
  

 

Price incentives  
and unmonitored deforestation:  

Evidence from Indonesian palm oil mills 

 
Valentin Guye - Sebastian Kraus 

  
WP 2021.11 

  
 
Suggested citation: 
 
V. Guye, S. Kraus (2021). Price incentives and unmonitored deforestation: Evidence from 
Indonesian palm oil mills. 
FAERE Working Paper, 2021.11. 

 
 
 

  
ISSN number: 2274-5556 

 
www.faere.fr 

 

http://www.faere.fr/


Price incentives and unmonitored deforestation:

Evidence from Indonesian palm oil mills *

Valentin Guye†, Sebastian Kraus‡

July 8, 2021

Abstract

We create a novel, spatially explicit microeconomic panel of Indonesian palm oil mills,

to provide the first estimates of deforestation price elasticities based on observations of the

actual prices paid at mill gates. To identify the price elasticity, we spatially model how

deforestation in upstream plantations is exposed to downstream, conditionally exogenous,

shocks on mill-gate prices. We provide the first evidence that deforestation for smallholder

plantations, and illegal deforestation, are price elastic. This implies that a price instrument

can disincentivize deforestation where it is most difficult to monitor, and contain leakages

from conservation regulations.

*JEL-codes: Q01, Q02, Q15, Q57, Q23, Q24, Q21

We thank Ludovic Bequet, Raja Chakir, Sabine Fuss, Jérémie Gignoux, Robert Heilmayr, Nicolas Koch,
François Libois, Hugo Valin, an anonymous reviewer for the FAERE Working Paper Series, and seminar par-
ticipants at the 2021 International Development Economics Conference, the 26th EAERE Annual Conference, the
2021 AERE Summer Conference, Restore+ Output sessions, UMR Economie Publique, MCC retreat, and MCC
WG3 for their helpful comments. We are grateful to Jason Benedict and Robert Heilmayr for their support with
the Universal Mill List. We thank Claudia Guenther and Hanif Kusuma Wardani for their invaluable research
assistance. The authors declare no conflict of interest.

†Valentin Guye. Contact author - valentin.guye@inrae.fr - UMR Economie Publique; INRAE; Université
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1 Introduction

Tropical deforestation for oil palm plantations is a major source of global biodiversity loss

and climate change. It accounts for 5% of the global green house gas (GHG) emissions since

1986 (Hsiao 2021). Price incentives from ever-growing agricultural markets are one of the ma-

jor drivers of tropical deforestation (Busch and Ferretti-Gallon 2017; Leblois et al. 2017). This

hinders the effectiveness of conservation policies, as tropical deforestation is difficult to moni-

tor. Regulators need local insights into the effect of price incentives on deforestation to design

effective environmental policies or to predict deforestation leakages from their jurisdictions to

the tropics through commodity markets (Hertel 2018). Yet, even in Indonesia which supplies

more than half of the global market for palm oil, it remains unclear how the different actors in

the palm oil supply chain react to the price incentives that actually pass through to them.

Do actual price incentives influence deforestation, and which segments of the oil palm

sector are more or less responsive? We estimate price elasticities of deforestation across the

Indonesian oil palm sector. We build the first spatially explicit data set of prices paid at palm

oil mill gates from 1998 to 2015. We find that a 1% increase in crude palm oil prices over

the preceding 4 years increases the average annual conversion of primary forest to oil palms

by 1.6%. We call this the medium-run price elasticity. Looking at different segments of the

oil palm sector, we find that both industrial and smallholder plantations are price elastic, and

that illegal deforestation only drives the effect. This constitutes evidence that the segments the

most difficult to monitor can be incentivized away from deforestation. Our finding that legal

deforestation is not price elastic indicates the existence of leakages from legal to illegal defor-

estation in presence of economic opportunities and weak law enforcement. As nearly half of

the world’s GHG emissions from land use change and forestry have come from Indonesia since

2000 (WRI 2015), these results are critical to climate change global mitigation.

Data on the Indonesian palm oil supply chain available to researchers has been limited.

Previously, only the location and total capacity of most mills was known, together with the

establishment date for a subset of them. We are the first to geo-localize palm oil mills based
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on the full Indonesian manufacturing census (IBS)1. For approximately half of all known In-

donesian mills, we observe, in particular, annual input (palm fruits) and output (crude palm

oil), farm gate prices, public, private and foreign ownership shares, as well as crude palm oil

export shares. We use data based on satellite imagery to measure deforestation around mills

at a high resolution. We detect deforestation as 30m-pixel events of primary forest loss, con-

ditional on eventual oil palm plantation development. Industrial and smallholder plantations

typically differ in scale and landscape. We define illegal deforestation as occurring outside a

known concession and inside a state forest zone. Our sample for estimation is a 2002-2014

annual panel of 3×3km plantation sites in Sumatra and Kalimantan, where most deforestation

due to oil palm plantations occurred during the period.

Our estimation strategy grounds on the fact that palm fruits deteriorate quickly from harvest

to processing. This means that each plantation can only reach a limited number of surrounding

mills in time. For each plantation site that can reach at least one mill, we average the crude palm

oil prices of reachable mills. Closer mills get higher weights. These inverse-distance weights

model the relative influences of reachable mills on plantations in a way that is consistent with

the palm oil sector’s heterogeneity: the weights represent either the odds of being integrated

plantation-mill systems or transport costs. We average the annual, weighted prices over the

four past years to capture medium-run variations we consider most relevant to perennial crop

expansion.

Our identifying variation is the interaction of the plantation-mill spatial distribution, and

mill-gate crude palm oil price shocks. We argue that the latter is driven by remote factors (like

shocks in contracts with, or costs of transport to, downstream exporters or refiners) unrelated

with the local distribution of plantations around mills. Hence, prices, measured with this in-

teraction, are exogenous to deforestation. To make this point, we discard other possible local

determinants of mill-gate price shocks. First, we argue that they are not explained by differ-

ences in quality because crude palm oil is a highly standardized good (Byerlee et al. 2016). Nor

are they driven by mill market power, given the pyramidal shape of the palm oil value chain

1In the economics literature, this dataset has also been referred to as Statistik Industri; see, for instance, Amiti

and Konings (2007).
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(Pirard et al. 2020). This, in particular, addresses the threat that part of the observed correla-

tion is actually explained by past deforestation leading to higher production and lower prices.

