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Abstract

This paper contributes to an emerging literature on the environmental Kuznets curve
(EKC) relationship between pollution and income at the local level by analyzing emissions
of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide
(CO), particulate matter (PM2.5 and PM10) and total suspended particulate (TSP). We
conduct several spatial statistical and econometric tests to account for spatial dependence
between 290 Swedish municipalities on the selected emissions. Results highlight evidence
that the pollution and income relationship is significantly characterized by spatial
interaction effects. That is, municipality per capita emissions are strongly influenced by
emissions trajectories in neighbouring municipalities. Implications of our findings on policy
are discussed.
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1. Introduction

The nexus between environmental quality (e.g. pollution) and economic development has
received much focus for many decades. The main objective of this paper is to empirically
investigate the pollution and income relationship across all Swedish municipalities from a
spatial econometric perspective. Our approach is motivated by recent but growing
literature emphasizing the importance of spatial dimension on this link and the
implications of ignoring it (e.g. Burnett et al., 2013).

The emissions and income nexus is often modelled within the framework of the so-called
environmental Kuznets curve (EKC) hypothesis which posits an inverted U-shaped
relationship between emissions and income, a curvature likely explained by technological
progress and changes in preferences from income growth. The EKC literature is replete
with empirical modelling of different environmental quality indicators. The evidence for
many pollutants can however be best described as mixed. Grossman and Krueger (1991,
1993, and 1995) were among the first authors to empirically examine the EKC hypothesis.
In their papers, Grossman and Krueger found the existence of an inverted U-shaped
relationship between air quality (SO2 emission and “smoke”) and economic growth (per
capita GDP). The inverted U-shaped relationship implied that the two pollutants’
concentration increased at lower per capita income levels but decreased with GDP growth
at higher levels of income after a certain trajectory. Selden and Song (1994) corroborated
Grossman and Krueger (1991) after considering four air pollutants (suspended particulate
matter, sulfur dioxide, oxides of nitrogen and carbon monoxide) and per capita GDP1

relationship.

Many other studies since these seminal papers have modelled the EKC hypothesis by
regressing either air or water quality on income per capita (e.g. Stern and Common, 2001;
Stern, 2002). Other papers have motivated inclusion of other covariates beside income to
avert the omitted variable bias problem associated with some studies. Variables such as
population density, social capital (e.g. trust), average years of education, income
inequality among other demographic, economic and related variables have been controlled
for (see e.g. Seldon and Song 1994; Grossman and Krueger, 1995; Carson et al, 1997).

Grossman and Krueger (1995) failed to find evidence to the effect that environmental
quality decreases steadily with economic growth. The new evidence was that economic
growth induces an initial environmental deterioration followed by a subsequent phase of

1 See Dinda (2005) for a theoretical explanation of the EKC framework and Seldon and Song (1995) for theoretical
insights into the dynamic relationships among pollution, abatement effort and economic development.
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improvement. They find the turning points for most pollutants in their study to be
US$8000 per capita income. Millimet et al., (2003) on the other hand considered both the
standard parametric framework as well as a flexible semi-parametric alternative to test for
the EKC hypothesis for U.S. state-level sulfur dioxide (SO2) and nitrogen oxide (NOx).
They find overwhelming evidence to reject the parametric approach. Paudel et al., (2005)
also estimated parametric and semi-parametric models to test the EKC for Louisiana in
the U.S. The parametric model showed turning points within $10,241-$12,993, $6,636-
$13,877 and $6,467-$12,758 for nitrogen (N), phosphorous (P) and dissolved oxygen (DO),
respectively.

Lindmark (2002) emphasized the need for further studies of the EKC from a historical
perspective and consideration of the EKC framework as a special case of structural
analyses for Sweden. Similar theme and approach runs through the few Swedish studies
on the EKC for CO2 and SO2 (Kriström, 2000; Kander and Lindmark, 2004; Kriström and
Lundgren, 2005; Johansson and Kriström, 2007). Giving further impetus to the income
distribution argument in the EKC, Brännlund and Ghalwash (2008) on the other hand
analyzed the pollution and income nexus at the Swedish household level for CO2, SO2 and
NOX. All the Swedish cases pointed toward a confirmation of the EKC hypothesis for the
emissions considered. Given the aggregated time series nature and focus of the above
studies, there was no possibility to consider spatial effects in their estimations.

Despite exponential growth in the EKC literature, there is no uniform consensus from the
empirics to confirm the EKC stylized facts, at least for some emissions indicators. Perman
and Stern (2003) tested the EKC hypothesis on a panel data for sulfur emissions and
GDP for 74 countries.  They find sulfur emissions to be a convex function of income,
casting doubt on the general applicability of the hypothesized nexus. The conclusion was
that the EKC is quite a problematic concept, at least for sulfur emissions.2 Copeland and
Taylor’s (2004) statement summarizes the difficulties associated with the general
applicability of the EKC, “…our review of both the theoretical and empirical literature
work on the EKC leads us to be skeptical about the existence of a simple and predictable
relationship between pollution and per capita income”.

Other criticisms of the EKC have centered on poor econometric applications, limited
single country studies using long historical time series data, lack of theoretical
insights/foundation, neglect of leakage of dirty production from developed to developing
countries among other concerns (e.g. Stern, 2002; Dinda, 2004). Another important

2 See Stern (2004), Dasgupta et al., (2002), Kijima et al., (2010), and Kaika and Zervas (2013) for detailed literature
survey of the EKC hypothesis.
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criticism relates to biased and inconsistent EKC estimates arising from model
misspecification due to omission of spatial interaction effects in emissions data if
significantly present (e.g. Rupasingha et al., 2004; Maddison, 2006; Burnett et al., 2013;
Aklin, 2016). Failure to capture spatial interactions in the data if significantly present
might bias the estimated results which might affect policy inferences.

