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Abstract

Urban road transport is an important source of local pollution and CO2 emissions.

To tackle these externalities, it is crucial to understand who contributes to emissions

today and what are the alternatives to high-emission trips. We estimate individual

contributions to transport-induced emissions, by bringing together data from a travel

demand survey in the Paris area and emission factor data for local pollutants and CO2.

We document high inequalities in emissions, with the top 20% of emitters contributing

75-85% of emissions on a representative weekday, depending on the pollutant. Top

emissions result from a combination of high distances travelled, a high reliance on car

and, mainly for local pollutants, a higher emission intensity of cars. We estimate with

counterfactual travel times that 53% of current car drives could be shifted to electric

bikes or public transport with a limited time increase. This would reduce the emissions

from daily mobility by 19-21%, with corresponding annual health and climate benefits

of around e245m.
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1 Introduction

Road transport is responsible for several well-documented environmental externalities (Parry

et al., 2007). First, it contributes to outdoor air pollution, which has been identified by the

WHO as the world’s “largest single environmental health risk” (WHO, 2014), accounting

for an estimated 4.2 million deaths per year. Beside its impact on physical health, air

pollution negatively impacts mental health (Bishop et al., 2018; Braithwaite et al., 2019),

the formation of human capital (Currie et al., 2014) and productivity (Chang et al., 2019).

Road transport also contributes to greenhouse gas emissions, mostly carbon dioxide (CO2),

with an increasing contribution relative to other economic sectors in most developed countries

(IEA 2019). This trend needs to be reverted to achieve emission reductions consistent with

the Paris agreement.

This paper focuses on local pollutant and CO2 emissions from transport in urban areas,

where emissions are both more detrimental to health and possibly easier to tackle than

in rural areas. On the first point, many urban areas suffer from high levels of pollution,

including in developed countries subject to relatively strict environmental regulations: in

Europe, France, Germany and the UK were condemned in 2018 for failing to meet air quality

standards in several cities (European Commission, 2018). On the second point, urban areas

present more alternatives to cars: the higher density makes active modes more attractive, and

public transport is more widespread (Creutzig et al., 2020). Yet, policy proposals aiming at

restricting driving for polluting cars, whether motivated by air quality or climate mitigation

concerns, are controversial (Viegas, 2001; Le Parisien, 2019; Delhaes and Kersting, 2019;

Isaksen and Johansen, 2020). It is then crucial to understand who the high emitters are,

and whether they could easily switch to a low-emission alternative.

In this paper, we estimate how much individuals contribute to transport-related pollution

via their daily travels. To do so, we combine individual travel information from a large

representative survey conducted in the Paris area with mode-specific and vehicle-specific

emission factors. We focus on two local pollutants having detrimental effects on health,
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nitrogen oxide (NOx) and fine particulate matter (PM2.5), and the main greenhouse gas,

carbon dioxide (CO2). We find strong inequalities in emissions among individuals, with the

top 20% of emitters contributing 75-85% of emissions on a representative weekday, depending

on the pollutant.

We then investigate the characteristics associated with high emissions using two com-

plementary methods: in a first step, we note that total emissions are the exact product of

three channels: distance, modal choice, and emission intensity (per kilometer.passenger and

within modes). We apply an exact factor decomposition analysis (LMDI) on emissions to

understand how the respective contributions of these three channels to top emissions. For

local pollution, higher distances travelled, a higher reliance on car, and higher emission in-

tensities within modes contribute about the same to top emissions. In contrast, for CO2 top

emissions are mostly explained by high distances and a high reliance of cars, and less by

differences in emission intensities.

In a second step, we investigate the individual characteristics associated with each of the

three channels, focusing on car - the most emitting mode - for modal choice and emission

intensity. Beyond the characteristics already documented in the literature, distance to the

centre or employment status, we highlight the important association of some employment

characteristics with the reliance on car, such as being a manual or trades worker, a self-

employed white-collar, working in a factory or with atypical working hours. We also show

the ambivalent role of income, which is associated with higher distances, a higher probability

to use a car and a higher CO2 emission intensity of cars, but not with a higher NOx and

PM2.5 emission intensity.

Finally, we investigate the potential to reduce emissions. We use counterfactual transport

time data from a transport Application Programming Interface (API) to estimate the modal

shift potential. We find that 53% of current car drives could be shifted to regular, electric

cycling or public transport against an increase in travel time of at most 10 min per trip and

limited daily increase in travel time. Such modal shift would save 21% of the total NOx
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emissions induced by passenger daily mobility, 19% of the total PM2.5 emissions and 19%

of the total CO2 emissions. We document, with less precision, the potential for teleworking

(distance lever) and shifting to electric vehicles (emission intensity lever).

Our paper contributes to several strands of the literature: first, we contribute to the lit-

erature on environmental inequalities by investigating individual contribution to transport-

related pollutants and CO2 emissions. There is a vast literature examining cross-country

inequalities in local pollution emissions - in relation to the Environmental Kuznets Curve

hypothesis (Dinda, 2004) -, and a more limited literature examining inequalities at the in-

dividual or household level (Levinson and O’Brien, 2018). On CO2 emissions, there is also

flourishing literature looking at inequalities in individual carbon footprint at the country or

regional scale (Sager, 2019; Ivanova and Wood, 2020). Most of the studies estimating in-

dividual emissions rely on input-output methodologies combined with micro-level consumer

expenditure surveys, which provide very limited information on travel behavior (mostly the

purchase of fuel and public transport tickets and subscription), and lack precise spatial in-

formation. As far as we know, the subset of papers specifically examining the incidence of

carbon tax in relation to transport emissions also relies on consumer expenditure surveys as

far as we know (Douenne, 2020; Cronin et al., 2018). Our paper is closer in spirit to stud-

ies from the transport and urban planning literature estimating (inequalities in) individual

emissions from transport using detailed travel diaries from a sample of individuals (Brand

and Preston, 2010; Yang et al., 2018; Brand et al., 2021). An important limitation of these

studies, however, is to rely on low sample sizes, and, often, on non-representative surveys

where highly educated individuals are over-represented. In contrast, we use a large represen-

tative survey (N=23,690). Finally, although we do not examine a policy in particular, our

paper is connected to previous work having estimated the distributional impacts of different

transport policies affecting car use in the Paris area, such as Bureau and Glachant (2008) or

Bureau and Glachant (2011) analysing the distributional impact of road pricing for the first

one, and of policies reducing the cost of public transit for the second one.
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Second, we contribute to the literature examining the potential for emission reductions

from transport, in particular the potential for modal shift (Javaid et al., 2020; Yang et al.,

2018). By using data on trip duration by mode retrieved from a transport API, we are

able to estimate the share of trips that can be done with another mode than car, based on

observed individual travel data. Compared to previous work focusing on the potential for

modal shift for short trips specifically (de Nazelle et al., 2010), or restricting the analysis to

a modal shift to public transport or bike (Yang et al., 2018), we do not set a limit on trips’

distances and we allow for substitution with an under-investigated transport mode, electric

bike, which we show has a high potential.

Third, we contribute to the literature examining the trade-offs and complementarities

in tackling both CO2 and local pollution. Durrmeyer (2018) and Linn (2019) show that

while effective in decreasing CO2 emissions, CO2-based vehicle taxes are likely to increase

the emission of damaging air pollutants (NOx and PM2.5), because they increase the share of

diesel cars, less CO2-intensive but more intensive in NOx and PM2.5. The reverse trade-off

may exist in the case of local transport policies driven by air pollution concerns, and low-

emission zones indeed tend to be more restrictive for diesel cars than for gasoline cars. Our

results suggest that a policy targeting cars’ local pollutant emission intensity may also have

different distributional impacts from a policy targeting the CO2 emission intensity, since

we find different associations between household income and the PM2.5 vs. CO2 emission

intensity of car trips. At the same time, policies leading to a modal shift away from car

would achieve both a reduction in local pollutant and CO2 emissions.

The paper is organized as follows: Section 2 presents the local context of air pollution in

the Paris area; Section 3 presents the data and methods used; Section 4 presents the results

and section 5 discusses them.
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2 Air pollution and transport emissions in Paris

We consider the Paris metropolitan area, which we define here as the administrative region

of Ile de France (IdF), represented on Figure 1a - the region is the first level of administrative

subdivision in France.1. The IdF region has a population of 12.2 million inhabitants and is

made of three layers: the city of Paris in the centre (red), a first layer around Paris called the

“inner suburbs”, made of three small départements (blue) - the second level of administrative

subdivision in France, and a second layer called the “outer suburbs”, made of four larger

but less dense départements (yellow).

The Paris area is a typical monocentric city where most public transport lines converge

to the centre. Air pollution levels regularly exceed recommended and legal thresholds. While

concentrations of the main regulated pollutants2 have been decreasing throughout the area

over the past ten years, they remain high, especially in the city centre. Figure 1b shows NO2

concentrations in 2015 and shows that the legal threshold of 40µg/m3 is exceeded in Paris

and the majority of the inner suburbs. Furthermore, despite the improvement in air quality,

air pollution is the number one environmental concern in IdF according to a 2018 survey,

and 61% of the respondents think that air pollution has increased in the past ten years.

In this paper, we focus on emissions of two local air pollutants: NOx, a generic category

of pollutants including NO2, and PM2.5. We choose these pollutants for two reasons: first,

road traffic is a major contributor for these two pollutants: it is responsible for 56% of

nitrogen oxides (NOx) and 35% of the PM2.5 emissions of the region (Source: Airparif).

Second, these two pollutants have detrimental effects on health: long-term exposure to NO2

is associated with increases of bronchitis in asthmatic children and reduced lung function

growth (World Health Organization, 2018). Exposure to PM2.5 has detrimental effects on

health and increases mortality risk in the short- (Deryugina et al., 2019) and long-term

1The Paris metropolitan area as defined by the French statistical institute does not include all the IdF
region; it excludes a small part of the outer suburbs. We consider the whole region because our transport
data are representative of the population from the entire region

2nitrogen dioxide NO2, ozone O3, and particulate matter PM10
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(Lepeule et al., 2012), without evidence of a threshold below which exposure would be

harmless (World Health Organization, 2018). We also study the emissions of CO2 emissions,

road traffic being responsible for 32% of the region’s total emissions (Source: Airparif).

To dampen local pollution from cars, several regional and local policies have been imple-

mented. Short-term driving restrictions based on license plate numbers have been system-

atically imposed since 2014 during pollution peaks. Long-term measures advertised by the

regional authority include developing the public transport network, building more cycling

lanes, reserving lanes for buses, clean vehicles and car-pooling, as well as speed reduction on

the ring road (Région Ile de France, 2016). By far, the most ambitious policy specifically

targeting air pollution is the Low Emission Zone (LEZ) projected to be rolled-out in Paris

and the surrounding municipalities between 2017 and 2024, which should progressively ban

all polluting vehicles - defined by their age and fuel type - from the city centre. Yet this

policy has met political opposition from some municipal authorities (Le Parisien, 2019). To

reduce both local air pollution and CO2 emissions from cars, the Paris metropolitan area

also announced the complete ban of diesel cars by 2024 and of gasoline cars by 2030 (Le

Monde, 2018).
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3 Data and methodology

3.1 The Data

We combine four types of data from different sources.

Individual transport: We use transport data from the 2010 wave of the EGT (Enquête

générale des transports - EGT 2010-STIF-OMNIL-DRIEA), a survey conducted every 8 to 10

years in the IdF region. The 2010 wave was conducted between October 2009 and May 2010,

and between October 2010 and May 2011. The survey contains detailed information on the

transport choices of 35,175 individuals from 14,885 households3 on a given weekday4. The

sample is representative of the IdF population (as characterized in the 2008 census) in terms

of household size, type of housing and individual socio-economic and demographic profiles5.

The EGT is also broadly representative of the 2011 IdF population (see Table A.3, comparing

selected household characteristics for the entire EGT sample and from 2011 administrative

data). The EGT also has detailed socio-demographic characteristics (see Table A.2 for

descriptive statistics of the whole sample at the household level). For the present analysis,

we use the subsample of adults having done at least one trip during the weekday (N=23,690).

This represents 93.07% of the surveyed adults. Table 1 shows descriptive statistics for this

subsample. In table A.4 we present a balancing test comparing mean observed characteristics

for the full sample and the sample of adults with at least one trip recorded. The two samples

are broadly balanced. There are small significant differences in the activity status, with a

higher share of full-time employed individuals and lower shares of inactive individuals in the

sample of mobile individuals. Mobile individuals are also more educated and have a higher

income compared to the whole sample. We consider that this small selection bias is not an

3The sampling rate at the household level is 1/330. In 2010, the IdF region had a population of 11.79
millions inhabitants

4The respondents are asked about all their trips from the day preceding the interview, which can corre-
spond to a day between Monday and Friday. We include survey day-of-week fixed effects in all our regression
analyses.