Furthermore, we control away factors that could locally affect mill-gate prices, in particular

through mills’ marginal costs. Notably, we use district-year fixed effects to absorb local politi-

cal cycles and shocks on the input markets (like land, labor, energy, and palm fruits) that could

be correlated with deforestation and marginal costs. This is critical because districts are power-

ful jurisdictions in the administration of land in Indonesia, that can unlock substantial revenues

from deforestation (Burgess et al. 2012; Cisneros et al. 2020). Thus, a lot of endogeneity may

be at play at this level. We also use plantation fixed effects to remove constant heterogeneity

correlated with deforestation and marginal costs at surrounding mills. We further control for

the number of reachable mills as a proxy for the local market development. This allows within

district-year endogeneity arising from differences in input prices and infrastructure between

frontier and more mature markets. Finally, in our main specification, we also control for the

public, private and foreign ownership shares of reachable mills. This helps us to further shelter

our estimates from political economy confounding effects that may be present even below the

district-year level.

Our main estimate is robust in a range of alternative specifications, including different

plantation-mill relationship models, control sets (additionally including temporally and/or spa-

tially lagged deforestation, shares of crude palm oil exported and baseline forest cover trends),

regional-year fixed-effects, and standard error clustering levels.

Our main results are threefold. First, we estimate a medium-run crude palm oil price elas-

ticity across the overall Indonesian oil palm sector at 1.6. Second, we find that deforestation

in both industrial and smallholder plantations is price elastic. Third, we document that illegal

deforestation is price elastic, whereas legal deforestation is not. Together, these results have

three implications.

First, segments of the oil palm sector that are more difficult to regulate - illegal industrial

or smallholder plantations - can be incentivized away from deforestation. This is an important
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finding, because the existing conservation schemes2 do not reach these segments. Yet, they are

increasingly prevalent: smallholder relative expansion is expected to grow across the country,

and new oil palm frontiers - in the island of Papua, in particular - seem to largely involve illegal

deforestation3. To reach such informal segments, recent fiscal conservation policy proposals

have devised a taxation on defaults whereby a commodity tax is uniformly levied at choke

points (like palm oil mills), but can be refunded against proof of sustainable production (Heine

et al. 2020). Our results indicate that such a scheme can work in the Indonesian context.

Second, the results indicate that a price instrument can help conservation regulations to

be more effective in similar contexts of weak monitoring. The licensing process that embeds

conservation regulations is long and the cost of circumventing it is low. Thus, more stringent

regulations are bypassed, unless economic opportunities for illegal deforestation are contained.

We show that a price instrument can address such a leakage. This is critical, because palm oil

prices have reached a historical peak in March 2021 and demand for palm oil is expected to

keep growing4.

Thirdly, the 1.6 price elasticity of deforestation that we estimate for the whole sector im-

plies that a 19% tax on crude palm oil can curb deforestation 29% (proportional to Indonesia’s

targeted reduction in GHG emissions under the Paris Agreement) below the 2002-2014 aver-

age. We quantify that, for the whole country, this represents 39kha of avoided conversion of

primary forest to oil palm plantations annually. Under a result-based payment scheme, like the

United Nations program REDD+ (Reducing Emissions from Deforestation and Degradation),

applying a US$5/tCO2 price, this corresponds to US$124M of yearly revenues.

Furthermore, our empirical price elasticity estimates can be helpful to models predicting

how deforestation reacts to biofuel subsidies or trade policies against imported deforestation5.

Providing a commodity- and country-specific estimate is important because Indonesia supplies

more than half of global palm oil (Byerlee et al. 2016). Breaking estimates down to different

2(Namely the Moratorium on new concessions and the Roundtable on Sustainable Palm Oil (RSPO))
3https://news.mongabay.com/2018/11/the-secret-deal-to-destroy-paradise/

4Global demand grew by 7% annually between 1980 and 2013 (Cramb and McCarthy 2016), and is likely to

keep doing so as the Government of Indonesia’s (GoI) increases its biodiesel blend mandates.
5Indonesia exports 75% of its palm oil production, representing 13% of all its exports (Pacheco et al. 2017).
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economic agents, deriving them from data on actual observed prices, and tackling concerns of

endogeneity can help to perform more accurate predictions (Wicke et al. 2012). We emphasize

that providing medium-run elasticities is relevant to models simulating policies such as taxes,

subsidies or tariffs that have a lasting effect on prices6 (Berry 2011).

We provide three additional pieces of evidence to better illustrate how prices affect defor-

estation. The first one shows that, unsurprisingly, price incentives do drive immediate con-

version (within 4 years) of primary forest into oil palms, but not transitional deforestation,

in which plantation development occurs 4 years or more after forest clearing. Yet, we also

find clear price elasticity of transitional and illegal forest conversion to industrial plantations.

This delayed setup of illegal plantations could represent companies that, motivated by palm oil

prices, clear the forest, but then face delays in plantation development because of conflicts with

communities or legal and bureaucratic proceedings.

Second, we disentangle the effects of palm fruit and crude palm oil prices. We document

that deforestation in industrial plantations is actually mainly driven by palm fruit prices, which

vary consequentially to crude palm oil prices. The output of vertically integrated plantations,

(i.e. plantation-mill systems) is crude palm oil while the output of independent plantations is

the palm fruit. Thus, we highlight the role of independent plantations in price-driven defor-

estation. Lastly, we find that deforestation in smallholder plantations decreases with palm fruit

prices and increases with crude palm oil prices. This suggests that it is the mill owners - usu-

ally companies - wishing to benefit from higher output/input price ratios, that decide upon the

timing and location of smallholder encroachment on forests.

Third, we disentangle the effects of short- and medium-run crude palm oil prices and find

that short-run (annual) prices alone do not drive deforestation, but strengthen the medium-run

price elasticity. This indicates that growers of the perennial and yield lagging7 oil palm crop

look at short-run price signals only to confirm medium-run dynamics.

6Yet, short-run elasticities also provided in this paper can be useful to dynamic models and/or simulations of

punctual market shocks.
7Palm trees start bearing fruits three years after planting.
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The remainder of this paper is organized as follows: Section 2 relates our work to the ex-

isting literature. Section 3 defines the main concepts used in the paper, and introduces the data

we use to observe them. In Section 4, we present our empirical framework in five parts: the

plantation-mill relationship model, and the estimation, identification, inference, and sampling

strategies. In section 5, we present and discuss our main estimates, a mechanism analysis, and

finally scaled-up counterfactuals. Section 6 concludes. Tables, references and appendices fol-

low in this order.