It is in regard to the latter criticism and the need for a within country study that this
paper derives its motivation. Utilizing advances in geographic information systems (GIS)
and spatial econometrics in applied settings, we model the pollution-income relationship
for the following emissions: carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides
(NOX), carbon monoxide (CO), particulate matter (PM2.5 and PM10) and total suspended
particulates (TSP). Even though selection of these emissions are not guided by any formal
criteria, we have reason to believe their importance in the Swedish environmental
policy/code is not in doubt. CO2 emissions continue to be one of the major components of
greenhouse gases (GHGs) locally and globally which contributes significantly to climate
change. In Sweden, CO2 emissions are based on use of different classes of fossil fuels such
as coal, gas, and oil products. Emissions from transportation is considered a major source
of concern in Sweden. The other pollutant emissions are also important sources driving air
quality in Sweden and feature prominently in all reports of the Swedish Environmental
Protection Agency and other environmental agencies (see e.g. Gustafsson and Kindbom,
2014; SEPA, 2016). SO2 emissions from road traffic, shipping and heating from industrial
and other sources is still a major concern even though emission levels have been reducing
in the last two decades or so. Indeed particulates, CO and the other emissions have been
established to impact adversely on human health, mortality and related effects besides
generally worsening environmental air quality in a particular area (e.g. Henschel et al.,
2013; Caiazzo et al., 2013).

Guided by the spatial nature of emissions, we tested for spatial effects and estimated a
spatial Durbin model to capture this potential spillover in order to correctly analyze the
EKC for the selected emissions in this context. Some of the spillovers could arise from
strategic interactions through emissions policy targeting by municipalities, cooperation in
air quality monitoring and management, as well as transportation linkages. The modelling
is undertaken in all 290 municipalities for the period 2005-2013. We find evidence in
support of the EKC for CO2, SO2, NOX, CO, PM2.5, PM10 and potentially TSP in the
presence of significant spatial spillovers.

Our contribution to the literature is twofold. First, we contribute to the relatively small
but growing EKC literature within a country for several emissions from a spatial
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perspective. Secondly, findings hold promise for public policy coordination considerations
as far as pollution control in Sweden is concerned. Understanding the dynamics of
geographical distribution of emissions sources can effectively aid mitigation policies as well
as influencing economic activities (Zhao et al., 2014).

The remainder of the paper proceeds according to the following structure. Details of the
empirical spatial econometric models as well as data issues are covered in Section 2.
Section 3 presents the empirics and discussion of the results. We conclude in Section 4
with some brief remarks.

2. Methodology, Estimation Strategy and Data

2.1 Tests for Spatial Dependence

As a first step, we test for spatial autocorrelation in the individual emissions data. We
apply two tests - the classical global Moran’s I 3 and Geary’s C (Moran, 1948; Geary,
1954). The two global measures of spatial dependence of a series are strongly linked, but
the detection test based on Moran’s I statistic is suggested to be more robust and
powerful than the Geary’s C (Dubé and Legros, 2014). Anselin (1995) has shown that
Moran’s I statistic is more robust against the form of the spatial weight matrix utilized.
The tests are global in the sense that it is a spatial dependence measure that describes the
overall spatial relationship across all municipalities.

Further, we undertake exploratory spatial data analysis (ESDA) to detect spatial regimes
in the emissions data. Localized version of Moran’s I test for spatial autocorrelation,
which measures the extent to which high and low values are clustered together is utilized.
Unlike global Moran’s I which is a global index representing the entire geographic area
under study, the local indicator of spatial association (LISA) or local Moran’s Ii considers
spatial variations in the study areas locally. It describes the heterogeneity of spatial
association across different geographic units within the areas under investigation. We
implement this with the Moran scatterplot (Anselin, 1995; 1996) to facilitate the detection
of spatial clusters in the emissions data. The Moran scatter diagram plots the spatial lag
of standardized per capita emissions against the original values. The values are then

3 Global Moran’s I ranges between -1 and 1 and tends to zero in the absence of spatial autocorrelation. Positive spatial
autocorrelation arises if the value of I is greater than zero while the reverse holds for negative spatial autocorrelation.
Both measures test the null hypothesis of no spatial autocorrelation in the data.



6

distributed into four quadrants to depict spatial clustering. The four different quadrants
of the scatterplot correspond to the four types of local spatial association between a region
and its neighbours: The four quadrants depict HH clustering (quadrant 1) which means
municipalities with high emissions are associated with neighbours with similar emission
levels (reverse is LL) and LH (quadrant 2) suggests low emitting municipalities are
surrounded by municipalities with high emissions (reverse is HL). Quadrants HH and LL
indicates positive spatial autocorrelation whereas LH and HL show negative spatial
autocorrelation.

Finally, we use cluster and significance maps to depict the local Moran’s Ii for detection

of spatial clustering and hot spots (Gertis-Ord *Gi ) in all emissions data. All these tests
are used in order to reach robust conclusion on whether or not spatial modelling of the
pollution-income hypothesis is indeed appropriate.

2.2 Econometric Method and Estimation Strategy

Following conventional approach in the applied spatial econometric literature, we begin
our specification with a non-spatial ordinary least squares (OLS) regression model as our
benchmark (see Elhorst, 2010; LeSage and Pace, 2009). We then test the possibility of
extension of the baseline model to include spatial interaction effects. The non-spatial
benchmark specification is given by equation (1):

   

 

  

 2(0, )

it it it

it i

y Xn

N

(1)

Using an appropriate spatial weight matrix, equation (1) is subjected to a classical
Lagrange multiplier (LM) (Anselin 1988) and robust-LM (RLM) tests4 proposed by
Anselin et al., (1996). These tests are conducted on the residuals of the estimated OLS
model. A rejection of the OLS model in favour of either the spatial lag (SAR) or spatial
error (SEM) models or both would suggest a spatial Durbin model (SDM) should be
estimated (see LeSage and Pace 2009; Elhorst 2010 for more technical details).