5based on 30 categories combining gender, age, socio-professional category and main occupation
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issue given the descriptive purpose of our analysis.

The survey records and geolocates all the places visited by each individual during the

day with a grid size of 100 meters*100 meters. Within each trip defined by an origin and

destination location, the data describes each journey stage, a journey stage being defined as

a single travelling mode6. Only the trips starting or finishing within the IdF boundaries are

recorded and geolocated. For all the trips starting (finishing) in the IdF region but finishing

(starting) in another region, we do not know the departure (arrival) point’s location, nor the

trip distance. We use three variables in the analysis which are not readily available in the

EGT data:

• Actual distances travelled: The EGT data only contains as-the-crow-flies distances

for each trip and journey stage. We obtained data on actual distances from the regional

transport authority, estimated with a shortest-path algorithm.

• Continuous income variable: in the EGT data, household income is self-declared

and interval-coded in nine income brackets, with a non-response rate of 6%. In or-

der to estimate the relationship between income deciles and contribution to emissions,

we estimate the full distribution of income using an interval regression imputation

method. Since the method assumes an underlying normal model for the partially

observed imputed variable (given other predictors) and the distribution of income is

usually log-normal, we apply a log transformation to the income brackets declared in

the EGT. We then estimate the continuous income variable by including several socio-

economic factors known to be correlated with income in the interval-coded regression.7

For households with a missing income bracket, we use a predictive mean matching

6For example, a work commuting trip by subway including one change will include four journey stages:
the first stage is the journey by foot from home to the subway station; the second stage is the subway journey
with the first metro line, finishing at the subway station where the commuter changes lines; the third stage
is the subway journey with the second metro line, finishing at the subway station near the workplace; the
fourth stage is the journey by foot from the subway station to the workplace.

7List of predictors: age, age squared, gender, education level and socio-economic class of the household
head; socio-economic category of her partner; number of household members working full-time and number
working part-time; housing status of the household; dummy for whether the household is eligible to family
allowances based on the number and age of children, to proxy for social transfers.

8



imputation method, using the same predictors and similarly predict their continuous

income. Finally, we transform the obtained continuous variable of household monthly

income into a variable of annual income per consumption unit (using the OECD equiv-

alence scale). Table A.3 shows that the average income per consumption unit obtained

with this imputation is close to the average income per consumption unit in IdF in

2011 obtained from administrative data.

• Public transport stops within a one kilometre radius: We create an indicator

variable indicating whether a household lives less than one kilometer away from a

public transport stop. To do so, we combine geocoded information on the location of

each public transport stop in 2010 contained in a separate EGT file (including subway,

regional train and streetcar), with information on households’ place of residence.

Emission factors We use emission factor data by transport mode (and by type of vehicle

for cars and two-wheelers) coming from a variety of sources, described in detail in the next

section and in Appendix A.1.

Counterfactual travel time data To estimate modal shift options for car drivers, we

estimated travel time for different transport modes for all the non-walking trips reported in

the EGT data. This represents 68,110 trips made by 20,725 individuals, including 33,010

car drives made by 10,875 individuals. For each trip, we identified the departure and arrival

points with the latitude and longitude of the centroid of the origin and destination squares.

We then used the Google Console Directions API to predict each trip’s duration for three

different transport modes: driving, cycling and public transit. Our trip requests gave results

for more than 99.9% of the cases for car and cycling trips and for 85% of the cases for public

transit trips (34% of which suggested walking as the fastest way to arrive at destination).

For the remaining 15% of trips, no public transit route exists between the departure and

arrival point. Appendix A.2 provide more details on the exact data request and compares

9



Table 1: Summary statistics - Individuals ≥18 years old

Mean Sd

Residence: Paris 0.21 0.41

inner suburbs 0.37 0.48

outer suburbs 0.42 0.49

Age 45.72 16.62

Education: Primary school 0.06 0.23

Secondary education 0.39 0.49

Higher education < 3 years 0.14 0.35

Higher education ≥ 3 years 0.35 0.48

Still in education 0.07 0.25

SES: Farmers 0.00 0.03

Manual workers 0.11 0.31

Office workers 0.19 0.39

Intermediate professions 0.19 0.40

Traders and craftspeople 0.03 0.17

Managers and executives 0.20 0.40

Pensioner 0.20 0.40

Other 0.07 0.26

Estimated Net household income 40,786.73 25,901.23

Estimated Net household income per consumption unit 24,166.10 14,626.03

Distance to workplace (km) 10.57 10.69

Nb of trips prev. day 4.32 2.40

Modal share for trips: car 0.39 0.44

collective transportation 0.27 0.38

bicycle 0.02 0.11

two-wheeler 0.02 0.11

walking 0.31 0.37

other mode 0.00 0.05

Observations 23,690

Note: Source: EGT data. Data weighted with EGT individual-level sampling weights. SES stands for
Socio-Economic Status. The eight categories follow the aggregate classification of the French Statistical
Institute.
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travel times declared in the survey to those given by the API. The predicted times of the

API are 20-39% lower than those declared by individuals, depending on the mode. Since we

base our calculations on the API times only, it should not bias our estimation of modal shift

potential too much. We use the API times for cycling trips to estimate the duration of the

same trips had they been done with electric bikes instead of regular bikes. We assume an

average cycling speed of 15km per hour and an average electric cycling speed of 19km per

hour, following the figures from a 2015 survey 8, and apply this constant speed factor to the

estimated travel times of cycling trips.

Charging stations for Electric Vehicles We use a GIS software to identify all the

households having at least one electric vehicle (EV) charging station less than 500 meters

away from home. We did not find an exhaustive dataset of all charging stations located in the

IdF region. We instead combine geocoded data from four different sources: OpenStreetmap9

(where many stations located in Paris centre are missing), the national open data service10

(where many stations located in Paris centre are also missing), and subregional open data

services providing data on two cities (Paris and Rueil-Malmaison).

3.2 Methodology

Building individual measures of contribution to pollution. We estimate individual-

and trip-level contributions to local and global pollution based on the detailed information

contained in the EGT. For local pollutants, we use NOx and PM2.5. For global pollution,

we use CO2 emissions. The total emissions of pollutant P for individual i during the day

are the sum of her emissions at the trip level, with T the total number of trips made during

he day:

8The survey was conducted in four European countries including France https://6-t.co/etudes/

donnees-inedites-vae-en-europe-panel/
9https://geodatamine.fr/dump/charging_station_geojson.zip

10https://www.data.gouv.fr/fr/datasets/fichier-consolide-des-bornes-de-recharge-pour-vehicules-electriques/
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EP,i =
∑
t∈T

EP,i,t (1)

We calculate emissions at the trip level EP,i,t using information on each journey stage

j that t is made of. For each journey stage j, we know the (estimated) journey distance

in kilometers, the travel mode used, the emission factor associated with the mode, and the

number of passengers if the mode used is a private vehicle (car or two-wheeler).

i’s emissions of Pollutant P on trip t made of J journey stages are defined as:

EP,i,t =
J∑

j∈J

dj,ieP,j,irj,i (2)

Where dj,i is the distance travelled by i on journey stage j, eP,j,i is the pollutant P ’s

emission factor associated with travel mode m used in journey stage j in grams per kilometre

driven; rj,i is the inverse of the occupancy rate11 of mode m for individual i for journey stage

j. For all the journey stages done with a collective transport mode, the occupancy rate is set

to one, as an average occupancy rate is included in the estimation of their emission factor.

The assumptions made to estimate emission factors for each mode are explained below

and more extensively in Appendix A.1. Active modes (walking, cycling, skate-boarding,

etc,) have a zero emission factor for all three pollutants. The train and subway have a zero

emission factor for NOx and CO2
12, but not PM2.5, due to the emissions from train brakes.

For transportation modes with positive emission factors - buses, two-wheelers and cars for

NOx and CO2, plus electric public transport for PM2.5, we use a combination of sources

described in Appendix A.1.

Emission factors can exist in two versions for cars: the “true”, on-road emission factor,

which varies with the vehicle speed, quality of the road and driving conditions; and the

type-approval values, given by car manufacturers and subject to emission standards under

11The occupancy rate is defined as the number of passengers in the vehicle.
12These modes embody some NOx and CO2 emissions, but given our focus on air pollution mitigation in

the Paris area, we think it is satisfying to focus on exhaust emissions only.
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EU rules. We use on-road emission factors for NOx and PM2.5, but type-approval values

for CO2, for several reasons: first, the discrepancy between type-approval and real-world

emissions is much stronger for NOx than for CO2 emissions13, so it matters more to correct

the NOx emission factor than the CO2 emission factor. Second, for cars’ emission factors,

there exists a rich vehicle-specific data source for type-approval CO2 emission factors but

not for NOx and PM2.5. Using it allows us to estimate CO2 emission factors based on

all the car characteristics declared by the household, in particular horsepower, a variable

likely to be correlated with households’ socioeconomic status. Since we seek to identify

the socio-economic and spatial factors associated with emissions, this information is key.

Third, for PM2.5 specifically, using on-road emission factors allows us to take into account

not only exhaust emissions, but also emissions from tyres and brakes, which represent a

substantial share of emissions (OECD, 2020). The on-road emission factors for NOx and

PM2.5 come from two sources, which both rely on the EU vehicle emissions calculator Copert

(see EMEP/EEA (2018) for more details). The type-approval CO2 emission factors come

from the national environmental agency Ademe for cars, and from the French Ministry of

the Ecology for other transport modes.

The NOx, PM2.5 and CO2 emission factors by transport mode are summarized in table 2.

The factors shown for car and taxi are those imputed when an individual travels with a

car that she does not own or a taxi, for which we do not have vehicle characteristics. We

then impute a constant emission value from a representative car (a 2008 diesel car of 7 hp).

For taxis, we multiply the emission factor by two to reflect empty journeys, as suggested

in (Ministère de la Transition écologique et solidaire, 2018). In reality, there is a large

variation in the emission intensity of journey stages made with individual car in the survey

(see Figures A.1, A.2 and A.3 showing the different values obtained for the emission

13Baldino et al. (2017) compare on-road and type-approval emission factors for recent diesel vehicles
brought under the spotlight by the 2015 Volkswagen scandal. They find that average on-road CO2 emissions
are on average 30% higher than laboratory emission standards and type-approval values for a sample of Euro
5 and Euro 6 cars (registered after 2011), and report that the gap has been increasing over the 2001-2015
period. For NOx emissions, they find a much higher discrepancy with an average factor of 4 between the
type-approval and real-world values.
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Table 2: Assumed contribution to pollution emissions in different transport modes

Transport mode Unit
NOx

(mg/km)
PM2.5

(mg/km)
CO2

(g/km)

Walking and related modes per passenger 0 0 0

Cycling per passenger 0 0 0

Street-car per passenger 0 7 0

Metro per passenger 0 7 0

Train per passenger 0 7 0

Bus per passenger 242 5 117

Taxi per passenger 1,178 127 332

Car not owned by the household per vehicle 589 63 166

Two-wheeler not owned by the household per vehicle 86 21 65

.

Note: NOx and PM2.5 emission factors reflect on-road emissions and CO2 emission factors reflect type-
approval values. All the assumptions are explained in Appendix A.1

intensities per passenger (eP,j,irj,i), by transport mode and pollutant). The heterogenity in

NOx emission factors for cars is the highest, with few extremely high values corresponding

to old light-commercial vehicles.

We use these emission factors to calculate EP,i for NOx, PM2.5 and CO2. Given the scope

of the EGT survey, these estimated individual emissions only include emissions from trips

made within the metropolitan area for a representative weekday.

Exact factor decomposition analysis Starting from equation (2), we re-write individual

emissions in the form of an extended Kaya identity (see Wang et al. (2005); Mahony (2013);

Bigo (2019) for other examples), as the product of distance, modal share and emission

intensity by mode. Note Di the total distance travelled by individual i, Sm,i the modal

share of mode m, and IP,m,i the average emission intensity of mode m used by individual

i for pollutant P (using the notations from equation 2, IP,m,i = eP,m,irm,i). If we call dm,i

the total distance travelled by individual i with mode m and EP,m,i the total emissions of

pollutant P from using mode m, we have:

EP,i =
∑
m∈M

Di
dm,i

Di

EP,m,i

dm,i

=
∑
m∈M

DiSmiIP,m,i (3)
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Given this multiplicative structure, we can use the Log Mean Divisia Index (LMDI)

developed by Ang (2004, 2005) to decompose differences in individual-level emissions into

differences in distance, modal choice, and the emission intensity by mode. We then calculate

the contribution of each component in explaining the difference in emissions between an

average individual from the middle quintile (the middle 20% of the distribution in emissions),

and reference individuals from quintiles 1,2, 4 and 5 of emissions. The LMDI decomposition

has been originally developed to explain changes in emissions over time and this is how it

has been applied mostly in the literature. Ang et al. (2015) suggest that the LMDI is also an

appropriate method to compare emissions between countries at a given point in time, since

it combines ease of use with desirable properties of perfect decomposition and symmetry of

decomposition. Some applications have used the LMDI for this purpose, using aggregate

country-level data (Liu et al., 2017). Although the method has, to our knowledge, not

been applied to individual-level data as we do here, our decomposition is mathematically

equivalent to the cross-country case.

