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Abstract

We present a general equilibrium growth model in which the use of a non-renewable

resource yields waste. Recycling waste produces materials of poor quality. These

materials can be reused for production only once a dedicated R&D activity has made

their quality reach a certain minimum threshold. The economy then switches to a

fully recycling regime. We refer to this switch as the technological breakthrough.

We analyze the optimal trajectories of the economy and interpret the Ramsey-

Keynes and Hotelling conditions in this speci�c context. We characterize the determi-

nants of the date of the breakthrough, which is endogenous, as well as the discontinuity

in the variables' paths that is induced by this breakthrough. We show, in particular,

that the availability of a recycling technology leads to an over-exploitation of the re-

source and possibly to lower levels of consumption before the breakthrough. We also

�nd that the breakthrough can have a negative impact on utility over a �nite period.

Keywords: Recycling; Non-renewable resource; Technical change; Growth

JEL classi�cations: C61, O44, Q32, Q53

∗These researches have received funding from the French Research Agency under grant agreement
number ANR-13-ECOT-0005-04. The authors thank an anonymous reviewer for helpful comments, and
the participants at EAERE, FAERE and IRBAM 2017 conferences for valuable remarks on earlier versions
of this paper.
†Toulouse Business School. Corresponding author: Toulouse Business School, 1 Place Alphonse Jour-

dain � CS 66810 � 31068 Toulouse Cedex 7, France. E-mail address: g.la�orgue@tbs-education.fr
‡Toulouse Business School

1



1 Introduction

"Recycling is de�ned as any reprocessing of waste material in a production process that

diverts it from the waste stream, except reuse as fuel. Both reprocessing as the same type of

product, and for di�erent purposes should be included. Recycling within industrial plants

i.e. at the place of generation should be excluded." (United Nations1). By using waste

as an input in the production process, recycling alleviates the scarcity of other resources.

However, even if current levels of recycling greatly vary from sector to sector, recycling

activity in the world is still low today. For instance, a UNEP report states that "many

metal recycling rates are discouragingly low, and a "recycling society" appears no more

than a distant hope" (UNEP, 2011). Geyer et al. (2017) underline that "between 1950

and 2015, cumulative waste generation of primary and secondary (recycled) plastic waste

amounted to 6300 Mt. Of this, approximately (...) 600 Mt (9%) have been recycled".

The main reasons behind this low-level activity are �rst that it remains comparatively

expensive � i.e. non-recycled materials remain relatively cheap. Regarding municipal

solid waste, for example, "in some cases the value of recyclables are less than the extra

costs associated with collecting the disturbed waste" (World Bank, 2012). Second, the

recycled materials are not always perfect substitutes for the virgin materials, which entails

reduced marketing possibilities. This substitution capacity is mainly driven by the degree

of maturity of the recycling process itself and by the induced quality range of recycled

goods. If recycling glass or pulp allows producing good-quality bottles and paper that are

(almost) perfect substitutes for primary goods (see e.g. Alani et al., 2012 or ADEME,

2009) , the recycling capacity of more sophisticated products can be constrained by a

deterioration of the physical characteristics of the virgin product during the recycling

process. This concerns certain types of plastics (thermosets), for instance. "Thermosets

(...) are characterized by their high resistance to mechanical force, chemicals, wear and

heat. The robust properties of thermosets make them more di�cult to recycle and they

cannot be re-melted down and reformed like thermoplastics" (OECD, 2018). Similarly,

carbon �ber reinforced polymer (CFRP) waste yields materials that cannot yet have the

same industrial use as the virgin materials, particularly in advanced technology sectors

such as aeronautics (Oliveux, 2015). This means that the quality of the recycled material

is fundamental in some industries, which justi�es investments to improve the physical

properties of the recycled material, and not only the e�ciency of the process.

1United Nations � Environmental indicators: http://unstats.un.org/unsd/environment/wastetreatment.htm
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The aim of the present paper is to understand how an economy will invest in research

so that recycled waste can be used at a large scale and to study how the economy switches

to a fully recycling regime. To do so, we consider a model in which a recycling technology

is available, but the current quality of recycled materials makes them non-usable by the

production process. The only way to trigger the recycling activity is thus to improve the

quality of these materials. This can be done by investing in a speci�c type of research and

development (hereafter R&D). After a certain threshold quality level has been reached, a

technological breakthrough occurs in the sense that the production of consumption goods

starts using as inputs both the virgin (primary) resource and the recycled (secondary)

waste. We characterize the optimal trajectories of the economy and their properties; in

particular, we study the discontinuity occurring at the date of the technological break-

through.

Natural resources and waste recycling is an economic issue that has been addressed in

dynamic contexts by many authors.2 In some models, recycling is motivated as an option

to mitigate the pollution generated by waste disposal. Smith (1972) follows this approach

but focuses on the two stationary corner solutions where it is optimal to recycle either

100% of the waste �ow or nothing, depending on the comparison of the private cost of

recycling with the public disutility of waste. Hoel (1978) analyzes the long-term path of an

economy that consumes a non-renewable resource and a recycled resource. He shows how

the environmental impact of the use of these resources a�ects the optimal trajectories of

the economy. In an endogenous growth context, Di Vita (2001) studies an economy that

uses both a non-renewable resource and recycled materials, the use of which harms the

environment by producing waste. The model endogenizes the degree of recyclability of the

accumulated waste: investing in a dedicated R&D sector allows improving recyclability.

In an "AK" growth model without natural resource, Boucekkine and El Ouardighi (2016)

introduce recycling to lighten the �ow of waste generated both by capital accumulation

and consumption. Waste storing is however not considered.

In other studies, as in the present one, recycling is justi�ed only as a way to sustain pro-

duction in the long run when the economy is constrained by the scarcity of non-renewable

natural resources. André and Cerda (2006) study an economy that uses two types of natu-

2A related literature, closed to our dynamic approach, deals with the management of durable goods (see
for instance Levhari and Pindyck, 1981, or Stewart, 1980). Also note that a large part of the studies on
recycling can be found in the industrial organization literature (see for instance Ba and Mahenc (2018) for
a survey on strategic behaviors of recycling �rms). We have chosen to focus here on (general-equilibrium)
dynamic contexts.
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ral resources, only one of which being recyclable. They show that if recycling may alleviate

resource scarcity in the short term, its ability to prevent negative long-run growth depends

on how much the economy depends on non-renewable and renewable resources. Di Vita

(2007) focuses on the degree of substitutability between the non-renewable resource and

recycled waste in the production process. He then analyses its impact on the economy's

growth path and the time pro�le of resource extraction. Pittel et al. (2010) also use an

endogenous growth model with non-renewable and recycled resources; they consider that

the waste �ow resulting from the use of these resources depends on the level of economic

activity. They carefully take into account the material balance equation (see also Ayres,

1999) and they show how a market for waste, and subsidies to resource extraction and

recycling allow restoring the social optimum.

In all these studies, the recycling technology is immediately available and used by the

economy. In the present paper however, we assume that the recycling technology initially

produces materials of poor quality that cannot be used in the production process (i.e. at

a large scale). Therefore, as in Di Vita (2001), we consider a sector of R&D devoted to im-

proving the technical properties of the recycled resource. Here, technological improvements

are needed so that the recycled resource reaches a minimum quality threshold. When this

quality level is attained, the secondary material can be used and the recycling activity

starts.

The growth model we develop can be sketched as follows. The production of a consump-

tion good requires (general-purpose) knowledge, labor, and raw material. Raw material

corresponds to �ows of a non-renewable resource, in its virgin or recycled form. Its use

yields waste �ows that add to a pre-existing stock. The economy can invest in a dedi-

cated research sector to improve the quality of recycled materials. Recycled waste starts

being used as an input as soon as its quality meets a minimum threshold. This threshold

is assumed to be exogenous for simplicity, but the date at which the recycling activity

starts � referred as the technological breakthrough � is endogenous. The main trade-o�s

faced by the economy are the following: the intertemporal management of the stock of

non-renewable resource, the intertemporal management of the stock of waste, the use of

the virgin or the recycled resource, and the allocation of e�orts between output production

and R&D.