Equation (1) ignores possible spatial dependence in the pollution-income (EKC) nexus.
However, since recent literature (e.g. Aklin, 2016) have found emissions, income and
population/population density among other variables to exhibit significant spatial
dependence, we extend equation (1) to include spatial interaction effects specified as

4 Both tests follow a chi-squared distribution with one degree of freedom.
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    

 

 

    

 

 2(0, )

y Wy X WX un

u Wu

N

(2)

where y 5 is an 1n vector of dependent variables (lnCO pc2 , lnSO pc2 , lnNO pcx ,
lnCOpc , lnPM pc2.5 , lnPM pc10 , lnTSPpc ) for each unit of the sample  1,...i n , n is
an n K vector of ones for the constant term parameter  ,  and  are a 1K vector
of parameters associated with the N K matrix of explanatory variables X

2(i.e. ,  ( )  and )lnIncrpc lnIncrpc lnPopdens and the spatially explicit counterparts. ln is
the natural logarithmic operator and the variables lncrpc and Popdens denote real
income per capita (and its squared term) and population density, respectively. The
variables  and  denote the spatial autoregressive (or lag) and spatial autocorrelation
coefficients, respectively; while Wy and WX represents the endogenous and exogenous
spatial interaction effects among the outcome and explanatory variables, respectively. The
disturbance terms are denoted by the vector    ( ,..., )Tn1 where i is assumed to be

independently and identically distributed (iid) for all i with mean zero and variance 2 .

The variable W is an n n matrix that characterizes the degree of spatial
dependence/connectedness of the spatial units within the sample. This matrix has all its
diagonal elements equal zero since a municipality cannot be its own neighbour. Estimation
of equation (2) and any variants of it requires construction/specification of an appropriate
spatial weight matrix. This is a key step in applied spatial econometrics but the
choice/selection of a spatial weight matrix is not guided by any known economic theory
thus becoming a discretionary (or arbitrary) decision of the analyst (see Leenders, 2002;
Elhorst 2010). The spatial weight matrix, W , in its simplest form is defined as a first-
order contiguity matrix consisting of zeros along the principal diagonal (since a
municipality cannot be its own neighbour) and elements wij elsewhere, where 1wij  if i

and j are neighbours and 0wij  otherwise. An alternative specification of the spatial

weight matrix is based on the distance between municipality centroids (inverse or squared
inverse distance) with and without distance cut-off point. In this paper, the spatial weight
matrix W used in the main empirical estimations is defined as a k-nearest neighbours of
every municipality in the sample (here 10-nearest neighbours). In applied spatial

5 We have subsequently suppressed the subscript i and j for the geographical units to avoid notational clutter in the
paper.
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econometric work, the weight are standardized such that the sum of the elements in each
row equals one (i.e. row standardization). That is, row standardization ensures that
relative and not absolute distance for instance, matters (Ezcurra and Rios, 2015). The
worry expressed by some practitioners that coefficient estimates are sensitive to the choice
of spatial weight matrix has been quelled recently by LeSage and Pace (2014) and
described as a myth rather than reality. They demonstrated and argued that this worry
arises only if the researcher has misspecified models (e.g. estimated SEM or SAR with
omitted variables) or an incorrect interpretation of model coefficients as though they were
partial derivatives (LeSage and Pace, 2014). The conclusion is that sensitivity to selection
of different spatial weight matrix is largely indicative of model misspecification and should
pose no problems if model is well specified (LeSage and Pace, 2014).

Equation (2) is the general spatial model due to Manski (1993). It is a nested model with
special cases within it (Elhorst 2010). According to Elhorst (2010), Manski identified three
possible spatial dependencies in specification (2) which includes (i) endogenous6

interaction effects, (ii) exogenous7 interaction effects and (iii) correlated8 effects. Following
the suggestion of LeSage and Pace (2009) and Elhorst (2010) would imply the best
strategy in testing for the effects of spatial dependence is to begin from a general model
such as Manski (1993). However, due to issues of identification, Manski suggests exclusion
of one of the spatial interaction effects before testing. LeSage and Pace (2009) suggests
that the best option in this circumstance is to exclude the spatially autocorrelated error
term.

This results in the SDM (our preferred model of interest where   0 ; Anselin, 1988), also
a nested model with special cases of specific spatial models incorporated (see equation 3).

    

 

    

 2(0, )

y Wy X WX un

N

(3)

The SDM produces unbiased coefficient estimates if the true data-generation process
(DGP) is either a spatial lag or spatial error model. As noted by Elhorst (2010), the SDM
also produces correct t-values or standard errors of the estimated coefficients if the true
DGP is a SEM. Additionally, SDM imposes no prior restrictions on size of the spatial

6 This is where the decision of a spatial unit or its economic decision makers behave in a way that depends on the
decision taken by the other spatial units.
7 This is where the decision of a spatial unit behave in a way that depends on the independent or exogenous explanatory
variables of the decision taken by other spatial units.
8 This is where similar unobserved environmental characteristics results in a similar behaviour.
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spillover effects (Elhorst 2010; LeSage and Pace 2009). Since the SDM yields unbiased
coefficient estimates if the true DGP is any other spatial regression specifications (except
for the Manski model), it is not that costly to make the exclusion trade-off (Elhorst 2010).
The SDM now widely appeal to many empiricists, especially in the growth literature (see
e.g. Ertur and Koch, 2007; LeSage and Fisher, 2008; Elhorst 2012; Ezcurra and Rios,
2015; Abate, 2016)9.

By testing the following restrictions/constraints, we reduce the SDM to either a spatial
autoregressive (SAR) or a spatial error (SEM) model: Imposing   0 implies the model
is a SAR (i.e.  : 0Ho ). Conversely, imposing the non-linear restriction    (then
  i.e.   :Ho ) reduces the model to a SEM.