We proceed as follows: for each pollutant P , we define 5 quintiles of emissions, Q1 to

Q5. We generate a reference individual for each quintile, that is, an individual having the

average distance DQk, modal share Sm,Qk, and emission intensity Im,Qk of her quintile Qk,

k = 1..514. For the reference individual of quintile Qk, the extended Kaya equation reads:

EP,Qk =
∑
m∈M

DQkSm,QkIP,m,Qk (4)

As recommended in Ang et al. (2015), we define a benchmark individual, here the ref-

erence individual from quintile 3, to which we compare the reference individuals from each

quintile. We then apply the LMDI decomposition. The difference in emissions between Qk,

k = 1, 2, 4, 5 and Q3 can be decomposed into the difference in the distance (D), modal share

(S) and intensity (I) components:

14this average individual has emissions EP,i that differ from the average emissions of her quintile, given
the multiplicative form of the decomposition formula: the product of averages is not the average of the
product
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EP,Qk − EP,Q3 = ∆EP,Qk−Q3,tot = ∆EP,Qk−Q3,D + ∆EP,Qk−Q3,S + ∆EP,Qk−Q3,I (5)

Following Ang (2005), this can be rewritten:

EP,Qk − EP,Q3 =
∑
m∈M

wmln(
DQk

D3

) +
∑
m∈M

wmln(
Sm,Qk

Sm,3

) +
∑
m∈M

wmln(
Im,Qk

Im,3

) (6)

Where wm is defined as:

wm =
EP,Qk − EP,Q3

ln(EP,Qk,m)− ln(EP,Q3,m)
(7)

And EP,Qk,m are the emissions of pollutant P associated with mode m for quintile Qk.15.

Individual characteristics associated with high emissions The LMDI decomposi-

tion is possible because individual emissions are defined as the exact product between total

distance travelled, modal shares, and the emission intensity of different modes. These three

components are not independent from each other and result from a complex chain of deci-

sions taken at the individual or household level, including the choice of residence, workplace,

vehicle bundle, and modal choice. Modelling all these decisions goes beyond the scope of

this paper. We instead investigate in three separate regression analyses which individual

characteristics are associated with distance, modal choice and emission intensity (focusing

on car for modal choice and emission intensity).

To investigate the characteristics associated with distance travelled, we estimate a log-

linear model. Defining ln(y) the natural logarithm of total distance travelled during the day,

x the set of covariates, and ε an error term, we set:

15The modal share of bus, two-wheeler and car is 0 for the bottom quintile of NOx emissions. To be able
to apply the log formula, we apply the “Small Value” strategy suggested in Ang and Liu (2007), that is, we
replace the zero values by δ = 10−100
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ln(y) = xβ + ε (8)

We then examine the characteristics associated with using a car at least once during the

day with a logit model. Defining Scar the modal share of car, the model writes:

Pr(Scar > 0|x) = Λ(xβ2) =
exp(xβ2)

1 + exp(xβ2)
(9)

We finally examine the characteristics associated with the average emission intensity of

car trips. We calculate the average emission intensity of car trips for each individual with

a positive car modal share. We estimate a simple linear model, and our results should be

interpreted conditionally on driving a car on that day. Defining IP,car the average emission

intensity of the car trips for pollutant P , and µ an error term, we estimate the following

model for the three pollutants NOx, PM2.5 and CO2:

IP,car = xβ3 + µ (10)

We run the models on two samples: the full sample of individuals, and the sample of

individuals in employment, for whom we have rich information on employment character-

istics. In all regressions, we control for survey day-specific effects: survey day-of-the-week

(we do not have information on the exact survey date); whether the individual encountered

a problem with taking transport that day (such as a car’s breakdown, a public transport’s

strike, or bad weather conditions); whether the individual was on holidays or on sickness

leave that day.
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4 Results

4.1 How unequal are contributions to emissions?

Figure 2 illustrates the high inequalities in daily emissions at the individual level using Lorenz

curves: on a representative weekday, the top 20% of NOx emitters contribute 85% of NOx

emissions, the middle 48% contribute 15%, and the bottom 32% have a zero contribution16

(figure 2a). The top 20% of PM2.5 emitters contribute 78% of PM2.5 emissions, the middle

62% contribute 22%, and the bottom 18% have a zero contribution (figure 2b). The top 20%

of CO2 emitters contribute 75% of emissions, the middle 48% contribute 25%, while 32%

have a zero contribution (figure 2c).

Top emitters are not exactly the same across pollutants but the correlation is high17: the

top 20% of NOx emitters contribute 70% of CO2 emissions. Inequalities of contribution to

emissions at the trip level (as defined by equation 2) are higher than at the individual level,

reflecting the high dispersion of trip distances (see Figure A.4).

16Only individuals with at least one trip are in the sample, so those with zero emissions are the ones
travelling only with active modes, electric collective transportation or electric car

17the correlation coefficient between individual-level NOx and CO2 emissions is 0.82
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Figure 2: Lorenz curves for contributions to emissions at the individual level

Note: the x-axis shows the percentiles of individual-level emissions and the y-axis shows the share of total
emissions generated by all the individuals below that percentile. The red curve shows how the distribution
would look like if everyone contributed equally to emissions Source: EGT data. Sample: all adults with at
least one trip on the day
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4.2 Are high emissions mostly due to high distances, high-emission

modal shares or highly polluting cars?

Figure 3 show the results of the LMDI decomposition for NOx, PM2.5 and CO2 emissions.

Tables A.5, A.6, A.7 and A.8 show the components’ values for each quintile and the LMDI

Deltas. For NOx and CO2 emissions, the lower emissions of the bottom two quintiles are

mostly explained by a different modal share, which is expected given the zero emission factor

of public transport and active modes, the only modes taken by 32% of the individuals. For

PM2.5, subway and train do not have a zero emission factor, such that distance plays a

greater role in explaining the low emissions of the bottom two quintiles.

For NOx and PM2.5, emission intensity, distance and modal share contribute about the

same way in explaining the difference between the Q5 and Q3. For example, for NOx,

differences in emission intensity contribute 36%, differences in distance 34%, and differences

in modal share 30%. For this pollutant, the values for each component are about 2.5 times

greater for Q5 than for Q3, with daily distances travelled of 62km, a car modal share of 92%,

and an emission intensity of car trips of 794 mg/km (see Table A.5).

For CO2 emissions, the role of emission intensity is less important than that for local pol-

lutants. Distance and modal share are more important, especially for the top two quintiles.

Differences in distances explain 58% of the difference in emissions between Q5 and Q3 for

CO2 (a contribution 24 percentage points higher than for NOx). Differences in modal share

explain 36% (6 percentage points higher than for NOx). Differences in emission intensity

explain only 6% (30 percentage points lower than for NOx).

To summarize, the top 20% of NOx and PM2.5 emitters are individuals combining high

distances travelled, by car, and with high-emitting cars. In contrast, the top 20% of CO2

emitters are individuals combining high distances travelled and car trips, with cars only

slightly more emission intensive than the average car.
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(a) NOx

(b) PM2.5 (c) CO2

Figure 3: Contribution of distance, modal choice and emission intensity to the differences in emissions, by
pollutant

Note: These graphs show, for each pollutant, the difference in emissions between the average individuals from
quintiles 1, 2, 4 and 5 and the benchmark individual from quintile 3 (total length of the bars), decomposed
into differences in total distance travelled, modal shares, and the emission intensity of a given mode. The
LMDI formula used is the additive decomposition (Ang, 2004).

21



4.3 Who emits pollution?

We now turn to the individual and household characteristics associated with higher emissions.

Column 1 of table 3 shows the estimated coefficients for the distance regression (equation 8).

Columns 2 and 3 show the average marginal effects from the logit estimation on the propen-

sity to use a car (equation 9), before and after controlling for having a motorized vehicle

available on that day18.

Spatial factors play an important role for distance and the propensity to use a car: living

in central Paris is associated with distances shorter by 24%19 and being 26 percentage point

less likely to use a car compared to living in the inner suburbs (w/o controlling for car

availability), while living in the outer suburbs is associated with distances longer by 48%

and being 18 percentage point more likely to use a car. Living close to a transport stop

is associated with distances shorter by 18%, probably partly capturing the fact that public

transport stops are located in denser areas. Living close to a public transport stop is also

associated with a decrease in the likelihood to use a car, an association that persists after

controlling for the availability of a car20.

The employment status is a second important characteristic. Being unemployed or inac-

tive is associated with shorter distances, with decreases ranging from -49% (for the unem-

ployed) to -67% (for pensioners) compared to being employed, and a much lower propensity

to use a car. Income is a third important characteristic, in part via the positive correla-

tion between income and car onership: being in the bottom decile is associated with a 22

percentage points lower probability to use a car compared to the six middle deciles when

18The omitted categories for the categorical variables present in the model are: for the place of residence,
we omit living in the inner suburbs; for gender, we omit male; for income deciles, we take as reference the
middle 40% and report coefficients for the two bottom deciles D1 and D2 and the two top deciles D9 and D10.
For the activity status, we omit employed individuals; for education, we omit the ”primary or secondary
education” category; for the type of car owned by the household, we omit the ”No car owned” category.

19for small values of estimated coefficients β̂, a 1-unit change in X corresponds approximately to an
expected increase in Y of β̂%, but for larger values, the exact interpretation is that a 1-unit change in X

corresponds to an expected value of Y multiplied by eβ̂ . Most of the obtained coefficients are relatively high
in magnitude, so we use the exponential formula to interpret the results.

20the vehicle availability variable is defined at the individual level and concerns the reference day, it is
different from the variables of car ownership defined at the household level
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vehicle availability is not controlled for, but only a 6 percentage points lower probability af-

ter controlling for it. Symmetrically, being in the top two income deciles is not significantly

associated with a higher probability to use a car once vehicle availability is accounted for.

Even after including a rich set of socio-economic, spatial and demographic factors as well as

controls relative to the survey day, the R-squared for the distance regression is quite low at

0.18, suggesting an important role for other, potentially unobserved factors driving mobility.

Table A.3 reports the estimated coefficients for the emission intensity regression (equa-

tion 10) for NOx, PM2.5 and CO2, before (columns 1, 3 and 5) and after (columns 2, 4 and

6) controlling for the type of vehicle owned by household. Some characteristics are associ-

ated with a higher emission intensity for all pollutants, such as living in Paris or owning a

light-commercial vehicle. The other way around, being unemployed or inactive and, all else

equal, having a higher education diploma, are associated with a lower emission intensity for

all pollutants, all else equal.

Other characteristics have an ambiguous role, and are associated with an increase in the

emission intensity for some pollutants and a decrease or no effect for others. In line with

the well-documented differences in local pollution and CO2 emission factors for diesel vs.

gasoline cars, owning a diesel car is associated with a higher emission intensity for NOx and

PM2.5, but a lower emission intensity for CO2, compared to owning a gasoline car. Being in

the top income decile is strongly associated with a higher CO2 emission intensity, even after

controlling for the type of vehicle owned by the household. This positive correlation between

top income and CO2 emission intensity can be explained by the fact that rich households

generally own heavier, larger and more powerful cars, attributes that correlate positively with

the CO2 emission factor. On the other hand, being in the bottom two deciles is associated

with a significantly higher PM2.5 and CO2 intensity, and a higher NOx intensity (but the

coefficient is not significant). This may be due to the fact that the cars owned by poorer

households are older and more often light-commercial vehicles, two attributes that correlate

positively with the emission intensity across all pollutants, and more often powered with
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Table 3: Estimated coefficients for distance and propensity to use a car - all individuals

(1) (2) (3)

ln dist uses car uses car

Inner Paris -0.277∗∗∗ -0.262∗∗∗ -0.154∗∗∗

(0.0273) (0.0116) (0.0116)

Outer suburbs 0.389∗∗∗ 0.180∗∗∗ 0.112∗∗∗

(0.0209) (0.00764) (0.00682)

Public transport stop -0.204∗∗∗ -0.166∗∗∗ -0.121∗∗∗

(0.0218) (0.00761) (0.00670)

Motorized vehicle at hand 0.475∗∗∗

(0.00736)

Female -0.297∗∗∗ -0.0487∗∗∗ 0.00571

(0.0159) (0.00531) (0.00479)

Household size 0.00405 0.0167∗∗∗ 0.00464∗

(0.00680) (0.00256) (0.00221)

D1 -0.222∗∗∗ -0.217∗∗∗ -0.0640∗∗∗

(0.0399) (0.0146) (0.0145)

D2 -0.179∗∗∗ -0.124∗∗∗ -0.0275∗

(0.0379) (0.0128) (0.0111)

D9 0.181∗∗∗ 0.0587∗∗∗ 0.0132

(0.0299) (0.0102) (0.00952)

D10 0.196∗∗∗ 0.0641∗∗∗ 0.00180

(0.0294) (0.0103) (0.00950)

Pupil/Student 0.250∗∗∗ -0.192∗∗∗ -0.0445∗∗∗

(0.0329) (0.0138) (0.0134)

Unemployed -0.666∗∗∗ -0.0854∗∗∗ -0.0282∗

(0.0478) (0.0141) (0.0126)

Other inactive -0.930∗∗∗ -0.0413∗∗∗ -0.0415∗∗∗

(0.0260) (0.00806) (0.00733)

Pensioner -1.092∗∗∗ -0.182∗∗∗ -0.116∗∗∗

(0.109) (0.0301) (0.0316)

Higher education <3 years 0.271∗∗∗ 0.0569∗∗∗ 0.0121

(0.0261) (0.00884) (0.00802)

Higher education ≥3 years 0.217∗∗∗ 0.0161∗ -0.0216∗∗

(0.0225) (0.00757) (0.00685)

Constant 2.842∗∗∗

(0.0372)

N 23596 23600 23524

R-squared 0.1810

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Standard errors clustered at the household level in parentheses.