2 Related literature

This paper principally contributes to the literature shedding light on the economic incentives

of land use change8. Our results also relate to the literature on the relationships between con-

servation regulation and market incentives (Harding et al. 2021). The role of prices in oil

palm-related deforestation is a case of particular interest, as indicated by recent efforts to relate

time series of deforestation and palm oil prices in the Global Forest Review (Goldman et al.

2020) and in Gaveau et al. (2021). Yet, data availability has constrained the identification of

causal relationships, as well as heterogeneity and mechanism analyses. Thanks to the new spa-

tially explicit microeconomic data we produce, and to recent remote-sensing data sets, we are

able to advance the literature in these directions.

We provide the first price elasticity estimates specific to smallholders9 and illegal oil palm

deforestation. These results relate our work to the field of development economics. We are also

the first to explore how short-run prices and palm fruit prices (FFB) affect deforestation and

how they interact with medium-run crude palm oil prices in doing so. Methodologically, we

are the first to estimate country-level elasticities with actual price observations in the oil palm

context. Other studies, using imputed price measures, provide estimates that can be interpreted

8This is a large literature and we point in particular to Busch and Ferretti-Gallon (2017) for a review; Souza

Rodrigues (2019) in the Amazon context; and Leblois et al. (2017) for a cross-country analysis.
9The closest literature on smallholders, based on survey data, estimates a positive correlation between crude

palm oil and local land prices (Krishna et al. 2017) and opportunity costs of conservation (Cacho et al. 2014).
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similarly to some of ours. Yet, in these studies, the price elasticity of deforestation is not

the main parameter, and thus their authors may have naturally focused less on identification

concerns about it. In Appendix F we attempt to compare our results with estimates from the

other existing studies. In the following, we explain how observing actual local prices allows

for improved identification of the price elasticity with respect to the existing literature.

Wheeler et al. (2013) were the first to establish a positive correlation between time series

of palm oil futures prices and forest loss alerts at a monthly rate. Subsequent studies have

advanced the causal price effect identification by adding spatial variation. They proxied lo-

cal farm prices by interacting international prices with measures of local suitability for palm

plantations (Busch et al. 2015; Cisneros et al. 2020; Hsiao 2021).

First, the suitability-price interaction proxy is subject to dynamic reverse causality bias.

Indeed, past deforestation can influence current deforestation. It is also possible that more

deforestation systematically occurs in more suitable places for oil palms and in years before

the international price declines as a result of the increased production in Indonesia, the largest

supplier globally. Our identifying variation exploits idiosyncratic shocks in CPO prices at the

mill level and mills are price taker on the CPO market. Thus, our estimated price elasticity

should suffer less from reverse causality bias.

Another concern with prior approaches is that the suitability-price interaction proxy can

be subject to important measurement error, including systematic error. For instance, it is pos-

sible that more independent (i.e. less vertically integrated) plantations that have longer pass-

throughs from international to actual price (Zant et al. 2004) also take systematically different

deforestation decisions. Alternatively, potential yields - the measure of suitability - may be a

systematically more precise measure of exposure to international prices for particular oil palm

actors with specific deforestation patterns (Woittiez et al. 2017). In contrast, our analysis relies

on the actual prices paid at mill gates and models how they are perceived consistently with het-

erogeneity in plantation-mill integration. Moreover, this observational level is relevant because

mills are pivotal in the palm oil value chain: they are the most influential actors over planta-

tions, while they can still be monitored by downstream corporate or public actors. (Purnomo

et al. 2018).
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Finally, let us remark that the estimates we provide are specific to primary forest conversion

to oil palms, and hence exclude deforestation in broader senses (such as not imputable to oil

palm plantations, or in already degraded forest10), which is not always the case in previous

comparable research. Hence, our estimates may be more useful to sector-specific policies and

modelling.

3 Data and definitions

This section defines the concepts of mills, plantations, and deforestation used in the paper, and

introduces the data we use to observe them empirically.

3.1 A new, spatially explicit, microeconomic panel of palm oil mills

Palm oil mills are factories that process palm tree fresh fruit bunches (FFB) into crude palm

oil (CPO). In the paper, farm-gate prices refers to mill-level mean unitary values of either

FFB or CPO. We matched two existing data sets - the Indonesian manufacturing census (IBS)

and the Universal Mill List (UML) - to produce an original spatially explicit microeconomic

data set of palm oil mills in Indonesia from 1998 to 2015. In Appendix D we describe these

data sets in more detail and explain how we merged them. Input-output variables, as well

as village identifiers are usually not provided to researchers with IBS. They were essential in

building the spatially explicit price data used in this paper. The final spatially explicit mill

sample is constituted of 587 palm oil mills. 466 of them are matched with a mill referenced

in the UML and hence have exact coordinates, and 121 are not matched with the UML but are

approximately geo-localized at their village centroids. Table A.1 shows descriptive statistics

of Indonesian palm oil mills, along with evidence that the subset of these mills used in the

present analysis is not significantly different from the overall sample of palm oil mills in the

manufacturing census.

10See Hansen et al. (2014) for a discussion on the use of the Global Forest Change data to study deforestation.
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3.2 Oil palm plantations

Throughout this paper, we use the term plantations to designate micro-economic agents decid-

ing where and when to clear forest for the purpose of planting oil palms11. Empirically, we do

not observe the actual boundaries between plantations. Thus, we approximate the theoretical

individual plantations with square land parcels of an equal size. Each year, deforestation in

each of these grid cells is assumed to result from decisions taken by an homogeneous, profit

maximizing plantation agent. We choose the typical size of grid cells to be 3× 3km (900ha).

This is the outcome of a trade-off: it is small enough to grasp very local variations in deforesta-

tion and in influence from surrounding mills. Yet, it is large enough to keep computation times

reasonable12.

Industrial plantations. Industrial plantations are large grid-shaped landscapes ranging from

a hundred hectares to hundreds of thousands of hectares (Austin et al. 2017; Gaveau et al. 2016).