To obtain an intuitive interpretation of the impact of a change in the thr covariate on y ,
we rewrite equation (3) as follows:

        1( ) [ ]it it it ity I W X WXn n (4)

where I represents an identity matrix of order n . The partial derivatives of y with
respect to a change in variable xr from matrix X is given by equation (5):

     


1( ) ( )y I W I Wn n r rxr
(5)

Equation (5) can be interpreted in the context of this paper as follows: a change in per
capita income in a particular municipality will not only change the emissions in that
municipality ( i ) alone but also on emissions in neighbouring municipalities ( j ) too,
j i . Thus in the language of LeSage and Pace (2009), the former effect represents a

direct impact (i.e.  y xi ir ) while the latter, an indirect effect or spillover responses (i.e.

 y xi jr ). The sum of these effects denote the total effect of a unit change in say income

on emissions in a given municipality, see LeSage and Pace (2009) and Elhorst (2010) for
detailed technical discussion. The added advantage of using the direct and indirect effects
to make inference regarding the EKC hypothesis in this paper is that we are able to
isolate the impact of income not only on emissions from the source region, but also on its
neighbours connected in space via the chosen spatial weight matrix.

9 There is a very high cost of ignoring spatial dependence in the dependent and or the independent variables since any
such omission of relevant covariate results in biased and inconsistent estimated coefficients (Greene, 2005). As argued in
Elhorst (2010), there is only loss of efficiency due to omission of spatial interaction effect in the error terms.
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Finally, it is instructive to note that the presence of significant spatial dependence in the
data makes it inappropriate for the spatial models to be estimated via OLS since it yields
biased and inconsistent estimates which could lead to wrong inferences. That is,
estimation of the general SDM with OLS can potentially lead to inconsistent estimates of
parameters in the presence of spatially lagged dependent variables as well as inconsistent
spatial parameter estimates and standard errors (LeSage and Pace, 2009). As shown in
LeSage and Pace (2009), the SDM (equation 3) or any variants of it can be estimated by
maximum likelihood (ML) (Anselin 1988), quasi-ML (Lee, 2010), instrumental variable
and generalized method of moments (IV/GMM)10 and Bayesian Markov Chain Monte
Carlo (MCMC) approaches. Following LeSage and Pace (2009) and Anselin (1988), our
models are estimated via ML. One of the advantages of the ML estimator is that there is
no assumption of residual normality.

2.3 Data

We constructed a balanced panel data for all 290 municipalities in Sweden spanning nine
years (2005-2013). All emissions data measured in tonnes (CO2, SO2, NOx, CO, PM2.5,
PM10 and TSP) have been retrieved from the Swedish national emissions database (RUS11

– which stands for Regional Development and Cooperation on the environment).
Population data for all municipalities have been obtained from Statistics Sweden database
and used to compute emissions per capita.

In order to test for the EKC for the seven emissions types, we control for real income per
capita and its squared to capture income turning points in the EKC model. Income in this
paper is represented by mean income per capita earned in each municipality by residents
aged 20 years and above denominated in 2014 constant Swedish Krona prices. We further
control for the effect of population density (i.e. population per square kilometer for each
municipality) in the pollution-income model. Data on income and population density were
also retrieved from Statistics Sweden. The descriptive statistics and variable definition are
shown in Table 1.

10 IV/GMM has the disadvantage of having the spatial autoregressive parameter going outside its parameter space.
11 RUS is a collaborative body that supports, guides and coordinates country administrative boards and regional efforts
in the environmental system.
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Table 1. Descriptive statistics
Variable Description Mean Std. Dev. Min. Max. N

2CO pc Carbon dioxide per capita (tonnes) 6.464 13.591 0.3807 236.184 2,610

2SO pc Sulfur dioxide per capita (tonnes) 0.0049 0.0112 0.00005 0.1054 2,610

NO pcx Nitrogen oxides per capita (tonnes) 0.0264 0.0251 0.0013 0.2671 2,610
COpc Carbon monoxide per capita (tonnes) 0.0890 0.0417 0.0083 0.3057 2,610

2.5PM pc Particulate matter per capita (<2.5
micrometers; tonnes)

0.0043 0.0050 0.0002 0.0783 2,610

10PM pc Particulate matter per capita (<10
micrometers;  tonnes)

0.0062 0.0059 0.0006 0.0837 2,610

TSPpc Total suspended particulate matter per capita
(<100 micrometers; tonnes)

0.0069 0.0069 0.0011 0.0974 2,610

Incrpc Real per capita mean income earned in
municipality by residents aged 20 years and
older (Swedish Krona, SEK 2014 prices)

17,597 13,900 308.7 86,908 2,610

Popdens Total population density per sq. km 135.0 464.7 0.200 4,917 2,610
Note: N denote total number of observations

3. Results

The results of both global Moran’s I and Geary’s C applied on the natural logarithm of
per capita emissions from CO2, SO2, NOx, CO, PM2.5, PM10 and TSP are shown in Table
2. The results show significant positive spatial autocorrelation for all pollutants. The
implication is that emissions in a municipality also matter for its neighbours. That is,
positive spatial correlation indicates that municipalities with similar levels of per capita
emissions are more likely to be spatially clustered than could occur by some random
chance. This reinforces the need for spatial consideration in the empirical analysis. The
results are corroborated by the Moran’s scatterplot (see Fig. A1 in Appendix) where
indication of positive spatial dependence is overwhelmingly evident. We find many of the
municipalities for each pollutant to be clustered in the first and third quadrants.

Furthermore, we synchronize and display cluster and significance maps for all air emission
pollutants averaged over 2005-2013 in Fig. A2 (see appendix). The significance maps show
municipalities where local Moran’s I is statistically significant while cluster maps indicate
pattern of spatial clustering for hot spots (HH clustering) and cold spots (LL clustering)
for each pollutant. The results show some significant spatial clustering for all pollutants
with apparent differences in terms of clustering patterns for the municipalities. We notice
in particular that there is significant clustering for carbon monoxide and particulate
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matter (2.5, 10 and total suspended) across almost the entire Sweden. Our conclusion is
that ignoring such significant spatial interdependence in the pollution data will seriously
bias the EKC parameter estimates and hence any inferences thereof.