The general optimal conditions derived from the social planner's program feature a

Ramsey-Keynes condition and a Hotelling rule, of which we provide a full interpretation.
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The possibility of recycling makes these conditions more complex than in standard dynamic

resource models. The social planner indeed manages both the remaining stock of virgin

resource and the accumulated stock of waste, which is partially renewable as it is fed by

�ows entailed by the use of the virgin resource. The technological breakthrough entails

a discontinuity in the trajectory followed by the economy. When it occurs, resource use

jumps down and then declines at a slower pace. Besides, consumption can jump upwards

or downwards depending on the values of parameters such as the maximal recycling rate

of the virgin resource. In the case of a downward jump, the technological breakthrough

has a negative impact on utility over a �nite period.

We also study how the exogenous parameters a�ect the socially optimal trajectories

and, in particular, the date of the technological breakthrough. Higher values of the growth

rate of the total factor productivity, of the output elasticity of the material input, of

the quality of the virgin resource or of the e�ciency of the research sector make the

breakthrough occur earlier. A larger initial stock of waste, higher waste content rates of

the two resources or a higher maximal recycling rate also bring forward the date of the

breakthrough. Conversely, this date is postponed with a higher social discount rate or a

larger initial stock of virgin resource.

We �nally consider the impact of the recycling activity and its timing on the economy.

To do so, we compare the trajectories of the studied economy to those of a) an economy

in which recycling is never possible and b) an economy in which recycling is immediately

possible (the breakthrough occurs at date 0). We show that, as compared to both a) and

b), the economy �rst over-exploits the virgin resource and then under-exploits it after the

breakthrough has occurred. The remaining stock of virgin resource is, therefore, lower

at each date. The use of the virgin resource makes the waste stock higher than in the

never-recycling economy, but it becomes lower after a �nite interval of time following

the breakthrough, to remain so forever after. The availability of a recycling technology

has more complex e�ects on consumption. We show, in particular, how it may reduce

consumption before the breakthrough.

The general model is exposed in Section 2. Section 3 presents the optimal program of

the economy. Then, we characterize the socially optimal trajectories and we study their

properties in Section 4. In Section 5, we analyze how the availability of a recycling activity

a�ects the economy. Section 6 concludes.
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2 The model

We consider an economy where a �nal consumption good Y is produced from a raw material

M and from labor LY according to the technology f . Denoting by AY the total factor

productivity ("TFP" thereafter), the quantity produced at any time t is then given by the

following expression:

Y (t) = f(AY (t),M(t), LY (t)), (1)

where the production function f(·) is increasing and concave in each argument. We also

assume that labor and physical materials are essential in production: f(AY , 0, LY ) =

f(AY ,M, 0) = 0.

For simplicity, we take the growth of the TFP as exogenous. Denoting by gAY the

growth rate (positive and constant) of AY and by AY 0 ≡ AY (0) the initial TFP index, we

have AY (t) = AY 0e
gAY t.

The physical input M is made up of two types of materials: a non-renewable resource

X � which we will hereafter refer to as the virgin resource � and a recycled secondary

material Z � which we will refer to as the recycled resource. A quality index is associated

to each of these materials. We denote by AX the quality of the virgin resource, and by

AZ that of the recycled resource. AX(t)X(t) and AZ(t)Z(t) must then be viewed as the

augmented material inputs that enter the production process at time t. In order to focus

on the recycling-related activities, we assume that the quality index of the virgin resource

is �xed and exogenous: Ā ≡ AX(t) > 0, ∀t. The quality index of the recycled resource

is subject to improvements resulting from speci�c R&D activities. We assume that, as

long as this quality is lower than a given fraction of the quality of the virgin resource, the

recycled material cannot be introduced into the production process. Once its quality index

has reached the minimum threshold hĀ, with h ∈ [0, 1], then it can be used in combination

with the virgin material. In this case, we assume that both types of resources are perfect

substitutes (as in Di Vita, 2001, or Pittel et al., 2010). Consequently, the material input

M can be expressed as follows:

M(t) =

{
ĀX(t), AZ(t) < hĀ

ĀX(t) +AZ(t)Z(t), AZ(t) ≥ hĀ
. (2)

Starting from a given initial level AZ0 ≡ AZ(0), the quality index AZ(t) of the recycled
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resource can be improved through the following endogenous R&D process:

ȦZ(t) = δLA(t)AZ(t), (3)

where δ > 0 is a parameter of productivity and LA(t) is the quantity of labor invested in

this R&D activity at time t. For the problem to be meaningful, we clearly must assume

that 0 < AZ0 < hĀ.

The economy is endowed with a �xed labor amount L, which can be devoted either to

production or to R&D:

LA(t) + LY (t) = L. (4)

The virgin resource is extracted from a non-renewable stock according to a one-to-one

technology: one unit of extracted resource yields one unit of virgin material. We assume

that the extraction cost is negligible and then, the virgin resource cost is only captured by

its scarcity rent. Denoting by S(t) the stock of resource at time t, and by S0 ≡ S(0) the

initial reserves, we have the following standard depletion process:

Ṡ(t) = −X(t). (5)

The consumption of C(t) units of �nal good generates an instantaneous utility u (C(t))

to consumers. The utility function u(·) satis�es the standard properties (increasing, con-

cave, Inada conditions). Moreover, the utility �ows are discounted by consumers at the

social discount rate ρ, supposed to be positive and constant.

The �nal output production process generates waste that can be saved and reused. We

assume that recycling is instantaneous, meaning that waste production and dismantling

occur instantaneously and at the same time.3 Within the production process, only the

primary physical inputs � virgin and recycled resources � yield waste. For simplicity, the

waste content rates of the virgin and recycled materials, α and β respectively, with α, β ∈

(0, 1), are taken as exogenous and constant. Moreover, we also assume that there is no

natural degradation process. At any time, the incoming �ow of waste is then αX(t)+βZ(t).

Let W (t) be the cumulative amount of waste at time t, and W0 ≡ W (0) the initial stock

3Note that, in this model, we do not consider speci�c costs of resource extraction or recycling. One
could have considered that storing waste so that it can be used in the future is costly. Such costs could be
expressed in terms of consumption good, labor, or we could assume that storing additional waste partially
degrades the existing stock of waste. Such a feature of the model would complexify the intertemporal
management of the stock of the non-renewable resource. Indeed, beyond reducing the remaining stock
available for future use, the use of the resource at each date would have an instantaneous cost. We assume
away such a cost in order to maintain the model tractable.
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inherited from the past. As a �ow of waste Z(t) is eventually used by the recycling sector

and thus removed from the accumulated stock W (t), we can write:

Ẇ (t) = αX(t)− (1− β)Z(t). (6)

In the remainder of the paper, we adopt the following conventional notations. We

denote by ϕx the partial derivative of any function ϕ(·) with respect to variable x when

this function contains more than one argument: ϕx ≡ ∂ϕ(·)/∂x. As usual, gx characterizes

the growth rate of variable x: gx(t) ≡ ẋ(t)/x(t). Last, for simplicity, we drop the time

index when this causes no confusion.

3 The optimal program

The social planner program consists in determining the trajectories of resource extraction,

waste recycling and e�orts in R&D and production, that maximize the discounted sum of

utility �ows subject to the set of technical constraints. However, the problem turns out to

be discontinuous since the �nal output has two di�erent expressions depending on whether

the quality index of the recycled material is smaller or larger than the threshold hĀ. In

this section, we consider separately these two successive phases.

Let T be the (endogenous) time at which AZ is equal to hĀ, i.e. the date at which

recycling becomes operational. As gAZ = δLA ≥ 0, the trajectory of AZ is always non-

decreasing. Henceforth, if such a �nite time T exists, then it is unique. We de�ne respec-

tively by P1 and P2 the social planner programs before and after time T , and we solve

them backwards.

3.1 Recycling phase

Once the recycling option becomes available, i.e. after time T , the optimal program is:

(P2) : max
{X,Z,LA,LY }

∫ ∞
T

u(C)e−ρ(t−T )dt,

subject to the technological condition C = f(AY , ĀX + AZZ,LY ), to the labor use

condition (4), to the dynamic constraints (3), (5) and (6), and to the initial condition

AZ(T ) = hĀ. The following constraints on the control variables must also be satis�ed:

X(t) ≥ 0 (7)

Z(t) ≥ 0 (8)

LA(t), LY (t) ∈ [0, L]. (9)
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For the moment, we omit these non-negativity conditions which will be veri�ed ex-post.