Columns (2) and (3) report the average marginal effects for each

coefficient. All specifications also include survey-day fixed effects

and indicator variables for problems with taking transport, being

on leave or on sickness leave on the survey day. D1,...,D10:

indicator for household income deciles
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diesel, which is positively correlated with PM2.5 and NOx intensity. Like for the distance

regression, the explanatory power of the socio-economic, spatial and demographic factors

included in the regression is low, at 0.15-0.16 when the type of car owned by the household

is accounted for.

Table A.11 show the results of fitting similar models on the subsample of individuals

in employment, after adding controls for the distance to work, type of commute, type of

workplace and type of job21. As expected, the type of commute influences the distances

travelled and propensity to use a car: an increase by 1% of the as-the-crow-flies commuting

distance is associated with total distances travelled higher by 0.5%, controlling for the type of

commute flow (defined by the combination of residence location (Paris/inner suburbs/outer

suburbs) and workplace location (Paris/inner suburbs/outer suburbs)). Commuting type

matters more than commuting distance for the propensity to use a car: having to commute

from suburbs to suburbs (reference category) is associated with an increase in the likelihood

to use a car by 24 to 35 percentage points compared to commuting from Paris to the suburbs

or Paris to Paris, probably reflecting the low density of the (radial) Parisian public transport

network in the suburbs. The type of job does not affect distances travelled much once other

spatial and socio-economic characteristics are taken into account. The R-squared of the

distance regression is much higher than for the analysis of the whole sample, suggesting a

high explanatory power of job location and employment characteristics.

While the type of occupation does not affect distances travelled much, there are strong

associations between the type of occupation and the propensity to use a car: working in a

factory is associated with an increase in the likelihood to use a car by 9.6 percentage points,

as is having atypical working hours22. Having a self-employed white-collar profession or

being a trades worker are associated with an increase in the likelihood by 12-14 percentage

21The omitted reference categories are: for the place of residence combined with the place of work:
individuals living in the suburbs and working in the suburbs (inner or outer); for the employment status:
working full-time; for the workplace type: working in any other place than a factory; for socio-professional
category: intermediate professions.

22Atypical working hours are defined as going to work or coming back from work before 5am, or going to
work after 4pm.
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Table 4: Regression coefficients for the emission intensity of trips made by car - all individuals

(1) (2) (3) (4) (5) (6)

NOx/km, all NOx/km, all PM25/km, all PM252/km, all CO2/km, all CO2/km, all

Inner Paris 75.30∗ 68.62∗ 8.785∗∗∗ 8.096∗∗∗ 19.10∗∗∗ 19.18∗∗∗

(32.76) (29.28) (1.533) (1.490) (2.764) (2.766)

Outer suburbs -0.249 23.11 1.404∗ 2.876∗∗∗ -3.564∗∗∗ -3.365∗∗∗

(14.61) (12.69) (0.666) (0.607) (0.802) (0.769)

Public transport stop -6.142 -19.78 -0.720 -2.282∗∗∗ 1.516∗ 1.856∗∗

(13.66) (12.64) (0.632) (0.590) (0.732) (0.706)

Female -101.3∗∗∗ -77.10∗∗∗ -4.919∗∗∗ -3.532∗∗∗ -0.955 -0.724

(11.35) (10.64) (0.510) (0.480) (0.718) (0.708)

Household size 8.844 14.15∗ 0.699∗∗ 1.603∗∗∗ -1.367∗∗∗ -1.686∗∗∗

(6.351) (5.760) (0.263) (0.242) (0.296) (0.287)

D1 69.77 12.12 5.815∗∗ 2.293 4.915∗ 4.247∗

(43.91) (41.96) (1.882) (1.725) (1.933) (1.934)

D2 22.72 -12.96 7.292∗∗∗ 3.735∗∗ 3.073∗ 3.664∗

(26.15) (26.35) (1.542) (1.441) (1.541) (1.529)

D9 -8.191 -7.537 -0.790 0.0830 3.058∗ 2.423∗

(21.14) (19.83) (0.894) (0.841) (1.241) (1.198)

D10 -13.76 8.543 -1.475 0.990 7.681∗∗∗ 7.046∗∗∗

(22.07) (20.22) (0.871) (0.822) (1.281) (1.254)

Pupil/Student -113.7∗∗∗ -79.07∗∗ -5.967∗∗∗ -2.465 2.654 1.976

(22.55) (24.96) (1.434) (1.401) (1.884) (1.915)

Unemployed -80.51∗∗∗ -63.81∗∗∗ -4.410∗∗ -3.763∗∗ -6.428∗∗∗ -6.039∗∗∗

(19.48) (18.53) (1.520) (1.381) (1.825) (1.804)

Other inactive -150.3∗∗∗ -121.5∗∗∗ -9.218∗∗∗ -7.594∗∗∗ -9.488∗∗∗ -9.099∗∗∗

(13.82) (12.66) (0.726) (0.671) (0.985) (0.965)

Pensioner -55.32 -37.62 -0.838 -0.0630 -5.845 -5.437

(35.30) (43.42) (3.978) (3.921) (5.265) (5.094)

Higher education <3 years -95.10∗∗∗ -77.79∗∗∗ -4.916∗∗∗ -3.882∗∗∗ -7.110∗∗∗ -6.939∗∗∗

(18.03) (16.23) (0.801) (0.744) (0.999) (0.965)

Higher education ≥ 3 years -143.4∗∗∗ -113.2∗∗∗ -6.742∗∗∗ -5.561∗∗∗ -6.935∗∗∗ -6.117∗∗∗

(17.09) (15.02) (0.708) (0.653) (0.896) (0.863)

HH owns Diesel Car 129.0∗∗∗ 22.25∗∗∗ -8.854∗∗∗

(7.261) (0.623) (0.857)

HH owns Gasoline LCV 1108.0∗∗∗ 29.02∗∗∗ 34.26∗∗∗

(129.6) (2.867) (3.134)

HH owns Diesel LCV 2171.3∗∗∗ 67.93∗∗∗ 68.58∗∗∗

(327.8) (5.108) (6.966)

Constant 696.4∗∗∗ 560.5∗∗∗ 58.96∗∗∗ 47.20∗∗∗ 160.5∗∗∗ 161.6∗∗∗

(29.49) (25.73) (1.284) (1.196) (1.504) (1.498)

N 13097 13094 13097 13094 13097 13094

R-squared 0.0235 0.1514 0.0415 0.1642 0.0330 0.0803

Pseudo R-squared

Standard errors clustered at the household level in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: All specifications also include survey-day fixed effects and indicator variables for problems with taking transport,

being on leave or on sickness leave on the survey day. D1,...,D10: indicators for household income deciles
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points. Having a low-skilled profession such as personal domestic services, office clerk in the

public sector or unqualified manual worker is associated with a lower propensity to use a car,

an association seemingly mediated by the lack of car availability. Finally, being a qualified

manual worker, craft worker or trades worker is associated with a higher emission intensity

for all pollutants, which may be due to the more widespread use of light-commercial vehicles

for these professions.

4.4 What are the options to reduce emissions?

We investigate options to reduce emissions from car trips specifically, which are responsible

for more than 90% of travel-related emissions in our data23. Options to reduce emissions may

depend on the trip purpose. Figure 4 shows the distribution of trip purposes by number of car

trips, distances travelled and emissions.24 Work-related trips (commuting or business trips)

contribute to around 55-60% of emissions, and other purposes (shopping/leisure/escort) to

40-45%.

We consider different options to reduce emissions. According to the “Avoid-Shift-Improve”

framework (Creutzig et al., 2018), policies to limit greenhouse gas emissions in the transport

sector can be classified into measures aiming at 1)avoiding the need to travel, which in terms

2396% of the NOx emissions, 90% of the PM2.5 emissions, and 91% of the CO2 emissions. In contrast,
trips by metro or train are responsible for 0% of NOx, 7% of PM2.5 and 0% of CO2 emissions, trips by
bus are responsible for 4% of NOx, 1% of PM2.5 and 7% of CO2 emissions, and trips by two-wheelers are
responsible for 1% of NOx, 2% of PM2.5 and 2% of CO2 emissions

24We use information from the survey on the origin and destination motive (home/ workplace/ study
place/ shopping. . . ) to classify trips in 6 purposes: Commuting trips are those starting or finishing at the
work or study place and finishing or starting at another place, except a work-related place. Other work
trips are trips where the origin or destination motive is “Work other” (typically, this would be the location
of a client meeting or a restaurant where the employee is having a lunch break), and the other motive is
home, the workplace or the study place, as well as trips between a workplace and study place. Shopping
trips are trips where the destination motive is shopping, or the origin motive is shopping and the destination
is home or the work-related. Leisure trips are trips where the destination motive is leisure, or the origin
motive is leisure and the destination is home or work-related. Escort trips are trips where the destination
motive is escorting, or the origin motive is escorting and the destination is home or work-related. We do
not have information on the person being escorted, but typically this includes escorting children to school
or after-school activities. A number of trips belong to chains: for example, the first trip starts at home
and finishes at the children’s school, and the second trip starts at the children’s school and finishes at work.
Given our classification, the first trip will be recorded as an escort trip and the second one as commuting.
“Other trips” are all trips not covered by the previous purposes.
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Figure 4: Share of trip purposes in the number of trips, distances travelled and emissions

Note: the first bar chart shows the proportion of trip purpose in the number of trips, the second shows the
proportion as a share of total distances driven, the third as a share of NOx emissions and the fourth as a
share of CO2 emissions. Source: EGT data. Sample: all trips made by car or taxi by individuals aged above
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of the extended Kaya equation will tackle the distance component; 2)shifting travel to the

lowest carbon mode, which will tackle the modal share component; and 3)improving vehicles

to be more energy-efficient and fuels less carbon intensive, which will tackle the emission

intensity component. The framework is also suited to examine options to abate emissions

of local pollutants. We investigate in depth the second option of modal shift, and estimate

the share of car trips that could be shifted to low-emission modes. Doing so, we abstract

from general equilibrium effects such as the impact of modal shift on road congestion and

the demand for driving, the impact of a reduction in commuting on housing prices, which

could possibly generate a rebound effect. We also investigate the extent to which teleworking

could reduce the need to travel (option 1), assuming that place of residence and workplace

do not change. Finally, we examine the potential for a shift to less emission-intensive cars

by estimating the share of residents who could access a public charging station for EVs or

install one at home.
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Shift to low-emission modes: We examine the share of car trips25 that could easily be

substituted with regular bicycle, electric bicycle, or public transit. Modal choice depends on

several cost and preference parameters, and a model of modal choice goes beyond the scope

of this paper. We focus here on two dimensions to examine feasibility of a modal shift: the

travel time expressed in minutes, and the trip purpose. Based on these two dimensions, we

formulate three scenarios of modal shift potential, with an increasing number of constraints.

We compare the travel times with different modes for an existing trip using the counterfactual

travel times from Google API. For each scenario, we calculate the proportion of possible

modal shifts and the associated NOx, PM2.5 and CO2 emission savings.