Table 2. Tests of global spatial autocorrelation
Moran’s I Geary’s C

Variable Statistic Statistic
lnCO pc2 0.2341(0.0000) 0.7547(0.0000)

lnSO pc2 0.1218(0.0000) 0.8434(0.0000)

lnNO pcx 0.2597(0.0000) 0.7044(0.0000)
lnCOpc 0.5915(0.0000) 0.4416(0.0000)
lnPM pc2.5 0.4185(0.0000) 0.5673(0.0000)

lnPM pc10 0.4182(0.0000) 0.5699(0.0000)
lnTSPpc 0.4410(0.0000) 0.5269(0.0000)
Note: Values in parenthesis are p-values. All tests are carried out using 10-nearest neighbours spatial weight matrix.

In this section of the paper, the spatial Durbin model (SDM) given in equation (3) is
estimated and analysed. We begin the analysis by estimating the non-spatial regression
model given by equation (1). Table 3 presents results obtained from equation (1)
estimated via OLS for all pollutants.  Our results show the existence of the EKC for all
emission types except for CO2 which shows a U-shaped relationship between pollution and
income. The estimates for real income and its squared term are however statistically
insignificant for CO2, carbon monoxide (CO) and total suspended particulates (TSP).
Given the lack of spatial interaction consideration in the estimated OLS models, we treat
these results rather cautiously. The estimated coefficients could be severely biased,
inconsistent and or inefficient if space does matter. We therefore investigate whether a
spatial specification could be considered over the non-spatial model. The classic LM and
robust-LM tests applied on the residuals of the estimated models all lead to a rejection of
the non-spatial OLS model based on a 10-nearest neighbours spatial weight matrix. To
clear any doubts about the issue of sensitivity from choice of spatial weight matrix, we
subjected the regression residuals to tests for spatial dependence via alternative weight
matrix specifications. Congruent with the main results, different spatial matrices failed to
invalidate our conclusion (see Table A1 in Appendix).

We thus proceed to estimate the spatial panel models via maximum likelihood. We
account for municipality and year fixed effects in all models estimated. Furthermore, since
in almost all cases both spatial error (SEM) and spatial lag (SAR) models are favoured
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over the non-spatial alternative, the SDM is estimated as our preferred specification.
Nonetheless, both SEM and SAR models are estimated for sake of completeness and as
some form of robustness check, see Table A2 in Appendix for results.

Table 3. OLS regression results and tests for spatial dependence

Variable

Dependent variable:
lnCO pc2 lnSO pc2 lnNO pcx lnCOpc lnPM pc2.5 lnPM pc10 lnTSPpc

lnIncrpc -0.056
(0.161)

0.338**
(0.161)

0.840***
(0.165)

0.105
(0.070)

0.641***
(0.137)

0.630***
(0.126)

0.160
(0.134)

2( )lnIncrpc 0.002
(0.009)

-0.029***
(0.009)

-0.044***
(0.009)

-0.003
(0.004)

-0.035***
(0.008)

-0.034***
(0.007)

-0.009
(0.007)

lnPopdens -0.150***
(0.009)

-0.093***
(0.009)

-0.145***
(0.009)

-0.214***
(0.004)

-0.237***
(0.007)

-0.234***
(0.007)

-0.229***
(0.007)

Constant 9.253***
(0.730)

-0.070
(0.729)

-0.416
(0.749)

4.343***
(0.318)

-0.889
(0.620)

-0.525
(0.574)

1.822***
(0.606)

Adjusted R2 0.155 0.057 0.168 0.714 0.400 0.443 0.384
F-Stat. (df=3; 2606) 161.1*** 54.0*** 176.2*** 2,171.8*** 581.2*** 692.7*** 543.6***
N 2,610 2,610 2,610 2,610 2,610 2,610 2,610
Spatial tests Diagnostic tests for spatial dependence on residuals
Global Moran’s I 0.079*** 0.091*** 0.154*** 0.121*** 0.100*** 0.080*** 0.173***
LM test: no spatial error 90.95*** 119.55*** 343.99*** 211.74*** 143.99*** 91.759*** 434.09***
LM test: no spatial lag 159.41*** 142.98*** 333.59*** 178.57*** 228.52*** 154.19*** 411.76***
RLM test: no spatial
error

29.791*** 14.774*** 20.028*** 74.293*** 0.0601 0.074 60.71***

RLM test: no spatial lag 98.248*** 38.201*** 9.6315*** 41.125*** 84.587*** 62.506*** 38.379***
Note:*p<0.1; **p<0.05; ***p<0.01. Values in parenthesis represent standard errors. All spatial dependence tests are based on a 10-
nearest neighbours spatial weight matrix. LM and RLM denote Lagrange Multiplier and its robust version, respectively.