They represent the majority of planted area and production in Indonesia. They are developed

by companies or public governments. Some industrial plantations are integrated with mills and

sometimes also further downstream with refineries and exporters, but, in the light of the best

knowledge of the field, this integration seems limited (Pirard et al. 2020). Hence, industrial

plantations are heterogeneous in how they sell their fruits, from internal transactions to partial

off-take agreements, to selling on the local spot market. Empirically, we use the maps from

Austin et al. (2017) to study industrial plantations.

Smallholders. The term ’smallholder’ lacks a common definition, but is often used in con-

trast with some or all of the characteristics of industrial plantations presented above. In this

study, we refer to smallholder plantations to broadly designate small and medium sized plan-

tations, developed in mosaic landscapes (i.e., alongside other land uses, such as subsistence

11We purposely do not refer to ’landholders’, ’landowners’, ’growers’ or ’farmers’, in order to abstract as much

as possible from notions of ownership, legality, or management. This seeks generality over the diversity of actors

that may be involved in the decision process towards a plantation development. Moreover, it is important to note

that, in this study, we refer to plantations as agents prospecting to plant oil palms and not as a realized land use.
12This is also the size of grid cells in Busch et al. (2015).
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crops, in particular). These smallholder plantations may belong to individuals, households, co-

operatives, or companies. They are heterogeneous in their sizes, land ownership, management,

relationship with companies’ mills and industrial plantations13. The main distinction usually

made is between independent smallholders and those that are part of a scheme with a larger

structure. This distinction is relevant to our study because it affects how decisions on timing

and location of smallholder plantations are affected by prices14. Yet, we do not observe it.

Empirically, we pool small and mid-sized plantation maps from Petersen et al. (2016) to study

smallholder plantations. Where these maps overlap with the industrial plantation map, we

characterize plantations as industrial, as remote sensing for this landscape is less error-prone.

3.3 Deforestation

We use the term deforestation to refer to land use change from forests to an oil palm plantation.

Hence, our use of this term here excludes any other forest loss phenomenon. Conceptually,

it is any forest clearance that is motivated by the intention to grow oil palms, but empirically,

it is forest eventually replaced with oil palms. To compute annual maps of deforestation, we

overlay a map of the extent of primary forest in 2000 (Margono et al. 2014), annual maps of

forest loss (Hansen et al. 2013), and the maps of oil palm plantations mentioned above. These

data sets and how they are combined is described in more detail in Appendix D. We note here

that both plantation data sets recognize areas with signs of future cultivation as plantations.

Hence, deforestation is observed up to 2014, the latest common year for both industrial and

smallholder plantations. Moreover, we count a deforestation pixel-event the year the forest is

13See Baudoin et al. (2017) and Cramb and McCarthy (2016) for more insights into the diversity of smallhold-

ers.
14Broadly, supported smallholder plantations (also called plasma) are developed jointly with a firm aiming at

developing industrial plantations (called inti or nucleus). The timing and location of this expansion results from

this firm’s decisions (Paoli et al. 2013) and the fruits have to be sold to the firm’s mill.

Independent smallholder plantations are developed outside of negotiations, without direct influence from a firm.

Their fruits are sold on the local spot markets, through off-take agreements with middlemen, or directly “at the

gate” of the mill. See Euler et al. (2016) and Jelsma et al. (2017) for further insights into independent smallholders.
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cleared, and not the year the palm trees are planted or when they become productive. Hence,

our observation is close to the moment when the deforestation decision is actually taken, and

irrespective of provisional land uses. Such provisional land uses between forest clearance and

oil palm planting, however, seem rare (Gaveau et al. 2018). Finally, note that our approach

does not count forest degradation as deforestation, because the tree loss pixel-event is counted

only once, the year a near-zero canopy closure is observed (Hansen et al. 2013).

Legal and illegal deforestation. Observing illegal deforestation in Indonesia is challenging

because the line between legality and illegality is blurred by weak institutions (especially in ru-

ral areas or outer islands where oil palm has developed) and because data are scarce and often

contradictory. In this study, we deem deforestation illegal if it occurs outside a known con-

cession and inside a permanent forest zone designation15. The map of concessions is provided

by the Indonesia Ministry of Forestry (MoF), Greenpeace, and the World Resource Institute

(Greenpeace 2011). However, it is only a screenshot, so it does not specify the date the conces-

sions were issued. Furthermore, this map is known to be incomplete16.

Land designation data are provided by the MoF (MoF 2019). They are also a screenshot and

hence do not contain information on changes over time (like forest release, for instance).

Immediate and transitional deforestation. For industrial plantations, we further distinguish

between immediate and transitional deforestation. We use the time lapse between the forest

loss event and the year when a plantation is observed for the first time in data from Austin et al.

(2017). Deforestation is deemed immediate if the time lapse is between 0 and 4 years. It is

deemed transitional if the time lapse is between 5 and 14 years.

15Any of KSA, KPA, KSAL, HP, HPT or HL.
16https://www.arcgis.com/sharing/rest/content/items/f82b539b9b2f495e853670ddc3f0ce68/

info/metadata/metadata.xml?format=default&output=html
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4 Empirical framework

This section first introduces our efforts to empirically model plantation-mill relationships.

Then, we present in turns our estimation, identification, inference, and sampling strategies.

4.1 Measuring price signals: an empirical model of the plantation-mill

relationship.

For every plantation, every year, there is a true, privately known price signal. For mills, we

know the annual “farm gate” prices for crude palm oil (CPO). For plantations, we approximate

the true price signal with a mix of these prices at the mills the plantation can reach in time, be-

fore the fruit spoils. What constitutes this mix has implications for how the different segments

of the oil palm sector contribute to our estimation. The next four paragraphs explain how.

The set of reachable palm oil mills. Oil palms trees produce fruits that can be harvested

around 10 times a year, for around twenty years. Once harvested, these fruits damage quickly

because they rot fast and bruise easily during transport. The fruits are brought by trucks and/or

by river boats to factories, called mills, that process them into CPO. The quality and quantity

of oil derived from a tonne of fruit increase with the quality of the fruits and thus decrease with

the distance from the trees to the mill (Byerlee et al. 2016). This constraint leads to spatial

proximity between mills and plantations.

For each plantation, we determine a set of reachable mills for each year. Mills are considered

reachable if they are within a circular area around the plantation, determined by a catchment

radius parameter. We assume that freshly harvested palm fruits can potentially be brought to

any mills within this area without deteriorating too much. Mills beyond the catchment radius

are not reachable and thus are assumed to have no influence on the plantation’s decision to

deforest.