Denoting by λA, λS and λW the co-state variables associated with AZ , S and W

respectively, the optimal interior solution must satisfy the following �rst-order conditions:

u′(C)fM Ā = λS − αλW (10)

u′(C)fMAZ = (1− β)λW (11)

u′(C)fLY = δAZλA (12)

λ̇S = ρλS (13)

λ̇W = ρλW (14)

λ̇A = (ρ− δLA)λA − u′(C)fMZ . (15)

The transversality conditions are:

lim
t→∞

e−ρ(t−T )λκ(t)κ(t) = 0, κ = {AZ , S,W} . (16)

Conditions (10)-(12) state that the marginal social gain (in terms of utility) of one

unit of input must be equal to its corresponding social marginal cost. More precisely, in

(10), the marginal social gain of one unit of virgin resource equals the scarcity rent λS

of the non-renewable resource stock, reduced by αλW to take into account that this unit

generates waste up to α%, which accumulates into the stock W whose shadow value is

given by λW . Note that, as long as no negative externality is associated with the stock of

waste, λW works as a scarcity rent and is unambiguously positive. The same interpretation

applies in (11) for the recycled resource, except that it does not involve the stock of natural

resource but directly the stock of waste. Last, equations (12) is a standard static arbitrage

condition relative to the labor allocation between either production or R&D. The left-

hand side reads as the marginal social gain (in terms of utility) of increasing by one unit

labor in production while the right-hand side represents the marginal social cost (in terms

of knowledge value) of these labor reallocation resulting from a diminution of the e�ort

devoted to R&D.

Conditions (13) and (14) imply that λS(t) = λS(T )eρ(t−T ) and λW (t) = λW (T )eρ(t−T ).

Consequently, and conditionally on the fact that both resource stocks have a positive value

at time T (i.e. λS(T ) > 0 and λW (T ) > 0), the transversality conditions (16) associated

with S and W reduce to limt→∞ S(t) = limt→∞W (t) = 0. The stock of natural resource

and the stock of waste must be asymptotically exhausted:

S(T ) =

∫ ∞
T

X(t)dt and W (T ) =

∫ ∞
T

[(1− β)Z(t)− αX(t)]dt. (17)
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By replacing λW into (10) by its expression in (11), we obtain the following equation:

λS
u′(C)

= ĀfM +

(
α

1− β

)
AZfM . (18)

This equation states that the marginal social gain of virgin resource use expressed in units

of good, that is the left-hand side of (18), and the total marginal productivity of the

virgin resource, expressed by the right-hand side of (18), must be equal. Note that the

total marginal productivity of the resource embodies the recycling possibility. Any unit of

virgin resource extracted is indeed used a �rst time, which increases the output by ĀfM .

This unit then generates α% of waste from which (1−β)% can be valued through recycling.

The ratio α/(1 − β) can be interpreted as the recyclability factor of the virgin resource.

Multiplying this rate by the marginal productivity AZfM of the recycled material yields

the second increase in production induced by the virgin resource through recycling. To

simplify the forthcoming equations, let us denote by Ψ the total marginal productivity of

the resource: Ψ ≡ ĀfM +
(

α
1−β

)
AZfM .

We now use Equation (18) to derive the two main conditions that characterize the

socially-optimal intertemporal use of the virgin resource. Denoting by σ(C) the inverse

of the elasticity of intertemporal substitution, i.e. σ(C) ≡ −Cu′′(C)/u′(C), the growth

rate of the marginal utility can be simply expressed as −σ(C)gC . Log-di�erentiating (18)

with respect to time and using (13), we obtain the �rst following intertemporal arbitrage

condition:

ρ+ σ(C)gC =
Ψ̇

Ψ
. (19)

This is the Ramsey-Keynes condition in the speci�c context of our economy. The standard

Ramsey-Keynes condition characterizes the socially optimal arbitrage made between con-

sumption and capital accumulation. Here, the arbitrage is made between consumption and

the use of the virgin resource. Assume, at date t, a marginal reduction of the production

of consumption good through the diminution of resource use. At date t+ dt, the economy

uses this amount of resource whose total marginal productivity (as expressed in (18)) has

increased while it was kept in situ. The extra amount of consumption good accordingly

produced, represented by the right-hand side of (19), must be the amount of consumption

that compensates households for the loss of one unit of consumption at date t, represented

by the left-hand side of (19). What is new here is that, as previously mentioned, the to-

tal marginal productivity Ψ of the virgin resource features the term
(

α
1−β

)
AZfM , which

accounts for the fact that the waste induced by the use of the virgin resource is recycled

and used as an input for consumption good production.
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The second dynamic arbitrage condition is obtained as follows. By log-di�erentiating

(12) and replacing λ̇A by its expression in (15), one obtains a new expression of the term

ρ+ σ(C)gC . Inserting it in Condition (19) yields:

Ψ̇

Ψ
=
ḟLY
fLY

+
δAZZfM
fLY

. (20)

Equation (20) can be seen as a Hotelling condition in the context of a dynamic general

equilibrium framework, though modi�ed in two ways. First, there is no physical capital

but knowledge (intellectual capital) accumulation with intertemporal spillovers. Second,

the virgin resource use yields waste that can be reused in the production process. The

economic reasoning behind this condition is the following.

We �rst consider a given set of time pro�les of all variables of the economy: we will

refer to this benchmark as situation 1. We then assume a modi�cation of the time pro�le

of certain variables that keep the level of consumption good production unchanged at each

date. We refer to this new set of time pro�les as situation 2. We thus have Y 1(t) = Y 2(t)

for all t, equivalently C1(t) = C2(t). At date t, the economy reallocates one unit of

labor from production to research: L2
Y (t) − L1

Y (t) ≡ ∆LY (t) = −∆LAZ (t) = −1. In

order to maintain the level of output, the economy increases its use of virgin resource by

∆X(t) = fLY /Ψ that is, the marginal productivity of labor in output production expressed

in terms of resource4. Then, X2(t) = X1(t) + ∆X(t).

At date t+dt (with dt→ 0), the economy reallocates the unit of labor from research to

production: L2
Y (t+ dt) = L1

Y (t+ dt) and L2
AZ

(t+ dt) = L1
AZ

(t+ dt). Between t and t+ dt,

the stock of knowledge AZ has increased due to the additional unit of labor in research

within this interval and due to the (accordingly) increased level of knowledge AZ (through

intertemporal knowledge spillovers). This allows the economy to maintain the level of

output production (Y 2(t+dt) = Y 1(t+dt)) while saving a certain amount of virgin resource,

∆X(t+dt). To express ∆X(t+dt), one has to consider the extra amount of output produced

through the increased e�ort in research: d [δAZZfM ] /dt+δAZZfM , where δAZZfM is the

increase in output production induced by a marginal increase in labor devoted to research5.

Expressed in terms of resource, this amount is: [d (δAZZfM ) /dt+ δAZZfM ] /Ψ. Then,

4From ∆Y = fAY ∆AY + fM∆M + fLY ∆LY , with ∆LY = −1 and ∆AY = 0 (as the discrete changes

in stocks at a given time t are nil), then ∆M must be equal to
fLY
fM

to maintain the same level of output.
The economy can thus compensate for the amount of labor devoted to production by increasing its use of
virgin resource X and/or recycled resource Z (recall that ∆M = Ā∆X+AZ∆Z+Z∆AZ , with ∆AZ = 0).

Moreover, as ∆W = 0, we must have ∆Z =
(

α
1−β

)
∆X from (6). Then, ∆X = ∆M

Ā+
(

α
1−β

)
AZ

.

5Indeed, δAZ is the marginal productivity of labor in research (see (3)) and ZfM the marginal produc-
tivity of knowledge dedicated to the recycled resource.
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by dividing this expression by the rate of growth of the total marginal productivity of

the resource, we take into account that the productivity of the resource evolves over the

interval (t; t + dt). We thus have ∆X(t + dt) = Ψ
dΨ/dt ×

d[δAZZfM ]/dt+δAZZfM
Ψ . Since

δAZZfM = fLY , that is, the marginal productivity of labor is the same in production

and research, we obtain ∆X(t + dt) =
ḟLY +δARfAR

dΨ/dt . Condition (20) states that, at the

optimum, ∆X(t) and ∆X(t + dt) must be equal; in other words, the labor transfer from

output production to research does not allow to save virgin resource.