Columns in Table 4 presents results from the SDM for all seven air pollution emissions.
We performed Wald tests to examine whether the estimated nested SDM is reducible to
either the SEM or SAR. Results indicates superiority of the SDM over both SEM and
SAR and hence its appropriateness in the context of this study. The null hypothesis for
both SAR (  : 0Ho ) and SEM (   :Ho ) are strongly rejected at the 1%
statistical significance level.
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Table 4. Spatial Durbin model estimates
Dependent variable:

Variable lnCO pc2 lnSO pc2 lnNO pcx lnCOpc lnPM pc2.5 lnPM pc10 lnTSPpc

 0.3833***
(0.0195)

0.3663***
(0.0207)

0.3209***
(0.0204)

0.1506***
(0.0146)

0.2940***
(0.0182)

0.2880***
(0.0178)

0.3313***
(0.0180)

lnIncrpc 0.3876**
(0.1509)

0.7962***
(0.1535)

1.2366***
(0.1613)

0.2667***
(0.0706)

0.8394***
(0.1310)

0.7284***
(0.1221)

0.1585
(0.1273)

2( )lnIncrpc -0.0186**
(0.0083)

-0.0491***
(0.0084)

-0.0650***
(0.0089)

-0.0107***
(0.0039)

-0.0432***
(0.0072)

-0.0372***
(0.0067)

-0.0072
(0.0070)

lnPopdens -0.0193
(0.0151)

0.0245
(0.0154)

-0.1071***
(0.0162)

-0.1676***
(0.0072)

-0.1207***
(0.0132)

-0.1443***
(0.0123)

-0.1379***
(0.0128)

W lnIncrpc -0.0080
(0.0444)

-0.1292***
(0.0451)

-0.1654***
(0.0474)

-0.1035***
(0.0208)

-0.1438***
(0.0385)

-0.0835**
(0.0359)

-0.2262***
(0.0376)

W lnPopdens -0.1313***
(0.0200)

-0.1581***
(0.0203)

-0.0823***
(0.0212)

-0.0691***
(0.0093)

-0.1426***
(0.0173)

-0.0999***
(0.0161)

-0.1283***
(0.0168)

Direct Impact Analysis
lnIncrpc 0.4043*** 0.8272*** 1.2724*** 0.2682*** 0.8595*** 0.7451*** 0.1635

2( )lnIncrpc -0.0194** -0.0510*** -0.0668*** -0.0108*** -0.0443*** -0.0380*** -0.0075

lnPopdens -0.0201 0.0254* -0.1102*** -0.1686*** -0.1235*** -0.1476*** -0.1422***
Indirect
lnIncrpc 0.2242** 0.4293*** 0.5485*** 0.0457*** 0.3296*** 0.2780*** 0.0736

2( )lnIncrpc -0.0107** -0.0265*** -0.0288*** -0.0018*** -0.0170*** -0.0142*** -0.0034

lnPopdens -0.0111 0.0132* -0.0475*** -0.0288*** -0.0474*** -0.0551*** -0.0641***
Total
lnIncrpc 0.6284*** 1.2565*** 1.8209*** 0.3139*** 1.1890*** 1.0231*** 0.2371

2( )lnIncrpc -0.0301** -0.0775*** -0.0957*** -0.0126*** -0.0612*** -0.0522*** -0.0108

lnPopdens -0.0312 0.0386* -0.1578*** -0.1973*** -0.1709*** -0.2027*** -0.2063***
Income TP (SEK) 34,151 3,316 13,542 256,876 16,549 18,030 58,504

Model Specification Tests: Wald
SAR ( )Ho vs. SDM: 77.644*** 71.871*** 16.399*** 55.026*** 74.647*** 45.231*** 59.29***

SEM( )Ho vs. SDM: 462.33*** 384.17*** 264.17*** 160.91*** 334.73*** 305.85*** 398.2***

Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
N 2,610 2,610 2,610 2,610 2,610 2,610 2,610

Note:*p<0.1; **p<0.05; ***p<0.01. Values in parenthesis represent standard errors. All models estimated using a 10-nearest
neighbours spatial weight matrix. TP denote turning/threshold point for income.

Following LeSage and Pace (2009; 2014) suggestion that the point estimates from the
SDM specification may lead to erroneous conclusions, we focus our interpretation of the
EKC results from the partial derivatives or impacts perspective. This has been established
as the correct interpretation of coefficient estimates of the SDM because by construction
there is feedback effect due to spatial spillovers from a change in the regression covariates
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in each municipality in the whole system (see recent example in Ezcurra and Rios, 2015).
This is much more interesting because we are able to decompose the effect of income
growth on pollution from the angle of a direct, indirect and total effects. Table 4 shows
the SDM estimates together with information on the three impact analyses. We find
significant spatial interaction effects in all the pollution-income models given by the
spatial autoregressive parameter ( ). The positive spatial lag parameter implies that
changes in the level of emissions on a specific municipality can impact on pollution levels
beyond the pollution source. That is, there is potential pollution spillover into other
jurisdictions. Thus economic activities that impacts on the level of pollution in one
municipality cannot be assumed to be inconsequential on other regions. We also observe
that neighbouring municipalities’ income growth cannot be confined to the municipality
itself but also spills over to drive emissions in a particular municipality. That is, we find
that an increase in a neighbours’ income which might also imply demand for higher
environmental quality has a dampening spillover effect on own municipality emission
levels. This might be due to the spatial interactions effects due to say diffusion of
technical progress (e.g. clean energy that reduces emissions from transport, industry, etc.).
A similar result is obtained for population density. The negative coefficient of population
density is largely in line with the literature (e.g. Seldon and Song, 1994).

With regard to the main objective of this paper, our results confirm the presence of the
EKC for all emissions types since the income parameter estimates are correctly signed as
hypothesized. The only candidate emissions with insignificant income estimates similar to
the OLS results is total suspended particulates (TSP), even though it marginally passed
the 10% significance test in the spatial error model, see Table A2 in Appendix.

Turning to the direct, indirect and total effects estimates in Table 4, we see that the
linear and quadratic income terms seems to mimic the point estimates of the main results
with only minor differences noticeable in the magnitude of the effects. As expected the
direct effect accounts for more than half of the total effect due to changes in income on
emissions. For example, the relative size of direct to indirect impacts of all the
explanatory variables is about 2 times for all emissions except for carbon monoxide whose
direct impact is about 6 times the indirect. The take away message in this analysis is that
even though the pollution effect of income and population density has a far greater impact
on average on a specific municipality’s own emissions trajectory, its significant indirect
consequences on other municipalities cannot be ignored. The total effect of these impacts
robustly confirm the presence of the EKC hypothesis for the seven emission types
considered in this paper. Thus the presupposition that high income countries such as
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Sweden has and can grow out of pollution in the presence of spatial connectivity is to a
reasonable extent evident in this study’s context.