In this study, our preferred catchment radius is 30 km in Sumatra and 50 km in Kalimantan.

Choosing the value for this parameter results from a trade-off. On the one hand, a too short

catchment radius implies observing too few of the plantations experiencing deforestation and
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biasing our observations towards areas near palm oil mills. On the other hand, a large catch-

ment radius implies spuriously relating plantations to more mills that, despite being reachable,

are actually unrelated. This would, in turn, make our price elasticity estimate less precise. This

trade-off justifies that we assume a different catchment radius for Sumatra and Kalimantan.

First, in Sumatra, typically most deforestation occurs within 30 km of mills, while in Kaliman-

tan a significant share occurs farther away (see Table 1). Second, the higher mill concentration

in Sumatra reduces the likelihood that a plantation will be influenced by prices from mills lo-

cated farther than 30 km away17.

[Table 1 here.]

Mill influence intensities. A plantation can reach several mills, but not all mills are equally

influential. We do not directly observe how prices paid at every reachable mill enter the price

signal that is observed by each plantation. Therefore, we model these intensities using straight

line distances between each plantation and its annual set of reachable mills. More precisely, we

model the price signal18 as the standardized invert-distance weighted average of “farm gate”

prices at reachable mills.

As depicted in Section 3.2, both industrial and smallholder plantations may be vertically inte-

grated to different extents, from full integration with one mill, to having partial off-take agree-

ments, to selling on the spot market only (full independence). We do not observe the degree

of integration of each plantation. Yet, the standardized inverse-distance weights enable mod-

17The existing literature helps us get a sense of magnitudes for catchment radii of palm oil mills. According to

Harris et al. (2013), only 15.3% of oil palm plantations are farther than 30 km from a mill. This study is based on

Gunarso et al. (2013) for plantation data and Global Forest Watch for palm oil mill data, for Indonesia, Malaysia,

and Papua New Guinea. 44.5% of oil palm plantations are within 10 km of a mill, and 8.1% are farther than

50 km. The Center for International Forestry Research (CIFOR), in its online atlas (https://atlas.cifor.

org/borneo/#en) applies a 10 km buffer around mills. In Peninsular Malaysia, a region comparable to Sumatra,

Shevade and Loboda (2019) report almost no deforestation due to oil palms beyond 40 km to a mill.
18This is explained here for the price signal, our explanatory variable of interest, but the same method is applied

to all mill-level covariates.
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eling of the relative influence from reachable mills in a way that is consistent over degrees of

integration. To see this, consider two main types of plantations: those selling exclusively to

(and hence getting a price signal from) one mill, and those selling at least some of their out-

puts on the local spot market, i.e., to any reachable mill (and getting a composite price signal).

Plantations in the former category are typically close to the mill they sell to. Thus, the stan-

dardized inverse-distance weights approximate the odds to be integrated with each reachable

mill. For plantations in the second category, the standardized inverse-distance weights approx-

imate the expected transport costs to every reachable mill (including fuel costs and fruit quality

decline) Prices at mills relatively farther away are less influential, because reaching them from

the plantation site is more costly.

Prices of palm fruits and prices of crude palm oil. We know the annual average prices

offered at mills’ gates for fresh fruit bunches (FFB), as well as annual average prices received

at mills’ gates for crude palm oil. Prices of FFB and prices of CPO are assumed to affect

deforestation decisions differently, depending on the degree of plantation independence. More

independent plantations tend to look more at FFB prices, while more integrated plantations

tend to look more at the prices of CPO (the output of the plantation-mill integrated system).

Besides, mills are assumed potential price makers on the FFB market19, but not on the CPO

market. Therefore, at the mill level, CPO prices may affect FFB prices and thus indirectly

influence independent plantations. On the other hand, FFB prices do not affect CPO prices

and thus do not influence integrated plantations. In order to include integrated plantations in

the analyses, we mainly focus on CPO price signals. Moreover, FFB price signals are likely

more endogenous to deforestation than CPO’s, making the price elasticity identification with

FFB price variations less robust. Finally, potential price instruments are more conceivable at

the more downstream level of CPO market and thus CPO price elasticities are more relevant to

policy implications.

19FFB prices are supposed to be collectively determined by provincial governments, firms and farmers. How-

ever, it has been shown that they actually result from each mill’s discretionary decisions based on its monopsonic

market power, the quality of FFB purchased, and each mill’s CPO sales (Maryadi et al. 2004; Masliani et al. 2014).
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Measures of price signals over time. Because oil palm is a perennial crop, developing a

plantation is a committing decision. Thus, short-term (annual in our case) changes in prices

alone are unlikely to motivate deforestation. To allow deforestation to react to slower price

variations, our main measure is the 4-year average of annual price signals.

Besides, we lag all variables from the Indonesian manufacturing census by one year. This

merely aims at correcting a measurement lag. We do this because remotely sensed annual

deforestation does not necessarily represent the actual state at the end of the year, while IBS

variables should, a priori, reflect census respondents’ observations for the whole year. Because

this does not have conceptual implications for our empirical strategy, we do not annotate these

lags or refer to them further.

4.2 Estimation strategy

Here, we present the reduced form assumptions we make and the estimation framework we use

to estimate the price elasticity of deforestation.

First, we assume that deforestation results from decisions taken by plantations. The typ-

ical decision rule is the comparison of the expected discounted present utilities (or profits)

from alternative inter-temporal scenarios defined by the timing and the amount of deforesta-

tion. Hence, the counterfactual scenario includes any other use of forested land (conservation

or alternative land use). A scenario with zero deforestation corresponds to two possible situa-

tions: either the plantation decides to expand only outside forests, or it decides to not expand

at all (i.e., to not enter the market as a plantation). We do not distinguish between these two

situations in our analysis.

Plantations are assumed to form expectations on the basis of privately observed informational

elements (Stavins 1999). Beside price signals, we expect plantations’ decisions to be influenced

by information related to investment costs (e.g., of land acquisition and conversion), operating

costs (e.g., of labor, energy, and fertilizers), institutional costs (either fixed or marginal, pos-

itive or negative, formal or not) and attainable yields. Plantations also take into account the

expected relative costs and benefits of the alternative land uses. Because oil palm is a perennial
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crop, the land use change decision is highly committing. Plantations formulate medium-run

expectations. This implies that their discount rates and abilities to make expectations are also

parameters of the decision rule.