Some constraints are common to the three scenarios. First, we impose that switching

away from car is only possible if the travel time with the alternative mode is not longer

by more than 10 min. Figure 5 shows the cumulative distribution function of the time

difference between driving and cycling, driving and electric cycling, and driving and public

transit for all the car trips in the sample. 62% of the trips would be at most 10 min longer

by regular bike than by car (graph a, blue line), 73% by electric bike (graph a, red line),

but only around 30% by public transit (graph b). Second, we impose an age constraint for

cycling: we restrict modal shift to regular bikes to individuals below 60 and modal shift to

electric bikes (requiring less effort) to individuals below 7026. Third, we impose that modal

shift is not possible when the purpose of the trip is likely to entail carrying heavy materials,

which includes work-related driving round (for professions such as plumbers or electricians)

or escorting someone to a transport stop.

Other constraints are specific to each scenario: In scenario 1, we only use the time, age

and type of trip constraints. In scenario 2, which is our preferred scenario, we impose two

additional constraints: first, shifting to cycling or e-cycling is only allowed if the resulting

daily distance cycled is lower than 20km for regular bikes, and 40km for electric bikes; second,

25defined as trips using car as their main mode, although some of them may contain journey stages with
other modes

26These thresholds seem realistic given that 90% of the few cyclists observed in the EGT data are below
65 (97% of them use a non-electric bike).
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Figure 5: Cumulative Distribution Function of the difference in travel time between car and cycling

Note: Sample: all trips currently done by car. Source: Authors’ calculations based on Google API outputs.
For example, the intersection of the blue line and the left dashed blue line indicates that 62% of the trips
currently made by car would last at most 10 minutes more if they were done with a regular bicycle (blue
line)

we impose that the additional time spent in transport during the day should not exceed 20

min. In scenario 3, we start with scenario 2 and impose an additional constraint for the type

of trip: modal shift is not allowed for shopping trips to a large retail store or mall, which

are likely to be associated with heavy loads to carry.

Table 5 reports, for each scenario, the share of trips that could be shifted to each mode,

the share that could be shifted to at least one mode, and the associated NOx, PM2.5 and CO2

savings (expressed as a share of the total travel-related emissions in the sample). Adding

the distance and time constraints between scenarios 1 and 2 decreases the share of car trips

that could be cycled from 47% to 24%. The electric bike constraint is less binding, and the

share of trips that could be e-cycled remains quite high in scenario 2, at 47%. Finally, 21%

of trips could be done with public transit. Overall, 53% of all car trips, representing 21%

of NOx and 19% of PM2.5 and CO2 emissions, have at least one substitute under scenario

2. This share is relatively low compared to the share of trips having a substitute because

substitutable trips are shorter on average.
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Table 5: Possibility of Modal shift at the car trip level

Scenario 1 Scenario 2 Scenario 3

Switching to cycling possible 0.47 0.24 0.22

Switching to electric bike possible 0.66 0.47 0.43

Switching to public transport possible 0.21 0.21 0.19

At least one modal switch possible 0.68 0.53 0.49

NOx saved as a % of total 0.33 0.21 0.20

PM2.5 saved as a % of total 0.32 0.19 0.18

CO2 saved as a % of total 0.31 0.19 0.18

N 45,245 45,245 45,245

We estimate the monetary benefits associated with scenario 2, in terms of improved air

quality and climate change abatement. For the unit cost of NOx and PM2.5 emissions, we use

monetary values from the European Commission report on the external costs of transport EU

Commission (2020)27. We adjust the values for France given for the year 2016 for inflation

and we obtain a unit cost of e28.03 per kilogram of NOx and e134.98 per kilogram of PM2.5

in 2020. The value for PM2.5 is conservative: we take the estimate for urban areas, which is

three times lower than that for metropolitan areas, while part of the emission savings from

Scenario 2 would occur in the Paris metropolitan area. For the unit cost of CO2 emissions,

27See Annex A and Annex C from EU Commission (2020), and pp59-67 of CE Delft (2018) for more details
on the economic valuation of health and the assessment of air pollution costs. In short, the monetary values
include the costs of air pollution in terms of individual health, crop losses, material and building damages,
and biodiversity losses. The different cost factors are estimated in three steps, based on the methodology
developed in the 2007 NEEDS project (NEEDS, 2007): first, emissions are translated into concentrations;
second, concentrations are translated in health and environmental impacts using dose-response functions;
third, health and environmental impacts are given a monetary value. Sources for the cost values include
(NEEDS, 2007) and updates from more recent sources. For the health costs (which represent the largest
share of costs), mortality and morbidity dose-response functions are based on a WHO study (WHO, 2013).
Mortality impacts are monetized using an estimate of VOLY (Value of a Life Year) of e70,000 per life year
for the EU28, derived from a literature review. The EU-level VOLY value is translated into country-specific
values using unit value transfers adjusting for income differences across countries. Morbidity impacts are
estimated using a conversion table expressing illness and disability as partial mortality in a QALY (quality-
adjusted life year) framework, assuming that 1 QALY=1/1.087 VOLY.
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we use the official value for the social cost of carbon in France in 2020 France Stratégie

(2019), given in euro 2018, and adjust it for inflation to obtain a euro estimate in real terms.

We obtain a unit cost of e84.5 per ton of CO2.

We first calculate the external environmental costs of passenger transport in IdF, absent

any modal shift. For this, we apply the individual EGT survey weights to estimate the total

emissions generated by individuals given current modal choices. We then combine this total

emission value with unit values of NOx, PM2.5 and CO2. We find that the daily mobility

of residents generates an environmental cost of around e5.1m per day, of which e3.4m for

local pollution and e1.7m for CO2 emissions. Assuming that the survey is representative of

the 220 annual working days28, the annual environmental cost of daily mobility in IdF is at

least e1,120m.

We then estimate the monetary benefits that would be realised under scenario 2, after

estimating the absolute quantity of emission savings with the survey weights. We obtain

daily benefits of e1.1m, of which e0.75m from avoided local pollution and e0.36m from

avoided CO2 emissions. With 220 working days, the corresponding annual benefit is e245m.

One caveat is that using emission factors from 2010 may overestimate the quantity of NOx

and PM2.5 emissions saved compared to what would be obtained in 2020: the vehicle fleet

from 2010 was on average more polluting than the vehicle fleet from 2020 due to a rising

stringency of European pollution standards. But having a conservative estimate for the unit

cost of PM2.5 probably mitigates the risk of overestimation. We also note that by focusing

on the benefits of modal shift in terms of air pollution reduction and CO2 mitigation, we do

not include the potential costs associated with modal shift (e.g, time lost, nor other types

of benefits such as the health benefits from active mobility29.

At the individual level, under scenario 2 30% of the drivers could not shift any of their

28The travel intensity reported in the survey is representative of an average weekday between October
and May, where some individuals are on holiday but likely not a large share. There are probably fewer trips
in IdF in July and August, two months were most people take several weeks of holidays in France

29The health benefits of walking and cycling induced by the increase in physical activity have been shows
to significantly outweigh the risks due to pollution inhalation and cyclists’ accidents (Rojas-Rueda et al.,
2011; Rabl and de Nazelle, 2012)
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car trips, and 28% could shift modes for part of their car trips only. These drivers are

more likely to live in the outer suburbs (72%, versus 63% in the entire sample of drivers),

and drive longer trips on average (47km per day, vs. 32 km per day in the entire sample

of drivers). For these individuals, other solutions are needed. Below, we investigate the

potential for teleworking (the distance or “Avoid” component) and the potential for shifting

to an electric vehicle (the emission intensity or “Improve” component).

Avoid travelling by teleworking: Teleworking could be all the more relevant since

42% of the employed individuals unable to shift modes use car for commuting. Work-related

car trips (either commuting or business trips) also have a lower-than-average potential for

modal shift: in scenario 2, only 50% of commuting trips and 38% of business trips have a

modal shift option (vs. 53% on average).

The potential for teleworking has recently gained prominence in the public debate and

in the literature in the context of the Covid-19 pandemic and associated social distancing

measures (Dingel and Neiman, 2020; Alipour et al., 2020; Lennox, 2020). We combine infor-

mation on the socio-professional category and the workplace to define a variable of potential

to telework30. We consider that teleworking is not possible for manual workers, farmers or

traders, craftspeople, CEOs. For the other socio-professional categories, we consider that

teleworking is possible for employees from the private and public sector as long as they work

in an office31. According to these criteria, 39% of all the car commuters have a job type

which could be done from home. If all the car commuters who cannot shift modes entirely

worked from home, 16% of NOx and 15% of PM2.5 and CO2 emissions would be saved from

the avoided commuting and business trips. Assuming that these individuals could telework

two days a week (two fifths of their time), this would save an additional 6% of NOx, PM2.5

and CO2 emissions compared to the emission savings achieved via modal shift only.

30We cannot use the exact same definition of potential to telework as in the recent paper by Dingel and
Neiman (2020) due to data limitations.

31as opposed to working at a factory, at other people’s homes, at a hospital or school, at a public
institution, or at a shop
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Improve: shift to an Electric Vehicle: Another alternative to modal shift is a shift

to an electric vehicle (EV). There are well-documented monetary and non-monetary barriers

to the uptake of EVs: cost of purchase, availability of a charging station, cultural habits

(Oxford Institute for Energy Studies, 2019). To identify who may be likely to shift to an

EV under some assumptions, we would need a model of car purchasing decisions which is

beyond the scope of this paper. We simply note two points suggesting that the barriers

associated with the purchasing cost and charging point availability may be overcome with

adequate policies. First, among the 58% of current drivers unable to shift modes for all

their car trips, only 9% are from the two bottom deciles of income, such that their budget

constraint is less binding than for the whole population. Second, at least 17%32 of them

have a publicly available EV charging station at less than 500m from their place of residence

in 2020, and 77% of them have a private parking space at their place of residence, where a

charging station could be installed. Finally, less than 1% of them drive more than 200km per

day (with the limitation that trips outside the IdF region are not recorded), such that the

autonomy of the EV should not be an issue for this daily mobility. Alternative vehicles such

as two-seat microcars or delivery tricycles (known in the broad category of “Little Vehicles”

(Schneider, 2018)) may also provide travel services currently provided by traditional cars at

a lower cost than electric vehicles.

Table 6 summarizes teleworking and EV shift options at the individual level, for the

entire sample of drivers (first column) and for the 58% of drivers who cannot shift all their

car trips to low-emission modes (second column). Available options are very close across the

two samples.

32This estimate is conservative because the data on EV charging stations appears not to be exhaustive.
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Table 6: Teleworking and EV shift options for current drivers

Share of drivers

Share of drivers who
cannot fully shift

to low-emission modes

Teleworking possible 0.28 0.29

Teleworking possible and current commute by car 0.13 0.13

Has a private parking spot 0.76 0.77

Has a public EV charging station within 500m 0.18 0.17

N 13,140 7,562

5 Discussion

5.1 A 80-20 rule?

We find a strong concentration of local pollutant and CO2 emissions as far as daily mobility

is concerned. This result had, to our knowledge, not been reported before for a large city

based on representative data of the residents. Brand and Preston (2010) report that the

top 20% UK emitters contribute to 60% of CO2 emissions from transport and mention

a “60-20 rule”, but their analysis is based on a small sample of residents from one UK

region and includes both daily mobility and long-distance trips. Based on a small non-

representative sample from Beijing residents, Yang et al. (2018) report that 20% of the top

emitters contribute 70% of emissions, on both weekdays and weekends. Our results for the

Paris area, based only on weekday trips within the area, suggest a “80-20” rule on average

across the pollutants considered. Only considering weekdays seems relevant to analyse the

potential for air pollution mitigation in the Paris area, because ambient pollution tends to be

higher on weekdays, where car traffic and economic activity are higher. For CO2 emissions,

examining long-distance trips and weekends seems necessary to get the full picture of carbon

footprint inequalities: indeed, residents from the city centre (who in our analysis contribute

substantially less to emissions than suburban residents) tend to take the plane more often
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and emit more during their long-distance trips (Pottier et al., 2020).

5.2 Traditional and less traditional factors associated with emis-

sions

Four factors associated with daily distances travelled and modal choice have previously been

highlighted in the literature: employment status, household income, household residence

location vis a vis the city centre, and agglomeration size (Nicolas and David, 2009; Blaudin

De Thé et al., 2020; Pottier et al., 2020). Our results are consistent with this literature. We

also highlight the role of the commute type in explaining the propensity to use a car, with

suburbs-to-suburbs commutes being more reliant on cars.

A newer aspect of our work is to document the association between employment charac-

teristics and the propensity to use a car, with individuals working at factories and manual,

trades and crafts workers having a higher propensity to use a car. The high reliance on car

of these professional categories could play a role in the political economy of opposition to

policies regulating car use.