From the turning point calculation based on the total effect estimates of income, we find
that given the average real income per capita of about 17,597SEK (from Table 1), three
emissions (that is, sulphur dioxide (SO2), nitrogen oxides (NOX), and particulate matter
(PM2.5)) are currently at the decreasing phase. This is because the current level of average
real income per capita is greater than income turning point values of these emissions (see
Table 4). This is suggestive that current level of economic development and or
technological advancement are sufficient to bring about a decrease in these emissions. On
the contrary, the current level of economic development and technological advancement is
not enough to bring about a reduction in carbon dioxide (CO2), carbon monoxide (CO),
particulate matter (PM10) and total suspended particulates (TSP) emissions given the fact
that the income turning point values of these emissions are greater than the current
average real income per capita. This implies investment in technology with economic
growth potential will eventually result in a reduction in these emissions.

4. Conclusions

The proposition that pollution is an example of a negative externality is largely agreed in
the environmental and resource economics literature. Even more important is the fact
that these spillovers are likely to be spatial in nature (LeSage and Pace, 2009). Recent
examples, including spatial diffusion of point source air pollution on property values lend
credence to this fact (see Anselin and LeGallo, 2006; Anselin and Lozano-Gracia, 2008). In
this vein and following recent advances in spatial econometrics as well as emerging studies
on the environmental Kuznets curve (EKC), we make a case for relevance of spatial
spillovers in the context of the EKC for seven important emissions in Sweden – carbon
dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO),
particulate matter (PM2.5 and PM10) and total suspended particulate (TSP).

Using a panel data on the seven emissions, income and population density for all 290
municipalities in Sweden over the period 2005-2013, we estimated a nested spatial Durbin
model (SDM) as our point of departure to test the EKC for each pollutant in the presence
of potential spatial interaction(s). Prior to estimating the SDM, which was favoured over
alternative spatial model specifications, we run a battery of spatial autocorrelation or
dependence tests (global and local) on each of the emissions data individually and within
a multivariate OLS regression framework. In each case, we find significant spatial
dependence in the data and models independent of spatial weight matrix used. Also, a
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univariate but interesting analysis of all emissions showed significant spatial clustering
and or hot-cold spots across municipalities in Sweden. The implication is that either high
emitting municipalities tend to cluster together (and vice versa), or that there are
outliers/spatial dispersion (such as high emitting areas surrounded by low emitting
regions and vice versa) in the emissions space. Put together, these evidences point to the
potential benefits of spatial modelling of the EKC for these pollutants and the
consequences of ignoring it.

Our estimates point to the direction of an EKC for all but one of the seven emissions.
Even though TSP emissions follow a typical EKC curvature, the income estimates were
insignificant in the SDM hence we cannot speculate with certainty whether the EKC
holds for it. The results also show that the pollution effect of income and population
density goes beyond the boundaries of a particular municipality but significantly impacts
indirectly on neighbours’ emissions. Nonetheless, we find evidence to support the EKC for
the selected pollutants, and that the argument that some countries such as Sweden can
grow out of pollution is largely upheld for CO2, SO2, NOX, CO, PM2.5, PM10 and
potentially TSP. We admit that the time span of the data used in this paper is not
historically long enough to fully accommodate this view as done elsewhere in the literature
(see e.g. Lindmark, 2002).

The results obtained in this paper might have important policy implications. The
traditional view that pollution effects of economic development has only local
ramifications is rather farfetched. Empirical results in this paper show the importance of
considering the actions and inactions related to economic activities beyond a
municipality’s administrative borders. This implies that policies on regional growth and
development fashioned in oblivion of growth policies in all other (or closer) municipalities
may likely not yield the intended dividends, especially in the fight against pollution.
Indeed, cooperation and strategic interaction between municipalities and to some extent
county administration boards in Sweden in implementing environmental policies as
regards pollution control (e.g. abatement policies) and income growth might be a step in
the right direction. A typical example is the Stockholm – Uppsala Air Quality
Management Association initially founded by fourteen (14) municipalities in the
Stockholm county. It currently has 35 municipalities, two county councils, institutes,
companies and civil service departments located in the counties who collaborate to
coordinate air quality monitoring in the region. The linking bridge between almost all
municipalities is transportation, a source that accounts for significant share of emissions
from many pollutants. This makes policy coordination and action even more relevant
since air pollution knows no geographical boundaries.
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Appendix

Table A1. Diagnostics for spatial dependence on residuals of OLS model using different
spatial weight matrices