Conceptually, this may all be summarized in the reduced form relationship between deforesta-

tion and price signals:

De f orestation = f (PS,U) (1)

where PS is the true price signal that enters the representative plantation’s decision rule on de-

forestation, conditional on other structural error terms U, including the information elements

mentioned above.

We do not attempt to formally model how complete information sets determine deforestation

decisions. Therefore, instead of specifying a deterministic form for the function f , we approx-

imate it as follows:

De f orestationidt = exp(αln(Priceidt)+βXidt +λid + γdt + eidt) (2)

From year 2002 to 2014 (t = 1, ...,14), we observe De f orestationidt , which is the sum of pixel-

level deforestation events20 in plantation i in district d in year t. Hence, De f orestationidt is

a count of non-negative integers that may be null for a significant proportion of observations

and we assume it follows a quasi-Poisson distribution (Wooldridge 1999) (see Appendix E.1

for more details).

Priceidt is a measure (detailed below) of the price signal observed by plantation i in district d in

year t. α is the price elasticity of deforestation. Xidt is a vector of other observed determinants

of deforestation that vary both locally and annually. In our main specification, Xidt comprises

measures of the share of domestic private capital and of the share of foreign capital (we exclude

the share of public capital to avoid perfect collinearity). It also includes a measure of local

market development (see Section 4.3 for more detail on the role of control variables). The

20Each grid cell is composed of 30m x 30m pixels that were either forested or not in 2000 (t = 0). A defor-

estation pixel event, as explained in Section D.2, is when forest loss is observed in a pixel where oil palms are

subsequently observed.
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unobserved determinants of deforestation can be decomposed as a sum of heterogeneity sources

that can be either fixed attributes of plantations (local fixed effects, λ id), or annual shocks

common to a whole district (district-year fixed effects, γdt), or error idiosyncratic terms, eidt .

We elaborate on observed and unobserved heterogeneity in the next subsection.

4.3 Identification strategy

The causal interpretation of the observed correlation between prices and deforestation - iden-

tification of the price elasticity - is threatened by reverse causality, omitted variable bias and

measurement error. Reverse causality can arise, for instance, if deforestation increases the

palm oil supply, or expectations about it, pushing prices downwards. This is even more likely

in the presence of spatial auto-correlation in deforestation. A third variable could also drive

both prices and deforestation, biasing the causal interpretation of the observed correlation. In

particular, this could be one of the already identified drivers of deforestation: agro-climatic

suitability (Byerlee et al. 2016), the proximity to existing plantations (Gunarso et al. 2013;

Shevade and Loboda 2019) and to roads (Hughes 2018), the decentralization of authority on

land (The Gecko Project21 and Burgess et al. (2012)) and local political cycles opening up land

and creating new infrastructure (Cisneros et al. 2020). Finally, measurement error, random or

systematic, may also lead to spurious causal conclusions. It is possible, for instance, that the in-

ternational price is a more precise measure of the true price incentive for plantations integrated

in large companies, which also experience systematically different deforestation patterns.

The identifying variation, in this study, arises from the interaction of two variation sources.

The first one is the spatial distribution of mills and plantations - i.e., the differences between

plantation sites in their relative distances to reachable mills. The second source of identifying

variation is the differential mill-level CPO prices. Our identification strategy relies on the

independence of these two sources of variation, such that their combination reflects the price

signal, but does not correlate with any other potential determinant of deforestation. A way to

interpret this independence is to see the variation in the price signal as resulting from plantations

21https://thegeckoproject.org/
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happening to be closer than others to mills that experience unrelated CPO price shocks22. To

make the point that these interacted sources of variations are independent - and hence that

price signals are exogenous to deforestation - we focus on the second one23. The difference

between the farm-gate CPO prices of two mills is made of there idiosyncratic departures from

the market price. Let us review the potential causes for such departures24. First, the quality

of CPO cannot explain these differences, since CPO is a highly standardized good (Byerlee

et al. 2016). Second, palm oil mills are price-taker on the CPO market25 and therefore cannot

influence upwards the price they receive for CPO. Third, however, differential marginal costs

can allow mills to sell at more competitive prices. Fourth, the differential prices of CPO at mill

gates can be explained by shocks in the costs of transport to refiners or exporters or by shocks

in the share and the nature of the off-take agreements each mill has with these downstream

buyers26. Our identification strategy consists in assuming that the two first points are true

and controlling away factors related with the third point. Hence, the remaining variation in

CPO prices at mill gates is driven by downstream, remote, factors, unrelated with the local

plantation-mill joint spatial distribution. In the remaining of this section, we explain in more

detail how this identification strategy addresses specifically each threat to causal inference.

Reverse causality. In our setting, reverse causality could arise and bias our estimates, if

deforestation affected prices. It is conceivable, indeed, that deforestation leads to increased

production and hence affects prices. As explained above, our price signal variable is a 4-year

22Where ”closer” also means ”more likely vertically integrated with”, see Section 4.2
23Our identification strategy can be seen within the framework of Borusyak et al. (2020), as a reduced-form

shift-share design where the exogenous variation comes from the shocks (i.e., the ”shift”).
24Note that this difference is not affected by macro determinants of CPO prices, such as the global and national

prices of palm oil and substitutable commodities (Sanders et al. 2014; Santeramo and Searle 2019), or large scale

meteorological events like El Niño (Rahman et al. 2013).
25Given the number of palm oil mills in Indonesia (more than a thousand) and the relatively low number of

downstream actors (less than a hundred refineries and exporters). Pirard et al. (2020) show the pyramidal shape of

the palm oil value chain.
26As shown in Pirard et al. (2020), there is little integration between mills and refineries, and the ties between

operating companies are mostly hidden from the public as of now.
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average. In addition, there is a 3-year time lapse between planting and first harvests and oil

palm trees are not always planted immediately after forest clearing. Thus, there is a long time

lag between the moment we measure the price signal and the moment current deforestation

would affect prices. This is a first argument against the presence of reverse causality. However,

as demonstrated in Bellemare et al. (2017), such an argument relies on the assumption that there

are no dynamics in the confounders. In our case, deforestation may, indeed, be correlated over

time. Past deforestation may cause more production and lower prices now, while also affecting

(positively or negatively) present deforestation. Our argument against this potential channel

of reverse causality is that mills are price taker on the market for CPO. Therefore, we assume

that past deforestation leading to higher production around a mill does not affect its farm-gate

price. This assumption, however, does not hold, if there are economies of scale in the milling

production function and the marginal cost of CPO is affected by the quantity locally produced.