Another contribution is to highlight the different relationship between income and local

pollutants’ emission intensity on the one hand, and income and CO2 emission intensity on

the other hand. Two factors can drive up the emission intensity of individuals from the

bottom decile: first, the NOx emission intensity of light-commercial-vehicles is much higher

than the emission intensity of regular cars of the same age, and individuals with manual

occupations from the middle and bottom deciles are more likely to have such cars; second,

lower-income individuals have older cars on average, and the NOx and PM2.5 emission factors

are determined by the age and fuel type of the vehicle. In contrast, in our data the CO2

emission factor depends on the age, fiscal horsepower and energy of the car. Higher-income

people tend to have a higher fiscal horsepower and newer cars, and CO2 emissions increase

with fiscal horsepower but they do not vary much with the age of the car. This distribution of

vehicle characteristics across income groups suggest that policies based on the NOx emission
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intensity of vehicles, such as Low-emission zones, whose exclusion criteria depend on the age

of vehicles, could be more regressive than policies regulating the CO2 emission intensity of

vehicles, such as feebates.

5.3 From modal shift potential to actual modal shift

The LMDI decomposition suggests that the emission intensity of vehicles is only one driver

of emissions, and a minor one for CO2 emissions. Policies tackling modal shift and demand

for distance are also needed. Regarding modal shift, we document a relatively large potential

based on travel time criteria. Adequate policies are required to fulfil this potential: despite

the potential of modal shift to cycling and electric cycling, its modal share is only 1.9% of

total trips in 2018 in the Paris area (Omnil-Ile de France Mobilites, 2019).

The roles of the built environment on the one hand, and of cognitive factors such as

statu-quo bias, overconfidence or framing effects on the other hand, have been underlined

to explain modal choices and their stickiness (Javaid et al., 2020; Mattauch et al., 2016).

For active modes, weather conditions may also play a role, with warm and dry weather

conditions having a positive influence and rain, snow, wind, overly cold or hot weather

having the opposite effect (Böcker et al., 2013). For electric bikes specifically, which we

find enable a large part of the modal shifts, their relatively high cost and the risk of bike

theft are other important factors hindering a wider adoption in the Paris area (Cazi, 2020),

although sales have been increasing significantly since 2017 (Le Monde, 2021) (figures are

at the national level). Electric bike-sharing options may be a good way to promote a higher

take-up while addressing the monetary costs of electric bikes and the risk of theft.

The forced experiment of the Covid-19 crisis could be an opportunity for a permanent

shift in habits against the statu-quo, as observed in the case of other disruptions in usual

travel habits such as public transport strikes (Larcom et al., 2017). Given the behavioral

factors influencing modal choice, rolling out cycling infrastructure in a disrupted time could

also have a multiplier effect. Recent evidence suggests that pop-up bike lanes rolled out to
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facilitate social distancing during Covid-19 have increased cycling between 11 and 48% in

the following months, depending on the city considered (Kraus and Koch, 2021). One key

question for future research is whether these relatively large effects will persist over time.

For drivers without a modal shift option, reducing distance and emission intensity is

needed. Only 13% of drivers combine commuting by car and being able to work from home.

But the emission savings associated with them teleworking are relatively high given their

high commuting distance. In the long-term, urban planning could play a role in reducing

demand for car trips, for example by improving the diversity and design of the suburbs (see

Blaudin De Thé et al. (2020) for a discussion of these dimensions) and making cities more

polycentric. Regarding policies tackling the emission intensity of cars, such as subsidies to

buy EVs or low-emission cars, they are all the more needed in the outer suburbs, where

individuals are less likely to be able to shift modes. However, to date the means-tested

subsidies for new car purchases introduced with the Parisian Low Emission Zone are only

available for household living within the planned LEZ boundaries (Paris and part of the

inner suburbs), excluding households from the outer suburbs. One recommendation would

be to open the subsidies to individuals living outside the Greater Paris area but working in

the LEZ. Note that the per kilometer reduction in air pollution and CO2 emissions allowed

by electric vehicles is smaller than that allowed by shifts to active modes or electric public

transport, due to higher lifecycle emissions of cars and the non-exhaust particulate emissions

of electric cars (OECD, 2020), which are particularly damaging for health (Daellenbach et al.,

2020).

5.4 Limits

The main limitation of our analysis is that we do not take into account the potential rebound

effect of the different options to reduce emissions. In the case of modal shift, we imagine two

possible types of rebound: first, rebound from individuals renouncing to have a car, who may

spend the savings from not owning a car on carbon-intensive goods and services, as evidence
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in a study on Finland (Ottelin et al., 2017). A second type of rebound effect could occur via

a reduction in congestion which would increase the marginal utility of driving. More research

is needed to estimate the magnitude of such an effect, but it could be partially mitigated

by a reduction of the space left to cars in the public space, proportional to the reduction

of car use. In the case of teleworking, rebound may occur if people used the time freed up

by the absence of commute for leisure travels. To our knowledge, the only empirical study

estimating the impact of teleworking finds a net reduction in traffic and city-level pollution

at the monthly level (Giovanis, 2018), but it does not measure the effects on long-distance

trips.

Although we use data from 2010, we think that our results are still relevant to explain

today’s distribution of emissions in Paris. Preliminary results from the new wave of the

EGT suvey (planned to be carried out between 2018 and 2022, but currently stalled due

to the Covid-19 crisis) suggest that the average number of trips, time and distances spent

travelling have not changed since 2010 (Omnil-Ile de France Mobilites, 2019). The average

modal share changed only slightly, with a small decrease in car use (from 37.8% of the

trips in 2010 to 34.4% in 2018), compensated by an increase in active transportation modes

and collective transportation. Using data from 2010 may be more problematic to estimate

the emission savings associated with our scenarios in absolute terms and the associated

monetized benefits. But using conservative estimates for the unit cost of emissions likely

counterbalances this risk.

6 Conclusion

We show that inequalities in contribution to transport-related emissions are large in the Paris

area, with top emitters combining large distances travelled and a reliance on high-emitting

cars. We document an important association between some employment characteristics and

emissions. In a monocentric city like Paris, distance from the center and other spatial
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characteristics are also strongly associated with higher emissions. Although we report a high

potential for modal shift in terms of the share of car trips where a low-emission substitute

exists, the associated emission savings is only 20% because many long trips/trip with high-

emission cars cannot be substituted. Policies encouraging a decrease in demand for travel

and the adoption of low-emission cars are needed for the individuals unable to shift modes.

Regarding the external validity of our results, we expect that city size and density in-

fluence both the external cost of transport, as underlined Carozzi and Roth (2019); Gaigné

et al. (2012) and the potential for modal shift, as underlined Nicolas and David (2009);

Brand et al. (2021). For the relationship between density and the environmental external-

ities from transport, the urban economics literature points to a potential trade-off between

CO2 emissions and local pollution, because one is a global externality and the other affects

local residents only: compact (more dense) cities are associated with shorter distances and

more public transport so they may reduce the quantity of polluting emissions (Gaigné et al.,

2012). So compact cities may be good for CO2 emissions. At the same time, the cost of

local air pollutants depends on how emissions translate into ambient concentrations and

how many people are exposed to this pollution. Then, a higher density may lead to higher

population-weighted pollution concentration, as evidenced by Carozzi and Roth (2019) in

the US case, and also higher benefits from reducing local pollutant emissions. In contrast,

the benefits from CO2 emission reductions would be the same in all cities given the global

nature of the climate change externality. Regarding the potential for modal shift, shifting

to active modes may be easier in smaller cities with shorter distances travelled, but shifting

to public transport may be harder, as the public transport network is usually less good in

small cities.

We think that our results likely apply to other dense European cities with an important

public transit network, such as London, Madrid or Rome, as well as other large French urban

areas. In any case, it should be easy to replicate our analysis in other cities of the developed

world, given the availability of transport survey data such as the one used in this paper in
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other cities (for example, the London Travel Demand Survey).
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Chang, T. Y., Zivin, J. G., Gross, T., and Neidell, M. (2019). The Effect of Pollution on

Worker Productivity: Evidence from Call Center Workers in China. American Economic

43



Journal: Applied Economics, 11(1):151–172.

Creutzig, F., Javaid, A., Koch, N., Knopf, B., Mattioli, G., and Edenhofer, O. (2020). Adjust

urban and rural road pricing for fair mobility. Nature Climate Change, 10(7):591–594.

Creutzig, F., Roy, J., Lamb, W. F., Azevedo, I. M. L., Bruine de Bruin, W., Dalkmann, H.,

Edelenbosch, O. Y., Geels, F. W., Grubler, A., Hepburn, C., Hertwich, E. G., Khosla, R.,

Mattauch, L., Minx, J. C., Ramakrishnan, A., Rao, N. D., Steinberger, J. K., Tavoni, M.,
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polluants.

Lennox, J. (2020). More working from home will change the shape and size of cities. Centre

of Policy Studies/IMPACT Centre Working Paper, Victoria University, Centre of Policy

Studies/IMPACT Centre.

Lepeule, J., Laden, F., Dockery, D., and Schwartz, J. (2012). Chronic exposure to fine

particles and mortality: an extended follow-up of the Harvard Six Cities study from 1974

to 2009. Environmental Health Perspectives, 120(7):965–970.

Levinson, A. and O’Brien, J. (2018). Environmental Engel Curves: Indirect Emissions of

Common Air Pollutants. The Review of Economics and Statistics, 101(1):121–133.

Linn, J. (2019). Interactions between Climate and Local Air Pollution Policies: The Case

of European Passenger Cars. Journal of the Association of Environmental and Resource

Economists, 6(4):709–740.

Liu, N., Ma, Z., and Kang, J. (2017). A regional analysis of carbon intensities of electricity

generation in China. Energy Economics, 67:268–277.

Mahony, T. O. (2013). Decomposition of Ireland’s carbon emissions from 1990 to 2010: An

46



extended Kaya identity. Energy Policy, 59:573–581.

Mattauch, L., Ridgway, M., and Creutzig, F. (2016). Happy or liberal? Making sense

of behavior in transport policy design. Transportation Research Part D: Transport and

Environment, 45:64–83.
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A Appendix

A.1 Assumptions on NOx, PM2.5 and CO2 emissions by transport

mode

For “polluting” modes (buses, cars, two-wheelers), the emission factor eP,m comes from

different sources.

Buses For buses, the NOx and PM2.5 emission factors per passenger are derived from the

local air quality agency’s emission calculator33. They give an emission factor of 180mg/km

for an average bus in 2017. The average bus in France is 7.7 years old (Source: Observatoire

de la mobilité), so the value for 2017 is for buses registered in 2009 on average. Assuming

that the age of the fleet was the same in 2010, the average bus taken by the surveyed

individuals in 2010 had been registered in 2002. We adjust for the difference in the years

of the data by multiplying the Airparif bus emission factor for 2017 by the ratio of NOx

and PM2.5 emission factors for cars registered in 2002 compared to 2010, assuming that the

improvement in emission factors was similar for buses and for cars over the period.

The CO2 emission factor per passenger is derived from national values given in Ministère

de la Transition écologique et solidaire (2018) and scaled down to adjust for the higher

average number of passengers in IdF compared to other regions. The initial value assumes

11 passengers by bus on average. Traffic data from the regional transport authority give an

average of 14 passengers by bus in Ile de France, so we multiply the initial factor by 11/14.

33http://www.airparif.fr/calculateur-emissions/. Although the value given for particulate matter indicate
a value in particulate matter of size below 10 microns (PM10), most particles from engine combustion are
actually smaller than 2.5µm: Karjalainen et al. (2014) mention that most exhaust particles from gasoline
direct injection engines are around 0.1µmm;California Air Resources Board (2021) mention that more than
90% of diesel particulate matter is less than 1µm in diameter. The EMEP/EEA Copert methodology from
which Airparif emission factors are calculated also assumes that all PM from exhaust are PM2.5 (Ntziachristos
and Zissis, 2020). A personal communication with the agency confirms that we can interpret the PM10

emission factors as PM2.5

1



Cars and two-wheelers owned by the household For two-wheelers and cars, the

vehicle used is a vehicle owned by the household in 89% of the cases. We estimate the NOx,

PM2.5 and CO2 emission factors of these vehicles based on their characteristics reported in

the survey. For the NOx and PM2.5 emission factors of cars, we use the information on the

type of car (passenger car/LCV), the year of first registration and the fuel type. For the

CO2 emission factors of cars, we also use the information on the car’s horsepower; For the

NOx and PM2.5 emission factors of two-wheelers, we use the year of first registration only,

while for the CO2 emission factor of two-wheelers, we also use the fuel type and type of

two-wheeler (e.g, moped versus motorbike).

For cars, we use the NOx and PM2.5 emission factors from the local air quality agency’s

emission calculator by type of fuel and date of registration of the car. The average speed,

cold starts and horsepower of vehicles circulating in IdF are included as common parame-

ters entering the calculation of emission factors for all fuel types and dates of registration.