Finally, note that from (10)-(11) and (13)-(14), the marginal productivity of the natural

resource and of the recycled material, respectively ĀfM and AZfM , must grow at the same

rate. This result is driven by the assumption of perfect substitution between the two types

of resources. The additional assumption of a constant quality index for the virgin resource

then simpli�es the analysis as it implies that the quality index of the recycled resource must

also be constant. An immediate consequence is that no more e�ort in R&D is made once

the quality of the secondary raw material has reached the required (minimum) threshold:

∀t ≥ T : AZ(t) = hĀ, LA(t) = 0 and LY (t) = L. (21)

3.2 Pre-recycling phase

Before time T , as the secondary material cannot be used for production yet, we have

M = ĀX from (2). Denoting by V2(AZ(T ), S(T ),W (T )) the value function of program

P2 at time T , we can write the initial program P1 as follows:

(P1) : max
{X,LA,LY }

∫ T

0
u(C)e−ρtdt+ e−ρTV2(AZ(T ), S(T ),W (T )),

subject to the condition C = f(AY , ĀX, LY ), to the labor use constraint (4), and to the

dynamic constraints (3), (5), (6). Note that, as the cumulative waste equation (6) is now

reduced to Ẇ = αX, the trajectories of the resource reserves and of the waste stock are

linked through the following relation:

W (t) = W0 + α(S0 − S(t)), ∀t ∈ [0, T ).

The �rst-order conditions of P1 are very similar to those of P2. Conditions (10), (12),

(13) and (14) are the same. Condition (11) is no longer valid, whereas (15) becomes:

λ̇A = (ρ− δLA)λA. (22)

Note that even if some conditions have the same expression, the anticipation of the recycling

option availability at time T is captured by the shadow prices, which may follow di�erent

12



trajectories than under P2. The transversality conditions at time T are:

λA(T−) =
∂

∂AZ(T+)
V2(AZ(T+), S(T+),W (T+)) (23)

λS(T−) =
∂

∂S(T+)
V2(AZ(T+), S(T+),W (T+)) (24)

λW (T−) =
∂

∂W (T+)
V2(AZ(T+), S(T+),W (T+)). (25)

Last, the intertemporal trade-o� condition writes:

ρ+ σ(C)gC =
ḟM
fM

=
ḟLY
fLY

, (26)

which means that, under P1, the productivity of the resource and of labor must grow at

the same rate.

4 Optimal trajectories of the economy

To illustrate the recycling problem with endogenous technical breakthrough and provide

an example of optimal trajectories, we consider the following standard functional forms.

Utility is characterized by a CES function of parameter σ > 0 and output production is

described by a Cobb-Douglas function of parameter ε ∈ (0, 1): u(C) = C1−σ/(1− σ) and

f(AY ,M,LY ) = AYM
εL1−ε

Y .

Using these speci�ed analytical forms, we study in this section the main qualitative

properties of the optimal paths we have obtained. In particular, we explain their behavior

at the time the economy switches from the pre-recycling to the recycling phases. We also

analyze the sensitivity of the optimal variables to some key parameters of the model.

4.1 Qualitative properties of the optimal trajectories

The computational details of the social planner's solution as well as the existence conditions

of this solution are described in Appendix A.1.

Labor allocation

Formal expressions of LA and LY are given by:

LY (t) =

{
LY 0e

−k̃t , t < T
L , t ≥ T

and LA(t) =

{
L− LY 0e

−k̃t , t < T
0 , t ≥ T

, (27)

where the initial level of productive labor is LY 0 ≡ LY (0) = k̃(1−ε)(1−β)S0

δεh(W0+αS0) . The initial qual-

ity index of recycled material AZ0 is not high enough to allow using this input. Before time
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T , the e�ort LA devoted to the improvement of the recycled resource quality continuously

rises and it stops once the required quality threshold is reached. The e�ort in R&D thus

instantaneously falls to zero at time T , as depicted in Figure 1-a. Consequently, since the

total labor supply L is constant (c.f. (4)), the e�ort in production LY declines throughout

the �rst phase, then jumps to level L at date T , and remains at this level onwards.

The quality index of the recycling material is exponentially increasing until T and then

forever equal to hĀ (see expression (A.27) in the appendix). The optimal switching time

T is endogenously determined in such a way that AZ is continuous.6

Virgin resource use

The optimal path of the virgin resource use is given by:

X(t) =

{
k̃S0e

−k̃t , t < T

kS0e
(k−k̃)T−kt , t ≥ T

with k̃ ≡ ρ− (1− σ)gAY
σ

, k ≡ ρ− (1− σ)gAY
1− ε(1− σ)

.

(28)

Resource use is always exponentially decreasing through time � at rate k̃ during the pre-

recycling phase and at rate k during the recycling phase � and it asymptotically tends

towards zero. In this sense, it follows a standard Hotelling depletion process, but discon-

tinuous here. Let ∆X(T ) ≡ X(T+) − X(T−) denote the magnitude of the jump made

by X at time T . From (28), we have ∆X(T ) = (k − k̃)S0e
−k̃T , which is negative as

k̃ − k = (1 − σ)(1 − ε)k/σ > 0. This means that virgin resource use jumps down at time

T and then follows a less sloping declining path, as illustrated in Figure 1-b. At that

time indeed, the constraint on the virgin resource consumption is partially relaxed since i)

recycling becomes operational, and ii) the whole labor �ow is allocated to production (see

below). Consequently, the resource stock, as given by expression (A.24) in Appendix A.1,

is continuously declining until its full exhaustion, but its trajectory is less steep declining

after T than before T .

Recycling activity and waste accumulation

The optimal trajectories of Z and W are given by:

Z(t) =

{
0 , t < T

kΦS0e
−k(t−T ) , t ≥ T with Φ ≡ W0 + αS0

(1− β)S0
, (29)

W (t) =

{
W0 + αS0(1− e−k̃t) , t < T[
W0 + αS0(1− e−k̃T )

]
e−k(t−T ) , t ≥ T

. (30)

6We show in Appendix A.1 that the optimal date T is determined as the solution of the following

equation: δLT = ln
(
hĀ
AZ0

)
+ (1−ε)(1−β)S0

εh(W0+αS0)

(
1 − e−k̃T

)
.
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Time
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Time
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Figure 1: Optimal trajectories of the model
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In (29), Φ can be interpreted as the maximal recycling rate of the virgin resource

stock. Indeed, we can verify that the total use of the recycled resource
∫∞
T Z(t)dt amounts

to (W0 + αS0)/(1 − β), which formally reads as the maximal quantity of waste that can

be generated over the planning horizon divided by the net recycling rate of the secondary

material. By dividing this expression by S0, we obtain a ratio re�ecting the maximal

recycling potential of the virgin resource.

As shown in Figure 1-c, the �ow of recycled material is �rst nil. At time T , it jumps

upwards to its maximal value Z(T ) = kΦS0 and then behaves as X(t) by following a

trajectory that exponentially declines at rate k and that asymptotically converges towards

zero. This partially explains the fact that, as previously mentioned (see Figure 1-b), virgin

resource use is more intensive before T . During the pre-recycling phase indeed, resource use

has two purposes: �rst, the immediate production of output in order to meet consumption

needs; second, the accumulation of a stock of waste that will be used to produce recycled

material during the second phase. Since the maximum of the recycling activity is reached

at time T and then steadily declines, the waste stock needs to be high enough at this date.

The stock of waste, yielded by the use of the virgin and recycled resources, is �rst

increasing before T and next declining until exhaustion (see Figure 1-d).

Consumption

The translation of the previous results in term of consumption is complex. On the one

hand, as we show below, the optimal consumption trajectory can be either increasing or

decreasing. On the other hand, the nature of the jump at time T depends on the relative

magnitude of the jumps made by the di�erent inputs in the production function.

The consumption path is given by:

C(t) =

{
C0e

g̃Ct , t < T

CT e
gC(t−T ) , t ≥ T , (31)

where C0 ≡ C(0) = AY 0(ĀX0)εL1−ε
Y 0 and CT ≡ C(T ) = AY (T )[ĀX(T ) + hĀZ(T )]εL1−ε.