Dependent variable:
lnCO pc2 lnSO pc2 lnNO pcx

lnCOpc lnPM pc2.5 lnPM pc10
lnTSPpc

1-nearest neighbour
Tests for spatial dependence

Global Moran’s I 0.030 0.149*** 0.212*** 0.083*** 0.130*** 0.119*** 0.192***
LM test: no spatial error 1.581 38.817*** 78.529*** 12.05*** 29.577*** 24.72*** 64.427***
LM test: no spatial lag 8.210*** 49.884*** 82.284*** 16.393*** 49.326*** 46.69*** 82.83***
RLM test: no spatial error 83.137*** 16.706*** 0.000015 0.067 12.903*** 14.962*** 4.226**
RLM test: no spatial lag 89.766*** 27.773*** 3.756* 4.411** 32.652*** 36.933*** 22.629***
3-nearest neighbours
Global Moran’s I 0.055*** 0.156*** 0.200*** 0.152*** 0.123*** 0.118*** 0.198***
LM test: no spatial error 15.457*** 109.83*** 180.55*** 104.65*** 67.904*** 62.383*** 177.48***
LM test: no spatial lag 33.13*** 128.77*** 182.97*** 59.05*** 107.37*** 93.288*** 204.15***
RLM test: no spatial error 58.011*** 16.29*** 1.492 45.637*** 10.688*** 3.967** 0.101
RLM test: no spatial lag 75.684*** 35.227*** 3.913** 0.035296 50.159*** 34.872*** 26.764***
5-nearest neighbours
Global Moran’s I 0.059*** 0.153*** 0.200*** 0.135*** 0.106*** 0.089*** 0.177***
LM test: no spatial error 24.948*** 169.96*** 291.66*** 131.07*** 81.907*** 57.231*** 226.81***
LM test: no spatial lag 61.087*** 186.43*** 315.05*** 99.097*** 156.5*** 119.9*** 274.75***
RLM test: no spatial error 86.749*** 3.398* 0.107 40.038*** 16.915*** 13.389*** 0.568
RLM test: no spatial lag 122.89*** 19.862*** 23.502*** 8.064*** 91.511*** 76.057*** 48.502***
15-nearest neighbours
Global Moran’s I 0.084*** 0.076*** 0.122*** 0.099*** 0.088*** 0.067*** 0.164***
LM test: no spatial error 153.68*** 125.42*** 323.09*** 212.41*** 168.68*** 95.907*** 579.1***
LM test: no spatial lag 220.37*** 150.1*** 273.23*** 145.77*** 206.48*** 113.08*** 421.78***
RLM test: no spatial error 1.649 11.698*** 52.558*** 104.5*** 17.255*** 13.241*** 182.65***
RLM test: no spatial lag 68.341*** 36.378*** 2.699 37.857*** 55.052*** 30.415*** 25.333***
20-nearest neighbours
Global Moran’s I 0.067*** 0.067*** 0.108*** 0.099*** 0.073*** 0.049*** 0.150***
LM test: no spatial error 125.07*** 128.61*** 333.25*** 279.48*** 151.44*** 68.057*** 641.67***
LM test: no spatial lag 172.33*** 154.94*** 243.25*** 162.4*** 183.22*** 81.552*** 416.05***
RLM test: no spatial error 0.085*** 9.722*** 90.182*** 161.45*** 22.708*** 12.186*** 253.6***
RLM test: no spatial lag 47.342*** 36.051*** 0.179 44.371*** 54.494*** 25.682*** 27.98***
Distance weight matrix
Global Moran’s I 0.049*** 0.092*** 0.153*** 0.109*** 0.161*** 0.117*** 0.203***
LM test: no spatial error 59.001*** 209.41*** 575.1*** 292.5*** 637.68*** 338.14*** 1011.1***
LM test: no spatial lag 62.338*** 231*** 429.62*** 146.78*** 460.53*** 194.29*** 771.53***
RLM test: no spatial error 2.477 1.572*** 146.84*** 168.84*** 203.45*** 148.01*** 294.72***
RLM test: no spatial lag 5.814** 23.164*** 1.351 23.112*** 26.296*** 4.163** 55.145***
Note: *p<0.1; **p<0.05; ***p<0.01
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Table A2. Spatial error and lag model estimates
Dependent variable:

lnCO pc2 lnSO pc2 lnNO pcx
lnCOpc lnPM pc2.5 lnPM pc10

lnTSPpc

Variable Model: SEM
 0.4500***

(0.0120)
0.3942***
(0.0210)

0.3994***
(0.0209)

0.4126***
(0.0207)

0.4316***
(0.0203)

0.4436***
(0.0201)

0.4642***
(0.0197)

lnIncrpc 0.508535***
(0.1681)

0.8138***
(0.1712)

1.5762***
(0.1746)

0.3229***
(0.0743)

0.9336***
(0.1423)

0.7905***
(0.1311)

0.2625*
(0.1383)

2( )lnIncrpc -0.0275***
(0.0092)

-0.0537***
(0.0094)

-0.0837***
(0.010)

-0.0147***
(0.0041)

-0.0505***
(0.0078)

-0.04211***
(0.0072)

-0.0144*
(0.0076)

lnPopdens -0.1557***
(0.0088)

-0.1037***
(0.0090)

-0.1669***
(0.0092)

-0.2225***
(0.0039)

-0.2441***
(0.0075)

-0.2439***
(0.0069)

-0.2334***
(0.0073)

Model: SAR
 0.3956***

(0.0196)
0.3774***
(0.0208)

0.3236***
(0.0204)

0.1567***
(0.0147)

0.3111***
(0.0182)

0.2932***
(0.0179)

0.3398***
(0.0181)

lnIncrpc 0.2106
(0.1510)

0.6573***
(0.1535)

1.2323***
(0.1598)

0.2388***
(0.0704)

0.7108***
(0.1294)

0.6414***
(0.1215)

0.1320
(0.1270)

2( )lnIncrpc -0.0115
(0.0083)

-0.0441***
(0.0085)

-0.0657***
(0.0088)

-0.0102***
(0.0039)

-0.0388***
(0.0071)

-0.0341***
(0.0067)

-0.0075
(0.0070)

lnPopdens -0.1317***
(0.0081)

-0.0864***
(0.0081)

-0.1444***
(0.0085)

-0.2059***
(0.0039)

-0.2158***
(0.0072)

-0.2137***
(0.0067)

-0.2021***
(0.0070)

Municipality FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
N 2,610 2,610 2,610 2,610 2,610 2,610 2,610
Note: *p<0.1; **p<0.05; ***p<0.01. Values in parenthesis represent standard errors. All models estimated using a 10-nearest neighbour
spatial weight matrix.
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Figure A1. Moran’s I (LISA) scatterplot of air pollutants and CO2 emission
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Figure A2. Spatial Clustering (Cluster and Outlier - Anselin’s Local Moran’s I) and Hot Spot (Getis-Ord Gi*) Analyses
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Note: Tests based on fixed distance (Euclidean distance) spatial weight matrix
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