To check the robustness of our results to relaxing this assumption, we alternatively control for

the 4-year lagged deforestation, and for the 4-year lagged deforestation of the 8 neighboring

plantation sites. Both specifications yield a similar estimate to the main one. In Appendix C,

we discuss these robustness checks in more detail.

Omitted variable bias. To limit the risk of omitted variable bias, in our main specification

we control for mill ownership and for a spatial measure of the local palm oil market develop-

ment. In addition, we specify plantation and district-year fixed effects. In Figure B.2 we show

the estimates from different specifications featuring other controls (using mill features available

from the manufacturing census) and fixed effects. Here, we discuss the main specification only.

First, we control for reachable mill average ownership27. We include in Xidt the share of do-

mestic private capital and the share of foreign capital (we exclude the share of public capital).

Ownership controls capture systematic correlation between deforestation and prices following

capital shifts (either investments in a new mill or purchase) across public, private and foreign

origin. We believe this control to be important as, for instance, local government mills may

27With the same standardized inverse-distance weights as described in Section 4.2. Weighting shock-level

controls with the exposure weights is prescribed in Borusyak et al. (2020) - see footnote 23.
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have different deforestation motivations than foreign mills, while also having different market-

ing conditions and marginal costs.

Second, we control for the number of known mills reachable from each plantation annually.

This captures systematic differences between frontier and mature markets. We refer to this

control here as local market development. The higher the mill density, the more developed the

local markets for plantation and mill inputs like land, labor, and palm fruits in particular. Local

market development can thus affect local marginal costs through input prices28 and better local

infrastructure. Local market development is thus likely to impact both local prices and defor-

estation.

Plantation fixed-effects remove any time-invariant heterogeneity from the identifying variation.

Notably, this prevents agro-climatic and geographic heterogeneity from confounding our esti-

mates. Such spatial heterogeneity may determine potential yields and hence deforestation, and

could also be correlated with constant parts of marginal costs at surrounding mills. In partic-

ular, these fixed-effects absorb constant determinants of transport costs (distance to refineries

or exporters) and institutional costs (distance to cities can proxy the intensity of monitoring by

law or civil society).

District-year fixed-effects capture economic and political shocks down to the district level.

Districts are powerful jurisdictions in the administration of land in Indonesia. The control over

land can unlock substantial revenues from natural resources. Therefore, political cycles at the

district level can explain much of deforestation29. At the same time, many other determinants

of mill-gate prices can vary annually at this level, through general equilibrium effects on the

input markets for, in particular, labor, land, energy, and palm fruits (which prices are suppos-

edly determined at the provincial, i.e., upper, level).

This bi-dimensional fixed effect specification implies that our price elasticity estimate results

from comparisons within each year and each district, between plantations’ yearly deforestation

28In particular, mill density is a proxy for plantations’ market power because, in high mill-density areas, in-

dependent plantations have a higher bargaining power and FFB prices are higher (Maryadi et al. 2004; Masliani

et al. 2014).
29Indeed, district splits (Burgess et al. 2012) and competition for district head election (Cisneros et al. 2020)

have been shown to be determinants of deforestation.
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and price signals deviations from usual (i.e., from their own averages over time).

Measurement error. We believe that our data and estimation strategy enable us to get the

most accurate measure of the true price incentives privately observed by oil palm plantations

in Indonesia to date. However, some measurement error remains. Here are its main sources:

First, we observe the annual mean unitary values and not the prices that mills publicly disclose

(at a higher frequency than annually). Second, we can only model the price signal that reaches

individual plantations (cf. Section 4.2). Third, our sample of geo-localized IBS mills does not

cover the whole population. Therefore, in areas with mills both from and not from our sample,

our measure of the price signal is incomplete. We do not suspect any of these to be prone

to systematic measurement error. In particular, Table A.1 shows that there is no systematic

difference between the IBS mills we have geo-localized and the others.

4.4 Inference

We do not assume that annual records of price signals are independent and identically dis-

tributed. Rather, we allow arbitrary correlations within clusters of observations. Abadie et al.

(2017) explain that clusters should be set at the level the treatment is randomly assigned. In

our case, as we do not use experimental data, identifying the proper clustering level is not

straightforward. As explained in more detail above, our treatment assignment mechanism is

the interaction between distances to reachable mills and conditionally independent mill-gate

price shocks. Its randomness grounds on the simultaneous variation in both dimensions. When

across some observations there is no variation in one of these dimensions, such observations

should be counted as one cluster and not as random draws with respect to each other. Consider

plantation sites around one single mill, over several periods of time. Across these observations,

the price signal varies in only one dimension (the mill-gate price shock, over time). This is also

the case of repeated observations of a plantation site over a time period when the same set of

mills is reachable. To count such observations as one single random draw, we cluster standard
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errors at the level of the set of reachable mills30. Note that this is a conservative choice. Indeed,

for the many plantations that have the same set of several reachable mills, the treatment assign-

ment is random as their relative distances to these mills differ in a way that is conditionally

independent of the price shocks at these mills.

4.5 Estimation sample

Our sample is an annual unbalanced panel of 3x3km grid cells31 in Sumatra and Kalimantan32

from 2002 to 201433. Sumatra and Kalimantan are the two main Indonesian regions where oil

palm expansion occurred during our study period (Austin et al. 2017).