The growth rates of consumption during the pre-recycling and recycling phases, respec-

tively denoted by g̃C and gC , are:

g̃C =
gAY − ρ

σ
and gC =

gAY − ερ
1− ε(1− σ)

. (32)

We show in Appendix A.1 that gC > g̃C . In other words, consumption grows faster � or

decreases more slowly in case of negative rates � after date T .
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We �rst consider the sign of these growth rates. We know that consumption is a

combination of three factors (see (1)): TFP (AY ), material input (M) and labor (LY ).

Its potential growth is only (exogenously) driven by AY , as LY is declining during the

pre-recycling phase and constant afterwards, and M is always decreasing (as a linear

combination of virgin and recycled resources, both being declining as previously shown).

More precisely, we show that g̃C and gC can be positive or negative depending on the level

of the TFP growth rate gAY relative to the social discount rate ρ and the input substitution

parameter ε. The three following cases can occur:
ρ < gAY ⇒ gC̃ > 0 and gC > 0 ,

gAY ≤ ρ < gAY /ε ⇒ g̃C ≤ 0 and gC > 0 ,

gAY /ε ≤ ρ ⇒ gC̃ < 0 and gC ≤ 0 .

As usual, time impatience favors immediate consumption to the detriment of future

consumption. Consequently, the larger the social discount rate, the weaker the consump-

tion growth rate, with negative values below a given threshold. For intermediate values of

ρ, the optimal growth path may be U-shaped (with a discontinuity at the bottom of the

U): decreasing over time during the non-recycling phase, and then increasing during the

recycling phase. For simplicity, and to reduce the number of scenarios, we only illustrate

in Figures 1-e and 1-f cases where both gC and g̃C are positive, that is cases where the

social discount rate is not too high.

We now turn to the discontinuity of C at time T . The combination of a downward

jump in virgin resource and upward jumps in both recycled material and productive labor

(see previous �ndings) results, a priori, in an undetermined overall jump in consumption.

Conclusions depend on the relative magnitude of jumps in inputs and on the substitutabil-

ity properties of the production function. We show in Appendix A.2 that large values of

Φ (the maximal recycling rate of the virgin resource stock) are a su�cient condition for

consumption to jump upwards at time T . This case is illustrated in Figure 1-e while the

other case � the case of a downward jump in consumption � is represented in Figure 1-f.

However, we also show in Appendix A.2 that the jump is always positive in the particular

case where σ = 1 (i.e. with a logarithm utility function).

Recall that utility only depends on consumption here. For this reason, the preceding

analysis of the jump in consumption shows that the technological breakthrough may have

a negative impact on utility at the time T of its occurrence and over a certain period of

adjustment (see Figure 1-f), before the pre-recycling utility level is reached again.
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4.2 Comparative dynamic analysis

We now perform some comparative dynamics so as to analyze the sensitivity of the most

relevant variables, including the date T of occurrence of the technological breakthrough,

to the exogenous parameters of the model. We do not intend to be exhaustive here, we

rather focus on the main insights � a complete presentation of the comparative dynamics

is provided in Appendix A.3, Table 1.

Parameters characterizing the preferences

An increase in the social discount rate ρ means that the representative household obtains

more utility from current consumption relative to future consumption. In order to increase

consumption today, the social planner increases early extraction, which means that future

extraction gets lower. The extraction of the virgin resource before T is thus accelerated:

gX decreases (recall that gX = k̃). Simultaneously, a higher ρ entails stronger initial e�orts

in production: LY 0 is increased. As a consequence, the initial e�ort in research gets lower,

that is LA0 decreases, and gAZ , the growth of the quality of the recycled resource, is slower.

Hence, for a given initial quality AZ0, the date at which the recycled resource reaches the

minimum quality threshold hĀ � and starts to get used in the production process � is

postponed.

An increase in the elasticity of marginal utility σ means that the representative house-

hold derives more utility from a uniform consumption path, ceteris paribus. Here, in order

to achieve a �atter consumption path, the social planner invests less in R&D (investing

would imply a higher consumption tomorrow): LA0 and gAZ both decrease. This too

entails a later occurrence of the technological breakthrough: T increases.

Parameters characterizing the output production technology

In our framework, the total factor productivity (TFP) AY is taken as exogenous and

growing at constant rate gAY . A higher growth of TFP allows the planner to slow down

resource extraction between 0 and T : less resource is used during the early periods and

more in the future periods. In other words, gX (that is, k̃) gets higher for all t < T . For a

given level of AY 0, the increase in gAY entails higher AY for all t. Therefore, the planner

devotes less labor to the production of output: LY 0 and gLY both get lower. Consequently,

the e�ort in research LA is higher at each date t < T . Thus R&D is more intensive, the
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quality of the recycled resource grows faster, and the technological breakthrough is reached

earlier.

An increase in the output elasticity of raw material ε means that the material input

M gets more productive (relative to labor). In this case, the economy relies more heavily

on the �ows of resource and hence the need for an additional source of material is more

pressing. Therefore the economy transfers labor from production to research and by this

makes the technological breakthrough happen sooner: T gets lower.

Parameters characterizing the research sector

Parameter Ā characterizes the quality level of the virgin resource. With a higher Ā, the

economy requires that the recycled resource reaches a higher quality threshold before it

starts to get used in the production process. Ceteris paribus and, in particular, for a given

investment in R&D, this postpones the date T of the breakthrough. The impact of AZ0,

the initial quality level of the recycled resource, is obviously opposite. A higher AZ0 means

that the distance to (a given) level hĀ is shorter; the quality threshold is thus reached

faster, and the technological breakthrough occurs at an earlier date.

A higher δ means that the R&D sector is more e�cient. In such a case, LY 0 is lower

while gLY is unchanged. This means that, at each date t < T , the e�ort in research LA

is higher and the quality of the recycled resource grows faster. The breakthrough occurs

earlier here too.

Parameters characterizing the recycling sector

With a higher S0, the initial stock of virgin resource is larger and the need for a comple-

mentary resource is thus less urgent. Hence the social planner can use more virgin resource

at each date between 0 and T , that is X gets higher, and devotes more labor to production

and thus less to research: LA is lower. Thus the quality of the recycled resource grows less

fast and the technological breakthrough occurs later.

The initial stock of waste W0 and the waste content rates of the two resources, α and

β have similar e�ects on the economy's trajectories and henceforth on the date of the

technological breakthrough. A larger initial stock of waste W0 means that, for a given

path of resource use between 0 and T , the stock of recycled resource to be used from
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date T on is larger. This makes the technological breakthrough more signi�cant. Hence

the economy increases its e�ort in R&D, that is LA(t) gets higher for all t < T , and the

recycled resource starts to get used sooner in the production process. Similarly, if the

waste content of the virgin resource, α, and the waste content of the recycled resource, β,

are higher, the planner gets an incentive to invest more in research, and the technological

breakthrough occurs earlier. We have introduced Φ ≡ W0+αS0
(1−β)S0

as the maximal recycling

rate; a higher Φ thus also brings forward the date of the breakthrough.

5 E�ects of the availability of a recycling technology

We analyze here how the availability of a recycling technology a�ects the trajectory followed

by the economy. To do so, we consider three cases. First, an economy in which no recycling

technology is available at any date t. Hereafter, we refer to this case as the "never-recycling

economy". This is obviously a particular case of the economy studied in the last sections,

in which date T tends towards in�nity (equivalently, h→∞, see (2)). Second, we consider

an economy in which the recycling option is available at date 0. In other words, the quality

threshold at which the recycled resource starts to be used is instantaneously met: T = 0,

and thus AZ0 = hĀ. We will refer to this case as the "always-recycling economy". The

third case is the general case studied in Sections 2-4 in which recycling is possible after

date T . We will refer to this case as the "T -recycling economy".

We �rst characterize the trajectories of the never and always-recycling economies. In

both cases, we can easily show that the marginal social value of (AZ-type) R&D is nil.

