting follow-up to this research would
be to consider any number of species, among which only a subset can be offered
protection. The analytical understanding of the rankings will be lost, but this
step does not seem to pose any computer problems.

At a more fundamental level, a reflection should be initiated on the objective
of conservation policies. Given its inherent construction, each biodiversity index
is a measure of a certain vision of biodiversity. It is interesting to know that,
other things equal, there is a tendency for Weitzman’s index to favor robust
species, whereas Rao’s index cares more about fragile species. What is needed
now in order to arrive at a unique solution is a criterion to select among indices.
The present paper shows that such a criterion will decide upon which trade-off
should be made between robust and fragile species.

Appendix

A The system of interdependent probabilities

21



Solving the system (2) of ecological interactions for P1, P2 and P3 as functions

of X = (x1, x2, x3)
T

gives :

P1 (X) =
(q1 + x1) (1− r23r32) + (q2 + x2) (r12 + r13r32) + (q3 + x3) (r12r23 + r13)

1− r23r32 − r12r21 − r13r31 − r12r31r23 − r21r13r32
(43)

P2 (X) =
(q2 + x2) (1− r13r31) + (q1 + x1) (r21 + r31r23) + (q3 + x3) (r21r13 + r23)

1− r23r32 − r12r21 − r13r31 − r12r31r23 − r21r13r32
(44)

P3 (X) =
(q1 + x1) (r31 + r32r21) + (q2 + x2) (r12r31 + r32) + (q3 + x3) (1− r12r21)

1− r23r32 − r12r21 − r13r31 − r12r31r23 − r21r13r32
(45)

Probability of species 1 can be described as a combination of each species in-
trinsic survival probability augmented by protection effort, articulated through
direct and indirect interactions among species.

In vector notations, probabilities as functions of efforts are:

P (X) ≡

 P1 (X)
P2 (X)
P3 (X)

 = Λ ∗ (Q + X) .

B Weitzman’s criterion for in situ protection

In our three-species model, the expected diversity of the ecosystem according
to Weitzman’s criterion is:

W (P) = P1P2P3 (E1 + E2 + J + E3 +G) + (1− P2) (1− P3)P1 (E1 + J +G)

+ (1− P1) (1− P3)P2 (E2 + J +G) + (1− P1) (1− P2)P3 (E3 +G)

+ P1P2 (1− P3) (E1 + E2 + J +G) + P1P3 (1− P2) (E1 + J + E3 +G)

+ P2P3 (1− P1) (E2 + J + E3 +G) .

Since G is close to zero, this expression simplifies to

W = P1P2P3 (E1 + E2 + J + E3) + (1− P2) (1− P3)P1 (E1 + J)

+ (1− P1) (1− P3)P2 (E2 + J) + (1− P1) (1− P2)P3E3

+ P1P2 (1− P3) (E1 + E2 + J) + P1P3 (1− P2) (E1 + J + E3)

+ P2P3 (1− P1) (E2 + J + E3) .

Developing and simplifying, Weitzman’s expected diversity boils down to:

W (P) = P1 (E1 + J) + P2 (E2 + J) + P3E3 − P1P2J .
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Now remember that probabilities are functions of efforts, P (X) . Therefore,
Weitzman’s expected diversity as a function of efforts is:

W (X) ≡W (P (X)) ,

= P1 (X) (E1 + J) + P2 (X) (E2 + J) + P3 (X)E3 − P1 (X)P2 (X) J .

Recall finally that, because distances are ultrametric, E1 = E2 = E and E3 =
E + J. Therefore:

W (X) = [P1 (X) + P2 (X) + P3 (X)] (E + J)− P1 (X)P2 (X) J .

More precisely, using (43), (44) and (45):

W (X) =
1

φ


(E + J)

 (q1 + x1) (1− r23r32) + (q2 + x2) (r12 + r13r32) + (q3 + x3) (r12r23 + r13)
+ (q2 + x2) (1− r13r31) + (q1 + x1) (r21 + r31r23) + (q3 + x3) (r21r13 + r23)
+ (q1 + x1) (r31 + r32r21) + (q2 + x2) (r12r31 + r32) + (q3 + x3) (1− r12r21)


−Jφ

 (q1 + x1) (1− r23r32)
+ (q2 + x2) (r12 + r13r32)
+ (q3 + x3) (r12r23 + r13)

 ∗
 (q2 + x2) (1− r13r31)

+ (q1 + x1) (r21 + r31r23)
+ (q3 + x3) (r21r13 + r23)




(46)

with φ = (1− r23r32 − r12r21 − r13r31 − r12r31r23 − r21r13r32)
2
.