Regarding fuel type, the calculator distinguishes between diesel, gasoline, and electric cars.

We assign LPG cars from the survey the same emission factor as a gasoline car from the

same year. We assign hybrid cars from the survey the same emission factor as an electric

car from the same year (this may underestimate emissions from hybrid cars, but they rep-

resent only 0.3% of the cars owned by households). The calculator does not have specific

values for light-commercial vehicles. For these car types declared by the household, we pro-

ceed as follows: we take the emission factors for LCVs and cars from a different source,

the Ominea database edited by a environmental agency called Citepa and giving reference

values for emission factors for different economic sectors34. We calculate the ratio of LCVs

to car emission factors according to that source for each type of car and LCV defined by

their fuel type and registration year (and taking the value fo the “urban driving conditions”

rather than “highway” or “rural”). We then multiply the NOx and PM2.5 emission factors

given for cars in the Airparif calculator by the OMINEA ratio, and obtain NOx and PM2.5

34https://www.citepa.org/fr/ominea/
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emission factors respecting the relative difference of LCVs vs cars given in the OMINEA

database. Particulate matter emissions from tyres and brakes are not taken into account in

the OMINEA data, so we are assuming that the ratio of PM2.5 emission factors for LDVs

over cars is the same for exhaust emissions and emissions from brakes and tyres.

For CO2, we use data from the French Energy Agency (Ademe), which provides emission

factors for all car models from 2001 to 2015. We build categories of car models defined by the

same information as the one we have on the cars owned by households in the EGT data: year,

fuel type (gasoline/petroleum/hybrid/electric/LPG), and administrative horsepower. Then,

we calculate for each category the average CO2 emission factor from the Ademe dataset,

weighted by national-level market shares by brand35. We allocate to each car type from the

EGT data the CO2 emission factor from Ademe for the same car category. When the car

owned by the household is older than 2001, we rely on data provided by Ademe36 giving

average emission factors of cars sold in France by fuel type, for the years 1995-2018. We

estimate emission factors for the period before 1995 by applying the same annual trend for

emissions as for the 1995-2000 period. For electric cars, we assign a zero emission factor.

The Ademe data reports emission factors for commercial vehicles only. For light-commercial

vehicles owned by the household, we use the estimations given in CGDD (2011).

For two-wheelers, we use the NOx and PM2.5 emission factors from the local air quality

agency’s emission calculator, scaled up to reflect 2010 values rather than 2019 ones. We

apply the CO2 emission factors from Barbusse (2005), which are differentiated by fuel type

and by type of two-wheeler. The study dates back 2005 and the emissions are calculated

for motorcycles first registered between 2003 and 2005. But this is a relatively good proxy

for the median emission factor of the motorcycles owned by EGT households, which median

first registration date is 2005. This single emission factor does not allow to reflect the

heterogeneity in the registration year (from 1951 to 2011), but we do not think it is too

35we take the average of the registration market shares over the years 2000, 2005 and 2010 obtained from
the French car manufacturer’s association CFCA.

36http://carlabelling.ademe.fr/chiffrescles/r/evolutionTauxCo2

3



Table A.1: Emission factors for private vehicles not owned by the household

Transport mode Unit
NOx

(mg/km)
PM2.5

(mg/km)
CO2

(g/km)

Taxi per passenger 1,178 127 332

Car not owned by the household per vehicle 589 63 166

Two-wheeler not owned by the household per vehicle 86 21 65

Note: Authors’ calculations from Airparif, OMINEA,Ministère de la Transition écologique et solidaire (2018),
Copert, Ademe

much an issue given the low modal share of two-wheelers (< 1%).

Taxis and cars and two-wheelers not owned by the household When the vehicle

used is a car not owned by the household or is a taxi, we impute the NOx and PM2.5

emission factors of a 2008 diesel car (in 2010 most taxis were diesel vehicles37). We impute

the CO2 emission factor of a 2008 diesel car of 7 hp. We take values for recent vehicles

because vehicles not owned by the household are likely to be company cars, which are often

relatively new. For taxis, we multiply the emission factor by two to account for the fares

driven without passengers, following the recommendations of Ministère de la Transition

écologique et solidaire (2018). When the vehicle used is a two-wheeler not owned by the

household, we impute the NOx and PM2.5 emission factors of a Euro 3 two-wheeler from the

Airparif calculator, and the CO2 emission factor from a scooter. Table A.1 shows the unique

emission factor obtained for buses, taxis, cars and two-wheelers not owned by the household

(here assuming one passenger per vehicle).

A.2 Method to retrieve counterfactual transport time with Google

API

We pool together the trips likely to have exactly same duration based on Google’s prediction

algorithm: for transit trips during the day (from 6 am to 9h59 pm) and cycling trips, changing

37https://www.auto-moto.com/actualite/environnement/faut-il-interdire-les-taxis-diesels-la-question-
qui-fache-49587.html
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Figure A.1: Distribution of NOx emissions per passenger, by transportation mode

Note: For each transportation mode, the box plot shows the distribution of NOx emissions across journey
stages using this transportation mode. Call Q1 the 25th percentile, Q3 the 75th percentile, and IQR the
interquartile range. The bar in each box shows the median value, the lower and upper hinges of the box
respectively show Q1 and Q3, and the lower and upper lines show the lower and upper adjacent values
defined at Q1− 1.5× IQR for the lower adjacent value, and Q3 + 1.5× IQR for the upper adjacent value.

the direction of the trip or its hour did not change the resulting duration based on a trial

on a few trips. So we grouped together all the trips with the same or the opposite point

of departure and point of arrival, irrespective of the hour of departure. We are left with

49,242 trips with unique pair of {departure;origin}. We simulate day transit and all cycling

trips so that they occur on a Tuesday morning. For driving trips, average traffic conditions

are integrated in the algorithm, such that the hour of the trip and the direction of the flow

can influence the trip duration. We group together trips with the same hour of departure,

point of departure and point of arrival. We are left with 73,264 trips with unique point of

departure X point of arrival X hour of departure. We simulate transit trips so that they

occur on a Tuesday. Finally, we account for the fact that public transport is less frequent

at night by estimating specific trip duration for public transport at night. For transit trips

during the night (from 10 pm to 05h59 am), we group together trips the same way as for car
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Figure A.2: Distribution of PM2.5 emissions per passenger, by transportation mode

Note: For each transportation mode, the box plot shows the distribution of PM2.5 emissions across journey
stages using this transportation mode. Call Q1 the 25th percentile, Q3 the 75th percentile, and IQR the
interquartile range. The bar in each box shows the median value, the lower and upper hinges of the box
respectively show Q1 and Q3, and the lower and upper lines show the lower and upper adjacent values
defined at Q1− 1.5× IQR for the lower adjacent value, and Q3 + 1.5× IQR for the upper adjacent value.

trips. We are left with 2,844 trips. We simulate night transit trips so that they occur on a

Monday evening.

A comparison of Google Maps’ trip duration output and the trip durations self-reported

by individuals in the EGT data reveal that Google Map’s durations are lower for all the

three modes: cycling trips are on average 39% shorter according to Google Maps (but this

is based on a very small sample of cycling trips in the EGT), driving trips 32% shorter, and

transit trips 20% shorter (the comparison is made for trips actually using that mode in our

data). Given the potential error in self-reported durations, the uncertainty margin of the

API’s estimations and the ten-year gap between the API request (2020) and the EGT data

(2010), it is difficult to know which one is the true value, if any. What matters for us is that

the relative time difference derived from the API’s predictions for car, cycling and public

transit trips reflects well the true relative difference in time. Given the higher discrepancy
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Figure A.3: Distribution of CO2 emissions per passenger, by transportation mode

Note: For each transportation mode, the box plot shows the distribution of CO2 emissions across journeys
using this transportation mode. Call Q1 the 25th percentile, Q3 the 75th percentile, and IQR the interquartile
range. The bar in each box shows the median value, the lower and upper hinges of the box respectively show
Q1 and Q3, and the lower and upper lines show the lower and upper adjacent values defined at Q1−1.5×IQR
for the lower adjacent value, and Q3 + 1.5× IQR for the upper adjacent value.

for cycling compared to driving and the lower one for transit compared to driving, we may

underestimate the ability with which individuals switch from car to public transport and

slightly overestimate the ability with which individuals switch from car to cycling.

A.3 Additional Tables and figures
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Table A.2: EGT-Descriptive statistics at the household level

Mean Sd

Nb. household members 2.33 1.38

Residence: Paris 0.23 0.42

inner suburbs 0.37 0.48

outer suburbs 0.40 0.49

Housing: Social housing 0.23 0.42

Private tenants 0.23 0.42

Home-owners 0.51 0.50

Other housing status 0.03 0.17

Age, person of reference 49.58 15.98

Estimated Net income 37,571.06 24,535.46

Estimated Net income per consumption unit 24,655.83 14,640.12

Observations 14,882

Note: Source: EGT data. Data weighted with EGT household-level sampling weights

8



Table A.3: Balance between EGT survey data and administrative data on selected household characteristics

EGT Administrative data

Nb. household members 2.33 2.48

(1.38) (1.68)

Residence: Share living in Paris 0.23 0.22

(0.42) (0.42)

Share living in the inner suburbs 0.37 0.37

(0.48) (0.48)

Share living in the outer suburbs (%) 0.40 0.41

(0.49) (0.49)

Share living in Social housing (%) 0.23 0.22

(0.42) (0.41)

Housing: Share of private tenants 0.23 0.26

(0.42) (0.44)

Share of home-owners 0.51 0.49

(0.50) (0.50)

Share of other housing status 0.03 0.03

(0.17) (0.18)

Age, person of reference 49.58 52.04

(15.98) (17.10)

Net income per consumption unit 24,655.83* 25,969.40**

(14,640.12) (85,486.92)

Observations 14,882 4,830,037

Note: EGT observations weighted with household-level sampling weights. Source for the administrative data:
Filocom data for 2011, an exhaustive census of housing units by January 1st 2011. *The income variable
from EGT has been imputed using an interval regression imputation method. **The income variable from
Filocom comes from fiscal sources and does not include non-taxable income sources such as housing or family
benefits.
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Table A.4: Balancing test comparing the subsample of individuals with one trip recorder and the full sample

1 2 3

Individuals travelling Full sample (1)-(2)

Residence: Share living in Paris 0.143 0.140 0.00340

(0.350) (0.347)

Share living in the inner suburbs 0.366 0.365 0.00107

(0.482) (0.482)

Share living in the outer suburbs 0.490 0.495 -0.00447

(0.500) (0.500)

Age, person of reference 45.20 45.69 -0.496∗∗∗

(16.21) (16.64)

Education: Primary school 0.0514 0.0588 -0.00735∗∗∗

(0.221) (0.235)

Secondary education 0.393 0.400 -0.00725

(0.488) (0.490)

Higher education ≤ 3 years 0.152 0.149 0.00248

(0.359) (0.356)

Higher education > 3 years 0.337 0.326 0.0104∗

(0.473) (0.469)

Still in education 0.0671 0.0654 0.00177

(0.250) (0.247)

Socioprofessional category: Farmers 0.000756 0.000711 0.0000449

(0.0275) (0.0267)

Manual workers 0.105 0.104 0.00102

(0.307) (0.306)

Office workers 0.191 0.192 -0.000486

(0.393) (0.394)

Intermediate professions 0.220 0.214 0.00628

(0.414) (0.410)

Traders and craftspeople 0.0200 0.0198 0.000140

(0.140) (0.139)

Managers and executives 0.197 0.190 0.00723∗

(0.398) (0.392)

Pensioner 0.198 0.213 -0.0155∗∗∗

(0.398) (0.410)

Other 0.0681 0.0669 0.00124

(0.252) (0.250)

Activity status: Pupil/Student 0.0652 0.0633 0.00192

(0.247) (0.244)

Part-time or full-time employed 0.648 0.624 0.0241∗∗∗

(0.478) (0.484)

Unemployed 0.0532 0.0578 -0.00454∗

(0.224) (0.233)

Other inactive 0.224 0.242 -0.0185∗∗∗

(0.417) (0.429)

Pensioner 0.00985 0.0128 -0.00298∗∗

(0.0988) (0.113)

Estimated Net income 40613.6 40036.8 576.8∗

(25157.6) (24938.5)

Estimated Net income per consumption unit 24051.2 23725.4 325.8∗

(14327.1) (14262.1)

Distance to workplace (km) 11.78 11.79 -0.0172

(11.99) (12.02)

Observations 23690 25453

mean coefficients; sd in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 10
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Figure A.4: Lorenz curve, trip level

Note: the x-axis shows the percentiles of trip-level emissions and the y-axis shows the share of total emissions
generated by all the trips below that percentile. The red curve shows how the distribution would look like
if everyone contributed equally to emissions Source: EGT data. Sample: all trips made by adults.
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Table A.5: Extended Kaya components by quintile of NOx emissions