Consequently, at any point in time, the total amount of available labor is allocated to

production and the set of control variables reduces to the uses of raw material only. How-

ever, in this "cake-eating" problem, the nature and the availability of the stocks of re-

sources di�er in each case. In the never-recycling economy, only the virgin resource can be

used and the �nal consumption good is produced according to the following technological

form: C = AY (ĀX)εL1−ε. In the always-recycling economy, thanks to recycling activities,

the initial stock of waste W0 can be exploited at rate Z as a complementary resource:

C = AY (ĀX + hĀZ)εL1−ε.
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The optimal trajectories of such a program are the following: 7

Xn(t) = Xa(t) = kS0e
−kt and Sn(t) = Sa(t) = S0e

−kt , (33)

Zn(t) = 0 and Za(t) = kΦS0e
−kt , (34)

Wn(t) = W0 + αS0

(
1− e−kt

)
and Wa(t) = W0e

−kt , (35)

Cn(t) = Cn0e
gCt, with Cn0 = AY 0(ĀkS0)εL1−ε , (36)

Ca(t) = Ca0e
gCt, with Ca0 = AY 0(ĀkS0)ε(1 + hΦ)εL1−ε , (37)

From (33), virgin-resource use in the never-recycling economy is identical to virgin-

resource use in the always-recycling economy. As shown in Section 4.1, the emergence of

a technological breakthrough at date T > 0, which characterizes the T -recycling economy,

yields a discontinuity in the trajectory of resource use at date T . These three extrac-

tion paths are depicted in Figure 2-a. Before the breakthrough, we can see that the

T -recycling economy over-exploits the resource � as compared to the never and always-

recycling economy. Indeed, part of the labor �ow LY directed to production in the never

and always-recycling economies is a�ected to R&D in the T -recycling economy. The T -

recycling economy thus compensates for this lower input use by using higher �ows of

resource X. Moreover, this yields additional �ows of waste: the stock of waste that can

be recycled from date T on is thus higher. After the breakthrough, the whole amount of

labor available L is devoted to production and the recycled resource Z starts to get used.

This allows the T -recycling economy to use lower levels of virgin resource X at each date

t > T . Figure 2-b illustrates the over-exploitation of the virgin resource stock S by the

T -recycling economy at each date t > 0.

Figure 2-c depicts the trajectories of the waste stock. From (35), the stock of wasteWn

in the never-recycling economy grows over time and asymptotically tends to its upper limit

level W0 +αS0 (see the dashed curve in Figue 2-c). In other words, as the never-recycling

economy uses the non-renewable resource, the associated waste adds to the existing stock

until the whole resource stock is exhausted. The stock of waste Wa in the always-recycling

economy exponentially declines from W0 down to 0. This means that the amount of waste

produced is instantaneously re-used by the production process and that the stock of waste

follows a continuous depletion process. The impact of the immediate availability of a

7The subscript n denotes variables characterizing the never-recycling economy and the subscript a,
variables characterizing the always-recycling economy.
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Figure 2: E�ect of the availability of the recycling technology
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recycling technology is therefore unambiguous: the stock of waste is lower at each date

t > 0.

Equation (30) presents the trajectory of the stock of waste in the T -recycling economy.

Before date T , W increases and is higher than Wn at each date. At date T , the stock

reaches its maximum level W0 + αS0(1 − e−k̃T ) and then starts to steadily decline, to

asymptotically converge towards 0 since, in the long-run, the T -recycling economy uses

waste until its stock gets exhausted (see Section 4.1). Conversely, the never-recycling

economy keeps accumulating waste after date T and Wn gets higher than W at any date

T̂ > T . In other words, the recycling option makes the stock of waste larger until date T̂ .

After this date, the stock of waste is lower in the T -recycling economy.8

From the expressions (36) and (37), one can see that the growth rate of consumption

is identical in the never-recycling and the always-recycling economies. Moreover, it is

straightforward that Ca0 > Cn0. One can thus conclude that the immediate availability of

a recycling technology has a positive impact on consumption: Ca(t) > Cn(t) for all t.

Comparing consumption in the T -recycling economy with consumption in the always

and never-recycling cases involves numerous complex scenarios that depend on various

parameters of the model, notably including Φ. Deriving clear conclusions is not possible

at this stage. However, in the speci�c case of a logarithm utility, that is when σ = 1

(a case in which the jump in consumption in the T -recycling economy is always positive

as already mentioned), we show in Appendix A.2 that the consumption paths verify the

following ranking: Ca0 > Cn0 > C0 and C(T+) > Ca(T ) > Cn(T ), as illustrated in Figure

3. For any t < T , the T -recycling economy is characterized by consumption levels lower

than those in the always and never-recycling economies. Conversely, once the technological

breakthrough has occurred, consumption in the T-recycling economy is higher than in the

other two economies.

6 Concluding remarks

The aim of this paper is �rst to study the socially optimal path of an economy that needs to

invest in research so that recycling becomes operational. We also want to understand how

8Regardless of its date of occurrence, the maximal level reached by a stock of pollutant is a serious
concern for many � since irreversible damages may occur after certain thresholds. Here, this maximal level
W (T ) is reached earlier by the T -recycling economy; however, it is lower than the maximal level reached by

the never-recycling economy. Indeed, the di�erence between the two is equal to
[
W0 + αS0(1 − e−k̃T )

]
−

(W0 + αS0), which is negative since e−k̃T > 0.
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Figure 3: Optimal consumption � Case σ = 1

the emergence of the recycling technology � what we call the technological breakthrough

� a�ects the economy. To do so, we utilize a dynamic model with recycling and R&D,

in which the use of recycled materials produced from waste requires a prior investment in

research so that the quality of the recycled resource meets a certain standard.

We �rst present the general optimality conditions derived from the social planner's

program. We characterize a Ramsey-Keynes condition and a Hotelling condition that take

new forms in the presence of a recycling activity; we also provide a full interpretation of

these conditions. In particular, we show how these conditions tackle the joint dynamics of

the remaining stock of virgin resource and of the accumulated stock of waste, the latter

stock being partially renewable as it is fed by �ows entailed by the virgin resource use.

We then study the socially optimal trajectories of the economy, and especially the

discontinuity induced by the technological breakthrough. At the time of the breakthrough,

resource use jumps down and then follows a less sloping declining path. The jump in

consumption is ambiguous. If the social discount rate is not too high, consumption grows

over time; however, depending on the values of parameters such as the maximal recycling

rate of the virgin resource, consumption can jump upwards or downwards at the time of

the breakthrough. In the latter case, the technological breakthrough has a negative impact

on utility during a �nite period. We also consider the sensitivity of the optimal trajectories

to the exogenous parameters. In particular, we study how these parameters a�ect the date
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of the technological breakthrough.

Next, we compare the general trajectories of this economy to two particular cases: an

economy in which recycling is never possible and an economy where recycling is imme-

diately operational. This allow us analyzing the impact of the recycling activity and its

timing. We show that, as compared with these two particular cases, the economy over-

exploits the virgin resource before the breakthrough, and then uses lower �ows after this

date. Besides, the waste stock is initially higher than in the never-recycling economy, but

eventually becomes lower after a �nite interval of time following the breakthrough and

remains so forever after. The impact of the availability of a recycling technology on con-

sumption is more complex. It results from combined e�ects on the di�erent inputs. As

previously mentioned, the virgin resource use is accelerated; besides, part of the whole

labor force is directed from production to research until the breakthrough occurs. Accord-

ing to the relative strengths of these e�ects, which depend on the exogenous parameters

of the model (and notably the maximal recycling rate), the availability of the recycling

technology may reduce consumption before the breakthrough; this is what we illustrate in

the simple case of a logarithm utility function.

To get a tractable framework, we have made simplifying hypotheses. One major sim-

pli�cation is that we assume away environmental externalities. The use of many resources

like, say plastics, yields �ows of waste and their accumulated stocks are a major concern for

public health and ecosystems - see for instance the "Great Paci�c Garbage Patch" (UNEP,

2016). One characteristic of most recycling activities is that, besides from producing ad-

ditional inputs for production, they allow reducing such pollution stocks and thus induce

additional welfare gains. In other respects, it is well known that the use of many non-

renewable resources in the production process yields greenhouse gas (GHG) emissions.

However, using virgin materials to produce output does not yield the same amount of

GHG than using recycled materials. "Producing new products with secondary materials

can save signi�cant energy. For example, producing aluminum from recycled aluminum

requires 95% less energy than producing it from virgin materials." (World Bank, 2012).

As mentioned before, the availability of a recycling technology accelerates resource use be-

fore the breakthrough. This means that, in the absence of environmental externality, the

recycling option accelerates GHG emissions. This result may be nuanced in a framework

in which, for instance, utility is negatively a�ected by carbon accumulation.