We can rewrite this general form as follows:

W (X) =

{
aW11x

2
1 + aW22x

2
2 + aW33x

2
3 + aW12x1x2 + aW13x1x3 + aW23x2x3

+bW1 x1 + bW2 x2 + bW3 x3 + cW
(47)

where
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aw11 = − J

φ2
(1− r23r32) (r21 + r31r23) , aW22 = − J

φ2
(r12 + r13r32) (1− r13r31)

aW33 = − J

φ2
(r12r23 + r13) (r21r13 + r23)

aw12 =
−J
φ2

[(1− r23r32) (1− r13r31) + (r12 + r13r32) (r21 + r31r23)]

aW13 =
−J
φ2

[(1− r23r32) (r21r13 + r23) + (r12r23 + r13) (r21 + r31r23)]

aW23 = − J

φ2
[(r12 + r13r32) (r21r13 + r23) + (r12r23 + r13) (1− r13r31)]

bw1 =


(E + J) 1

φ [(1− r23r32) + (r21 + r31r23) + (r31 + r32r21)]

− J
φ2

 2q1 (1− r23r32) (r21 + r31r23)
+q2 ((1− r23r32) (1− r13r31) + (r12 + r13r32) (r21 + r31r23))

+q3 ((1− r23r32) (r21r13 + r23) + (r12r23 + r13) (r21 + r31r23))




bW2 =


(E + J) 1

φ [(r12 + r13r32) + (1− r13r31) + (r12r31 + r32)]

− J
φ2

 q1 ((1− r23r32) (1− r13r31) + (r12 + r13r32) (r21 + r31r23))
+2q2 (r12 + r13r32) (1− r13r31)

+q3 ((r12 + r13r32) (r21r13 + r23) + (r12r23 + r13) (1− r13r31))




bW3 =


(E + J) 1

φ [(r12r23 + r13) + (r21r13 + r23) + (1− r12r21)]

− J
φ2

 q1

(
(1− r23r32) (r21r13 + r23)

+ (r12r23 + r13) (r21 + r31r23)

)
+ q2

(
(r12 + r13r32) (r21r13 + r23)
+ (r12r23 + r13) (1− r13r31)

)
+2q3 (r12r23 + r13) (r21r13 + r23)




cW =



(E + J) 1
φ

 q1 (1− r23r32) + q2 (r12 + r13r32) + q3 (r12r23 + r13)
+q1 (r21 + r31r23) + q2 (1− r13r31) + q3 (r21r13 + r23)
+q1 (r31 + r32r21) + q2 (r12r31 + r32) + q3 (1− r12r21)



− J
φ2


q21 (1− r23r32) (r21 + r31r23)

+q22 (r12 + r13r32) (1− r13r31) + q23 (r12r23 + r13) (r21r13 + r23)
+q1q2 ((1− r23r32) (1− r13r31) + (r12 + r13r32) (r21 + r31r23))

+q1q3 ((1− r23r32) (r21r13 + r23) + (r12r23 + r13) (r21 + r31r23))
+q2q3 ((r12 + r13r32) (r21r13 + r23) + (r12r23 + r13) (1− r13r31))





Finally, a matrix form expression would be more compact than (47). Let us
define :

AW
e =

 aW11
1
2a
W
12

1
2a
W
13

1
2a
W
21 aW22

1
2a
W
23

1
2a
W
31

1
2a
W
32 aW33

 , BW
e =

 bW1
bW2
bW3

 .

Then Weitzman’s criterion for in situ conservation is:

We (X) = XT ∗AW
e ∗X + XT ∗BW

e + cW .
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C Rao’s criterion for in situ protection

As explained in the text, given the relation P (X) ≡ Λ∗ (Q + X) between efforts
and probabilities, Rao’s index for in situ protection is:

R (X) = P1 (X)P2 (X) (E1 + E2) + P1 (X)P3 (X) (E1 + E3 + J) + P2 (X)P3 (X) (E2 + E3 + J) ,

= 2 [(P1 (X)P2 (X) + P1 (X)P3 (X) + P2 (X)P3 (X))E + (P1 (X) + P2 (X))P3 (X) J ]

and using the relation between ultrametric distances, E1 = E2 = E and E3 =
E + J :

R (X) = 2 [(P1 (X)P2 (X) + P1 (X)P3 (X) + P2 (X)P3 (X))E + (P1 (X) + P2 (X))P3 (X) J ] .