NOx (mg) Dist. (km) Modal share (%) Emission Intensity (mg/km)

Bus
Two-

Wheeler Car Bus
Two-

Wheeler Car

ENOx,Qk DQk Sbus,Qk Stw,Qk Scar,Qk INOx,bus,Qk INOx,tw,Qk INOx,car,Qk

Q1 27 16.0 0.000 0.000 0.005 242 NA* NA*

Q2 1,740 22.6 0.082 0.018 0.289 242 93.3 191.2

Q3 4,118 25.6 0.187 0.035 0.373 242 103.7 300.0

Q4 11,251 31.5 0.106 0.033 0.674 242 122.6 486.0

Q5 45,593 62.2 0.018 0.005 0.918 242 127.9 793.5

*The modal share of these two modes is zero. In practice in the calculation of the LMDI, the same emission
intensity of cars and two-wheelers as for Q3 has been imputed to Q1, such that these sub-components of
modal share receive a 0 contribution to the difference compared to Q3
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Table A.6: LMDI decomposition on NOx emissions at the individual level

NOx (mg) Diff vs Q3 (mg)
Distance

component(mg)
Modal share

component(mg)
Emission intensity
component(mg)

ENOx,Qk ∆ENOx,Q3,Qk,tot ∆ENOx,Q3,Qk,D ∆ENOx,Q3,Qk,S ∆ENOx,Q3,Qk,I

Q1 27 -4,091 -303 -3,615 0.0

(8%) (92%) (0%)

Q2 1,740 -2,377 -342 -1,150 -885

(14%) (48%) (37%)

Q3 4,118 0 - - -

- - -

Q4 11,251 7,134 1,422 2,886 2,826

(20%) (40%) (40%)

Q5 45,593 41,475 14,215 12,295 14,965

(34%) (30%) (36%)

Table A.7: Extended Kaya components by quintile of CO2 emissions

CO2 (g) Dist. (km) Modal share (%) Emission Intensity (g/km)

Bus
Two-

Wheeler Car Bus
Two-

Wheeler Car

ECO2,Qk DQk Sbus,Qk Stw,Qk Scar,Qk ICO2,bus,Qk ICO2,tw,Qk ICO2,car,Qk

Q1 0 15.9 0.000 0.000 0.000 NA* NA* NA*

Q2 646.0 23.4 0.107 0.009 0.206 117 74.6 130.8

Q3 1,348 24.0 0.180 0.021 0.382 117 82.2 142.7

Q4 3,005 27.6 0.096 0.0033 0.708 117 94.0 149.1

Q5 9,810 67.2 0.023 0.019 0.908 117 104.9 158.6

*The modal share of these two modes is zero. In practice in the calculation of the LMDI, the same emission
intensity of cars and two-wheelers as for Q3 has been imputed to Q1, such that these sub-components of
modal share receive a 0 contribution to the difference compared to Q3
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Table A.8: LMDI decomposition CO2 emissions at the individual level

CO2 (g) Diff vs Q3 (g)
Distance

component(g)
Modal share

component(g)
Emission intensity

component(g)

ECO2,Qk ∆ECO2,Qk−Q3,tot ∆ECO2,Qk−Q3,D ∆ECO2,Qk−Q3,S ∆ECO2,Qk−Q3,I

Q1 0 -1,596 -14 -1,582 -

(1%) (99%) (0%)

Q2 646.0 -914 -33 -798 -84

(4%) (87%) (9%)

Q3 1,348 0 - - -

- - -

Q4 3,005 1,463 351 1,016 96

(24%) (69%) (6%)

Q5 9,810 8,134 4,711 2,963 460

(58%) (36%) (6%)

Table A.9: Extended Kaya components by quintile of PM2.5 emissions

PM2.5(mg) Dist. (km) Modal share (%) Emission Intensity (mg/km)

Metro Bus
Two-

Wheeler Car Metro Bus
Two-

Wheeler Car

EPM2.5,Qk DQk Smet,Qk Sbus,Qk Stw,Qk Scar,Qk Imet,Qk Ibus,Qk Itw,Qk Icar,Qk

Q1 1.3 3.0 0.007 0.044 0.000 0.006 7.1 4.8 21.1 28.8

Q2 125 12.7 0.375 0.240 0.006 0.174 7.1 4.8 23.9 33.6

Q3 501 27.3 0.451 0.066 0.018 0.372 7.1 4.8 24.9 34.8

Q4 1,321 39.9 0.256 0.027 0.033 0.633 7.1 4.8 31.8 47.6

Q5 4,185 66.6 0.056 0.006 0.019 0.899 7.1 4.8 43.3 68.6
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Figure A.5: Contribution of distance, modal choice and emission intensity to the differences in PM2.5 emis-
sions

Note: This graph shows the difference between PM2.5 emissions from average individuals in quintiles 1, 2, 4
and 5 compared to the benchmark average individual in quintile 3, (total length of the bars), decomposed
into differences in total distance travelled, modal shares, and the emission intensity of a given mode using
the LMDI additive decomposition

Table A.10: LMDI decomposition on PM2.5 emissions at the individual level

PM2.5 (mg) Diff vs Q3 (mg)
Distance

component(mg)
Modal share

component(mg)
Emission intensity
component(mg)

EPM2.5,Qk ∆EPM2.5,Q3,Qk,tot ∆EPM2.5,Q3,Qk,D ∆EPM2.5,Q3,Qk,S ∆EPM2.5,Q3,Qk,I

Q1 1.3 -499 -169 -312 -18

(34%) (63%) (4%)

Q2 125 -376 -202 -146 -28

(54%) (39%) (7%)

Q3 501 0 - - -

- - -

Q4 1,321 820 316 350 154

(39%) (43%) (19%)

Q5 4,185 3,684 1,483 1,284 917

(40%) (35%) (25%)

15



Table A.11: Regression coefficients for distance, propensity to use a car and emission intensity -
workers

(1) (2) (3) (4) (5) (6)

ln dist, all uses car, all uses car, all NOx/km PM25/km CO2/km

Outer suburbs 0.190∗∗∗ 0.138∗∗∗ 0.0773∗∗∗ -16.44 0.467 -4.792∗∗∗

(0.0201) (0.00972) (0.00850) (19.71) (0.839) (1.018)

Public transport stop -0.115∗∗∗ -0.156∗∗∗ -0.119∗∗∗ 4.205 -0.261 0.707

(0.0198) (0.00955) (0.00834) (16.77) (0.784) (0.916)

Motorized vehicle at hand 0.476∗∗∗

(0.0105)

ln Commuting distance 0.528∗∗∗ 0.0310∗∗∗ 0.0228∗∗∗ 11.71 2.303∗∗∗ 1.191∗∗

(0.0111) (0.00352) (0.00317) (8.283) (0.347) (0.414)

Res: Paris, Work: Paris -0.159∗∗∗ -0.354∗∗∗ -0.239∗∗∗ 169.0 14.46∗∗∗ 34.57∗∗∗

(0.0342) (0.0172) (0.0201) (92.02) (3.141) (6.128)

Res: Paris, Work: Surburbs -0.0493 -0.256∗∗∗ -0.133∗∗∗ -52.27 0.679 4.046

(0.0331) (0.0185) (0.0192) (27.95) (2.077) (3.245)

Res: Suburbs, Work: Paris -0.0393 -0.236∗∗∗ -0.196∗∗∗ -31.58 -4.534∗∗∗ 0.905

(0.0216) (0.0108) (0.0105) (21.29) (1.081) (1.466)

D1 -0.0192 -0.146∗∗∗ -0.0291 74.24 3.444 1.639

(0.0483) (0.0228) (0.0209) (65.49) (2.555) (2.727)

D2 0.00162 -0.106∗∗∗ -0.0264 0.386 7.057∗∗∗ 2.759

(0.0363) (0.0173) (0.0149) (29.94) (1.939) (1.845)

D9 0.00679 0.0352∗∗ 0.00665 16.64 -0.797 0.959

(0.0259) (0.0121) (0.0117) (29.42) (1.135) (1.583)

D10 -0.0122 0.0416∗∗ -0.00242 -10.55 -1.654 4.899∗∗

(0.0272) (0.0131) (0.0123) (29.03) (1.144) (1.710)

Work in Factory -0.0173 0.0957∗∗∗ 0.0723∗∗∗ 48.39 2.301 1.502

(0.0358) (0.0165) (0.0135) (40.11) (1.587) (1.754)

Work at individuals’ home 0.169∗ -0.0610 -0.00591 472.1∗ 9.850∗ 7.225

(0.0797) (0.0338) (0.0302) (196.8) (4.477) (5.058)

Work from home 1.208∗∗∗ 0.102∗∗ 0.0838∗ -29.43 7.823 3.813

(0.138) (0.0385) (0.0328) (69.03) (4.469) (5.306)

Work Other 0.0970∗∗ 0.0338∗∗ 0.0340∗∗ 22.14 3.554∗∗ 2.398

(0.0297) (0.0130) (0.0113) (23.26) (1.269) (1.455)

Atypical working hours 0.0924∗ 0.0957∗∗∗ 0.0982∗∗∗ -17.59 0.668 5.984∗∗

(0.0390) (0.0235) (0.0195) (42.69) (2.141) (2.138)

Works part time 0.0370 -0.0225 -0.00736 -17.68 -0.0611 0.0324

(0.0333) (0.0138) (0.0129) (24.30) (1.349) (1.731)

Farmers 1.019 0.186 0.182 108.4 36.54 13.00

(0.530) (0.150) (0.199) (133.4) (19.32) (13.08)

Qualified Manual workers -0.0354 -0.000418 0.0317∗ 112.7∗∗ 8.538∗∗∗ 6.921∗∗∗

(0.0379) (0.0186) (0.0153) (37.12) (1.771) (2.029)

Unqualified Manual Workers -0.105 -0.133∗∗∗ -0.0145 54.19 4.458 6.390∗

(0.0557) (0.0243) (0.0211) (52.71) (2.451) (2.651)

Office clerks public sector -0.141∗∗∗ -0.0603∗∗∗ -0.00855 50.27 2.605 0.0435

(0.0320) (0.0143) (0.0129) (26.06) (1.359) (1.579)

Office clerks private sector -0.0566∗ -0.0188 0.0109 14.93 0.186 1.946

(0.0284) (0.0135) (0.0127) (25.85) (1.253) (1.513)

Personal Domestic Services -0.159∗∗ -0.153∗∗∗ -0.0553∗ -37.63 -0.166 3.822

(0.0604) (0.0271) (0.0258) (53.25) (2.525) (3.165)

Technicians 0.0385 -0.0138 -0.0122 30.88 1.557 1.687

(0.0336) (0.0180) (0.0156) (28.84) (1.523) (1.856)

Craftsworkers 0.0292 0.0509 0.0189 912.0∗ 26.45∗∗ 19.17∗

(0.185) (0.0517) (0.0461) (445.1) (9.279) (9.117)

Trades workers 0.320∗ 0.140∗∗ 0.108∗∗ 582.5∗ 16.01∗∗∗ 15.11∗∗

(0.125) (0.0444) (0.0341) (243.7) (4.748) (5.846)

CEOs 0.399∗∗ 0.145∗ 0.0837 79.62 -1.938 19.49∗∗

(0.140) (0.0622) (0.0473) (128.6) (4.226) (6.828)

Self-employed white-collar 0.203∗ 0.126∗∗∗ 0.0945∗∗ -100.9∗ -5.962 2.624

(0.0952) (0.0330) (0.0315) (42.72) (3.103) (5.615)

Managers 0.00708 -0.0195 -0.0195 -30.36 -0.810 0.600

(0.0228) (0.0114) (0.0105) (16.70) (0.964) (1.353)

Female -0.133∗∗∗ -0.00118 0.0301∗∗∗ -37.64∗∗ -2.789∗∗∗ -1.153

(0.0176) (0.00815) (0.00720) (14.42) (0.762) (1.018)

Household size -0.0139∗ 0.0206∗∗∗ 0.00570∗ 12.92 0.578 -0.934∗

(0.00692) (0.00325) (0.00290) (9.219) (0.328) (0.382)

Constant 2.386∗∗∗ 526.5∗∗∗ 52.37∗∗∗ 156.7∗∗∗

(0.140) (111.3) (5.366) (6.318)

N 12793 12793 12753 7687 7687 7687

R-squared 0.4519 0.0401 0.0509 0.0571

Standard errors clustered at the household level in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Columns (2) and (3) report the average marginal effects for each coefficient. All specifications also include

survey-day fixed effects, variables for age and age squared, and indicator variables for problems with taking

transport, being on leave or on sickness leave on the survey day. D1,...,D10: indicator for belonging to the

first,..,tenth decile of household income.
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