Finally, the introduction of environmental externalities in this framework paves the way
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for the study of pro-recycling policy that may be necessary for a decentralized economy to

achieve the type of �rst-best outcomes analyzed in the present paper. We leave this for

future research.
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Appendix A.1 Computation of the optimal trajectories

A.1.1 Analytical solution of program P2

We know that, for t ≥ T , AZ(t) = hĀ, LA(t) = 0 and LY (t) = L, which implies gAZ =

gLY = 0. Given that C = AYM
εL1−ε

Y , equations (19) and (20) can be rewritten as:

ρ+ σgC =
ḟM
fM

⇒ ρ− (1− σ)gC = −gM (A.1)

ρ+ σgC = gC − gLY +
δhĀZfM
fLY

⇒ ρ− (1− σ)gC =
δεhĀLZ

(1− ε)M
. (A.2)

As gC = gAY + εgM + (1− ε)gLY = gAY + εgM , equation (A.1) implies:

gC =
gAY − ερ

1− ε(1− σ)
. (A.3)

Combining (A.1) with (A.2), we obtain gMM = −(δεhĀLZ)/(1 − ε), which imposes gM

to be negative. Replacing M by Ā(X + hZ) in this last expression, we have:

X

hZ
= − εδL

(1− ε)gM
− 1 . (A.4)

As gC is constant (from (A.3)), gM is constant too (from (A.1)). Log-di�erentiating (A.4)

with respect to time, we obtain gX = gZ . Next, di�erentiating M = Ā(X + hZ) with

respect to time yields Ṁ = Ā(gXX + gZhZ) = gXM , and then gM = gX . Finally, we

obtain:

gX = gZ = gM = −
[
ρ− (1− σ)gAY

1− ε(1− σ)

]
. (A.5)

Last, as X and Z grow at the same constant (negative) rate given by (A.5), we can

easily solve the linear di�erential equation system (5)-(6) to get the optimal trajectories

of resource extraction and of waste recycling. To conclude, the entire solution of P2 is

characterized in the following lemma.

Lemma 1 For t ∈ [T,∞), the optimal trajectories of the model are:

X(t) = X(T )e−k(t−T ); X(T ) = kS(T )

Z(t) = Z(T )e−k(t−T ); Z(T ) =
k[W (T ) + αS(T )]

(1− β)

S(t) = S(T )e−k(t−T ); W (t) = W (T )e−k(t−T )

C(t) = C(T )egC(t−T ); C(T ) = AY (T )
[
ĀX(T ) + hĀZ(T )

]ε
L1−ε

where k ≡ [ρ− (1− σ)gAY ]/[1− ε(1− σ)] and where gC is given by (A.3).
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From the expression of C as given in Lemma 1 and noting that gC = (ρ− k)/(1− σ),

the optimal value of program P2 can be simply expressed as:

V2(AZ(T ), S(T ),W (T )) =

∫ ∞
T

u(C)e−ρ(t−T )dt

=
C(T )1−σ

(1− σ)

∫ ∞
T

e−k(t−T )dt =
C(T )1−σ

(1− σ)k
, (A.6)

where C(T ) = AY (T )
[
ĀX(T ) +AZ(T )Z(T )

]ε
L1−ε and AY (T ) = AY 0e

gAY T . We can

then compute the following derivatives:

∂V2

∂AZ(T )
=

εZ(T )

kM(T )
C(T )1−σ (A.7)

∂V2

∂S(T )
− α ∂V2

∂W (T )
=

εĀ

M(T )
C(T )1−σ . (A.8)

A.1.2 Analytical solution of program P1

In what follows, growth rates with an upper tilde refer to the optimal trajectories under

program P1. As long as t < T , consumption amounts to C = AY (ĀX)εL1−ε
Y . The

intertemporal trade-o� condition (26) directly implies that g̃X = g̃LY = (1− σ)g̃C − ρ. As

g̃C = gAY + εg̃X + (1− ε)g̃LY , we can deduce the optimal growth rate of consumption for

t ∈ [0, T ):

g̃C =
gAY − ρ

σ
. (A.9)

As we know the growth rates of all the control variables (note also that LA = L−LY ), we

can then solve the state equations (3)-(6) and characterize the solution of program P1 as

follows.

Lemma 2 For t ∈ [0, T ), the optimal trajectories of the model are:

X(t) = k̃S0e
−k̃t; S(t) = S0e

−k̃t; W (t) = W0 + αS0(1− e−k̃t)

LY (t) = LY (0)e−k̃t; LA(t) = L− LY (t)

AZ(t) = AZ0 exp

[
δLt− δLY (0)

k̃
(1− e−k̃t)

]
C(t) = C(0)eg̃Ct; C(0) = AY 0

(
Āk̃S0

)ε
LY (0)1−ε ,

where k̃ ≡ [ρ − (1 − σ)gAY ]/σ, where g̃C is given by (A.9), and where LY (0) and T are

endogenous variables that must be determined from the set of continuity and transversality

conditions at time T .
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A.1.3 Transversality conditions at time T

Given the expression of the state variables provided by Lemma 1 and 2, we can deduce the

following continuity conditions at time T :

S(T−) = S(T+) ⇔ S(T ) = S0e
−k̃T (A.10)

W (T−) = W (T+) ⇔ W (T ) = W0 + αS0(1− e−k̃T ) (A.11)

AZ(T−) = hĀ ⇔ δLT =
δLY (0)

k̃

(
1− e−k̃T

)
+ ln

(
hĀ

AZ0

)
. (A.12)

Next, we analyze the transversality conditions as given by (23)-(25). We need �rst to

characterize the trajectories of the co-state variables. Solving the di�erential equations

(13), (14) and (22) for t ∈ [0, T ) results in:

λS(t) = λS(0)eρt (A.13)

λW (t) = λW (0)eρt (A.14)

λA(t) =
λA(0)AZ0

AZ(t)
eρt , (A.15)

where λS(0), λW (0) and λA(0) are endogenous variables that must satisfy the �rst-order

conditions (10) and (12) at time t = 0:

λS(0)− αλW (0) =
ε

k̃S0

C(0)1−σ (A.16)

λA(0) =
(1− ε)

δAZ0LY (0)
C(0)1−σ . (A.17)

Combining (A.13)-(A.15) with (A.16)-(A.17), we have:

λS(T−)− αλW (T−) =
ε

k̃S0

C(0)1−σeρT
−

(A.18)

λA(T−) =
(1− ε)

δhĀLY (0)
C(0)1−σeρT

−
. (A.19)

Next, using the transversality conditions (23)-(25) together with (A.18)-(A.19) and rear-

ranging the outcome, expressions (A.7)-(A.8) can be rewritten as follows:

M(T )

[
C(0)

C(T )

]1−σ
eρT =

εδhĀLY (0)Z(T )

k(1− ε)
(A.20)

M(T )

[
C(0)

C(T )

]1−σ
eρT = k̃S0Ā (A.21)

These two last equations allow for determining the optimal initial level of e�ort in produc-

tion. Last, given this optimal value of LY (0), the optimal switching time T is obtained as

the solution of the continuity equation (A.12).
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A.1.4 Optimal trajectories: Summary

The optimal solution is characterized by the following trajectories:

X(t) =

{
k̃S0e

−k̃t , t < T

kS0e
(k−k̃)T−kt , t ≥ T

(A.22)

Z(t) =

{
0 , t < T
k(W0+αS0)

(1−β) e−k(t−T ) , t ≥ T (A.23)

S(t) =

{
S0e
−k̃t , t < T

S0e
(k−k̃)T−kt , t ≥ T

(A.24)

W (t) =

{
W0 + αS0(1− e−k̃t) , t < T[
W0 + αS0(1− e−k̃T )

]
e−k(t−T ) , t ≥ T

(A.25)

LY (t) = L− LA(t) =

{
LY 0e

−k̃t , t < T
L , t ≥ T

(A.26)

AZ(t) =

{
AZ0 exp

[
δLt− δLY 0

k̃
(1− e−k̃t)

]
, t < T

hĀ , t ≥ T
(A.27)

where the initial level of productive labor is given by:

LY 0 ≡ LY (0) =
k̃(1− ε)(1− β)S0

δεh(W0 + αS0)
; (A.28)

and where the optimal switching time T is solution of the following equation:

δLT = ln

(
hĀ

AZ0

)
+
S0(1− ε)(1− β)

εh(W0 + αS0)

(
1− e−k̃T

)
. (A.29)

We can easily verify that that such an interior solution exists, i.e. that the non-

negativity constraints (7)-(9) hold, if and only if LY 0 ∈ (0, L), k > 0 and k̃ > 0. This

corresponds to a set of parameters that must satisfy the following conditions:

(1− σ)gAY ≤ ρ , (A.30)

LY 0 =
k̃(1− ε)(1− β)S0

δεh(W0 + αS0)
≤ L . (A.31)

Condition (A.30) states that, to justify resource extraction and recycling, the social dis-

count rate must be large enough as compared with the exogenous trend parameter of

technical progress (this condition guarantees that both k and k̃ are positive). Condition

(A.31) says that the total amount of e�ort (i.e. labor) must be large enough.