Using the survival probability system (43), (44), and (45), we obtain the
following form for Rao’s index:

R (X) =
1

φ



E1

 (q1 + x1) (1− r23r32)
+ (q2 + x2) (r12 + r13r32)
+ (q3 + x3) (r12r23 + r13)

 (q1 + x1) (r21 + r31r23 + r31 + r21r32)
+ (q2 + x2) (1− r13r31 + r32 + r31r12)
+ (q3 + x3) (r23 + r21r13 + 1− r21r12)


+E2

 (q1 + x1) (r21 + r31r23)
+ (q2 + x2) (1− r13r31)

+ (q3 + x3) (r23 + r21r13)

 (q1 + x1) (1− r23r32 + r31 + r21r32)
+ (q2 + x2) (r12 + r13r32 + r32 + r31r12)
+ (q3 + x3) (r12r23 + r13 + 1− r21r12)


+ (E3 + J)

 (q1 + x1) (r31 + r21r32)
+ (q2 + x2) (r32 + r31r12)
+ (q3 + x3) (1− r21r12)

 (q1 + x1) (1− r23r32 + r21 + r31r23)
+ (q2 + x2) (r12 + r13r32 + 1− r13r31)

+ (q3 + x3) (r12r23 + r13 + r23 + r21r13)




This form can be rewritten as :

R (x1;x2;x3) =

{
aR11x

2
1 + aR22x

2
2 + aR33x

2
3 + aR12x1x2 + aR13x1x3 + aR23x2x3

+bR1 x1 + bR2 x2 + bR3 x3 + cR.
(48)

where
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φ = (1− r23r32 − r12r21 − r13r31 − r12r31r23 − r21r13r32)
2

aR11 =

[
E1 (1− r23r32) (r21 + r31r23 + r31 + r21r32) + E2 (r21 + r31r23) (1− r23r32 + r31 + r21r32)

+ (E3 + J) (r31 + r21r32) (1− r23r32 + r21 + r31r23)

]
aR22 =

[
E1 (r12 + r13r32) (1− r13r31 + r32 + r31r12) + E2 (1− r13r31) (r12 + r13r32 + r32 + r31r12)

+ (E3 + J) (r32 + r31r12) (r12 + r13r32 + 1− r13r31)

]
aR33 =

[
E1 (r12r23 + r13) (r23 + r21r13 + 1− r21r12) + E2 (r23 + r21r13) (r23 + r21r13)

+ (E3 + J) (1− r21r12) (r12r23 + r13 + r23 + r21r13)

]

aR12 =

 E1 [(1− r23r32) (1− r13r31 + r32 + r31r12) + (r12 + r13r32) (r21 + r31r23 + r31 + r21r32)]
+E2 [(r21 + r31r23) (r12 + r13r32 + r32 + r31r12) + (1− r13r31) (1− r23r32 + r31 + r21r32)]

+ (E3 + J) [(r31 + r21r32) (r12 + r13r32 + 1− r13r31) + (r32 + r31r12) (1− r23r32 + r21 + r31r23)]


aR13 =

 E1 [(1− r23r32) (r23 + r21r13 + 1− r21r12) + (r12r23 + r13) (r21 + r31r23 + r31 + r21r32)]
+E2 [(r21 + r31r23) (r23 + r21r13) + (r23 + r21r13) (1− r23r32 + r31 + r21r32)]

+ (E3 + J) [(r31 + r21r32) (r12r23 + r13 + r23 + r21r13) + (1− r21r12) (1− r23r32 + r21 + r31r23)]


aR23 =

 E1 [(r12 + r13r32) (r23 + r21r13 + 1− r21r12) + (r12r23 + r13) (1− r13r31 + r32 + r31r12)]
+E2 [(1− r13r31) (r23 + r21r13) + (r23 + r21r13) (r12 + r13r32 + r32 + r31r12)]

+ (E3 + J) [(r32 + r31r12) (r12r23 + r13 + r23 + r21r13) + (1− r21r12) (r12 + r13r32 + 1− r13r31)]


bR1 = 2aR11q1 + aR12q2 + aR13q3

bR2 = aR12q1 + 2aR22q2 + aR23q3

bR3 = aR13q1 + aR23q2 + 2aR33q3

cR = aR11q
2
1 + aR12q1q2 + aR22q

2
2 + aR23q2q3 + aR33q

2
3 + aR13q1q3

In order to write a matrix form, let us define:

AR
e =

 aR11
1
2a
R
12

1
2a
R
13

1
2a
R
21 aR22

1
2a
R
23

1
2a
R
31

1
2a
R
32 aR33

 , BR
e =

 bR1
bR2
bR3

 .

Then, in matrix form, Rao’s criterion for in situ protection is:

Re (X) = XT ∗AR
e ∗X + XT ∗BR

e + cR . (49)

D Spreadsheet under Xcas, example of Section

4.1

26



 

 



 

 



 

 

 

 

 



References

[1] Aulong, S., Erdlenbruch, K. and Figuières, C. (2005). “Un tour d’horizon
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