Appendix A.2 Properties of the consumption path

A.2.1 General case, for any σ

We �rst focus on the discrete jump in consumption at time t. The size of this jump is

given by ∆C(T ) ≡ C(T+) − C(T−), where C(T+) = AY (T )M(T+)εL1−ε and C(T−) =
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AY (T )M(T−)εLY (T−)1−ε. Then, we can write:

∆C(T ) ≥ 0 ⇔
[
M(T+)

M(T−)

]ε
≥
[
LY (T−)

L

]1−ε
.

Denoting by ∆M% and ∆LY % the percentage of instantaneous variation at time T of M

and LY respectively, the previous expression becomes:

∆C(T ) ≥ 0 ⇔ (∆M% + 1)ε × (∆LY % + 1)1−ε ≥ 1 ,

which states that if the multiplier ofM (�rst term in bracket) is larger than one, then, given

that ∆LY % > 0, consumption jumps up. For the other cases, that is if this multiplier is

smaller than one, the multiplier of L (second term in brackets, always larger than one) must

be large enough and/or the substitution parameter ε must be small enough to compensate

for the instantaneous decrease in material inputs and then get a positive jump in C.

A positive jump in the material input would thus be a su�cient condition for con-

sumption to jump upwards. From (2), this jump in M is given by ∆M(T ) = Ā[∆X(T ) +

h∆Z(T )]. Developing this expression, we get:

∆M(T ) = Āk

[
h

(
W0 + αS0

1− β

)
− (1− σ)(1− ε)S0

σ
e−k̃T

]
⇒ ∆M(T ) ≥ 0 ⇔ Φek̃T ≥ (1− σ)(1− ε)

hσ
(A.32)

where Φ ≡ (W0 +αS0)/(1−β)S0 and where, from (A.29), T can be expressed as a function

of Φ:

T (Φ) is s.t. δLT = ln

(
hĀ

AZ0

)
+

(1− ε)
εhΦ

(
1− e−k̃T

)
. (A.33)

Let consider the function g(Φ) = Φek̃T , with g′(Φ) =
(

1 + Φk̃ dTdΦ

)
ek̃T . Di�erentiating

(A.33) with respect to Φ, we obtain:

dT

dΦ
=

−(1−ε)
εhΦ2 (1− e−k̃T )

δL− k̃(1−ε)
εhΦ e−k̃T

,

which is proved to be negative (see Appendix A.3, Table 1). As the numerator of this ratio

is negative, the denominator must be positive. After computation, we get:

g′(Φ) =

[
δL− (1−ε)k̃

εhΦ

]
ek̃T

δL− k̃(1−ε)
εhΦ e−k̃T

.

As just shown, the denominator of this expression is positive. Moreover, the numerator is

also positive given the existence condition (A.31). Then, function g(.) is increasing in Φ.

Coming back to (A.32), we can conclude that ∆M(T ) is positive if and only if Φ is larger

than g−1
(

(1−σ)(1−ε)
hσ

)
.
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A.2.2 Particular case σ = 1

When σ = 1, i.e. when u(C) = lnC, the optimal trajectories of the T -recycling economy

are given by:

X(t) = ρS0e
−ρt and S(t) = S0e

−ρt

Z(t) =

{
0

ρΦS0e
−ρ(t−T ) and W (t) =

{
W0 + αS0(1− e−ρt)[
W0 + αS0(1− e−ρT )

]
e−ρ(t−T )

LY (t) =

{
LY 0e

−ρt

L
and C(t) =

{
C0e

(gAY −ρ)t

CT e
(gAY −ερ)(t−T )

where LY 0 = ρ(1−ε)
εδhΦ , C0 = AY 0(ĀρS0)εL1−ε

Y 0 , CT = AY (T )(ĀρS0)ε(e−ρT + hΦ)εL1−ε and

where T is solution of:

δLT = ln

(
hĀ

AZ0

)
+
LY 0

ρ

(
1− e−ρt

)
.

In this case, the resource extraction trajectory is no longer discontinuous. The other

trajectories evolve as in the general CES utility case. In particular, the optimal consump-

tion grows faster after T . However, we are now able to precisely characterize the jump

in consumption at time T . As labor LY jumps up, we know that a positive jump in the

material input M would be a su�cient condition for consumption to jump upwards. As

resource extraction is now continuous at time T , the size of this jump is simply given by

the jump in waste recycling: ∆M(T ) = Ā[∆X(T ) + h∆Z(T )] = hĀρΦS0 > 0. Then,

without any ambiguity, consumption now jumps upwards.

With σ = 1, consumption in the never-recycling and in the always-recycling economies

are, respectively:

Cn(t) = AY 0(ĀρS0)εL1−εe(gAY −ερ)t (A.34)

Ca(t) = AY 0(ĀρS0)ε(1 + hΦ)εL1−εe(gAY −ερ)t . (A.35)

Obviously, we have Ca(t) > Cn(t) for any t. As Cn(0)−C(0) = AY 0(ĀρS0)ε(L1−ε−L1−ε
Y 0 ) >

0, we can write:

Ca(0) > Cn(0) > C(0).

Moreover, as Ca(T ) − C(T ) = AY (T )(ĀρS0)εL1−ε [(1 + hΦ)ε − (1 + hΦeρT )ε
]
e−ερT < 0,

then:

C(T ) > Ca(T ) > Cn(T ).

The resulting consumption trajectories are illustrated in Figure 3.
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Appendix A.3 Comparative dynamic analysis

We conduct a sensitivity analysis of the key variables of the model, with respect to the set

of parameters. The results are described in Table 1. Each box indicates the sign of the

partial derivative of the variable mentioned in line with respect to the parameter given in

column. This sign can be positive ("+") or negative ("−"). An empty box means that

there is no relation between the variable and the parameter whereas "?" indicates that the

sign is ambiguous.

Partial di�erentiation of the growth rates k, k̃, gC and g̃C , and of the initial values

X(0), Z(T ), W (T ), LY 0 and C(0) are trivial so that their computations are not detailed

here. However, the sensitivity analysis of the switching date T is less obvious as we cannot

get a closed-form expression. We simply know that T is characterized by the implicit

function (A.29). Let us de�ne the following functions i and j:

i(t) = δLt− ln

(
hĀ

AZ0

)
j(t) =

S0(1− ε)(1− β)

εh(W0 + αS0)

(
1− e−k̃t

)
=

(1− ε)
εhΦ

(
1− e−k̃t

)
.

These functions are depicted in Figure 4. Given their analytical properties, we can observe

graphically that the solution T to the equation i(T ) = j(T ) is unique. Moreover, for this

solution to exist, we must have i′(T ) > j′(T ).

െ݈݊
ܣ̅
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ሺ1 െ ሻߝ
Φ݄ߝ

Figure 4: Graphical identi�cation of T

We apply now the implicit function theorem to i and j. For any parameter x, we
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obtain:

dT

dx
=

∂j/∂x− ∂i/∂x
i′(T )− j′(T )

⇒ sign

(
dT

dx

)
= sign

(
∂j

∂x
− ∂i

∂x

)
. (A.36)

This equation, together with the computations of ∂i/∂x and ∂j/∂x, thus allows identifying

the sign of the derivatives of T with respect to any parameter x.

Table 1: Comparative dynamic analysis

ρ σ gAY ε Ā δ S0 W0 α β Φ

k + + − +

k̃ + + −

gC − − + −

g̃C − − +

T + + − − + − + − − − −

X(0) + + − +

Z(T ) + + − + + + + + +

W (T ) + + − − + − + ? ? − +

LY 0 + + − − − + − − − −

C(0) + + − ? + − + − − − −
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