We further restrict the sample in several dimensions. First, we include only observations of

grid cells from years when at least one geo-localized mill from the manufacturing census is

reachable. Second, we restrict our analysis to grid cell annual records that have a positive forest

extent at the start of the year. The aim is to sample the maximum number of observations where

prices can have an influence on deforestation choices. This also makes our Poisson estimation

less prone to zero-inflation. Third, we remove observations as soon as they are included in

an RSPO certified concession34. Indeed, we expect the effect of prices on deforestation to be

systematically different there from other areas 35. Fourth, we remove annual records as soon as

one of the variables in Equation 2 has a missing value. In our case, this has a particular influence

on the final sample, because the likelihood that a price signal value is missing decreases with

the number of reachable mills. Thus, removing observations with missing values implies that

30Such that a plantation that can reach mills A and B is not in the same cluster as a plantation that can reach

mills A, B and C.
31Precisely, 27.8x27.6m pixels aggregate to 3002.4x3008.4m grid cells.
32We do not include observations from other Indonesian islands, where data is too scarce. In Papua, we have

very few observations and in other islands data on oil palm plantation extents are lacking.
33Although we have data on year 2015 for industrial plantations, we do not include these observations in order

to observe them in the same time period as smallholder plantations. We start observing 4-year average price

signals in 2002.
34Using data from Carlson et al. (2018)
35This applies to very few grid cells of our sample because few certifications were issued in the first years of

the RSPO, from 2009 to 2014.
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we tend to sample fewer grid cells in remote areas. Another particular implication of removing

observations with missing values in our case is that we do not sample records of grid cells in

the first 4 years after the first reachable mill is established (as our main, medium-run, price

signal measure runs over 4 years). Table 2 shows that this does make a significant difference

for deforestation and for the number of reachable mills in particular. This is not surprising,

since inclusion in the sample is a function of the number of reachable mills. We argue that

this necessary sampling step does not risk introducing a selection bias, as we control in our

regressions precisely for the criterion behind it: the number of reachable mills. Grey shapes in

Figure B.1 represent the area covered by our estimation sample.

5 Results

In this section, we first provide descriptive statistics, and then we present and discuss our main

results: the price elasticities of deforestation in different segments of the Indonesian palm oil

sector36. Then, we investigate how price elasticities vary with price dynamics and vertical

integration. Finally, we discuss the external validity of our results and calculate scaled-up

counterfactual effects.

5.1 Descriptive statistics.

Table 2 provides descriptive statistics from the final sample used in the main estimations of

Equation 2. Deforestation, is a count of pixel-level events of primary forest loss eventually (by

2015) replaced by oil palms. In Table 2, it is converted to hectares for more readability. The av-

36All price elasticity estimates are derived from Equation 2, estimated as explained in Section 4.2, with data

presented in Section 3. Recall that in all regressions, unless noted, the outcome, deforestation, is measured as

the count of pixel-events of primary forest loss eventually replaced by an oil palm plantation. The treatment, the

price signal perceived by a plantation, is measured as the 4-past-year average of annual inverse-distance weighted

averages of CPO prices at the gates of reachable mills. In Appendix E.2, we explain in more detail how we derive

partial effects from regression coefficients. Under the assumptions in Section 4.3, we interpret these partial effects

of price signals on deforestation causally and refer to them as price elasticities.
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erage deforestation annually observed is 12ha and the maximum is 847ha or almost the whole

900ha grid cell area. Deforestation is positively skewed, with many zero values, and hence the

Poisson distribution is relevant to model it. Price signal is the plantation-level inverse-distance-

to-mill weighted average of CPO prices at reachable mills, averaged over the 4 previous years.

In our estimation sample, it averages to 681 2010-constant USD per ton CPO. In Table A.1

we provide mill-level descriptive statistics. In addition, we quantify that the within district-

year standard deviation of mill-gate CPO prices is 138. This confirms that mills, even in the

same district, idiosyncratically depart from a unique market price. In Table 2, public, domestic

private and foreign ownership shares are the plantation-level inverse-distance-to-mill weighted

averages of the ownership shares of the reachable mills. They are expressed in percentage

points. The domestic private ownership is the most prevalent (70% on average), and the public

and foreign ownership shares are equivalent (15% each). The number of reachable mills is the

annual count of known palm oil mills (as from the UML) within a 30km (50km in Kalimantan)

catchment radius from a plantation. It ranges from 1 to 37, and half of the observations can

reach more than 8 mills. In Tables A.2 and A.3, we break down these descriptive statistics

across the sub-categories of industrial, smallholder, legal, and illegal deforestation. We note

three particular patterns. First, in smallholder plantations, illegal deforestation is twice larger

than legal deforestation on average. In industrial plantations, legal deforestation is higher on

average. Second, illegal deforestation in both industrial and smallholder plantations is exposed

to higher price signals. Third, irrespective of the legal status, industrial plantations deforest

more on average than smallholder plantations, while being exposed to lower price signals.

[Table 2 here.]

5.2 Price elasticities of deforestation in Indonesian oil palm plantations

Table 3 shows our estimates of the price elasticity of deforestation for different kinds of oil

palm plantations. In Table A.4, we also display the estimated partial effects of control vari-

ables on deforestation. The right-most column in Table 3 shows that, pooling together all kinds

of plantations, we find a 1.6 medium-run price elasticity of deforestation. More precisely, in
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places where 4-past-year average prices annually deviate from usual (i.e., from their own local

mean over time) by 1%, average deforestation is 1.6% higher. In more intuitive words: a 1%

increase in price signals makes plantations increase deforestation by 1.6%. Hence, we find that,

overall, deforestation due to oil palms does react to price signals in Indonesia. In Appendix C,

we conduct a robustness analysis on that estimate, summarized in the specification chart pre-

sented in Figure B.2. The next paragraphs, and Tables 3 and A.5, document which subgroups

of the Indonesian plantation sector contribute to making this estimate lower and/or less precise,

and which do not. Indeed, the magnitudes and precision of price elasticity estimates are het-

erogeneous over the different segments of deforestation37.

[Table 3 here.]

Industrial and smallholder plantations. Breaking down the estimation into plantation types38,

we find that to a 1% increase in price signals, industrial and smallholder plantations react with

a 2.1% and a 1.5% increase in average deforestation, respectively.

This positive price elasticity of deforestation in industrial plantations indicates that corpo-

rate actors of the oil palm sector engage in large-scale deforestation where prices are higher

than usual. This suggests that medium-run price signals (over 4 years here) do influence large

long-term investments, typically over more than a decade. In the next subsection, we disentan-

gle annual price variations to provide more insights into the dynamics of price signals.

The positive price elasticity of deforestation we estimate in smallholder plantations indicates

that smaller plantations, organized in mosaic landscapes with other land uses, encroach on

forests where prices are higher than usual. This responsiveness to crude palm oil prices sug-

gests that it is actually mill owners - most usually companies - that decide upon the timing and

37In Table A.6, we also present effects of interactions between the price signal and ownership or local market

development covariates. It appears that the price elasticity of deforestation does not substantially depend on these

covariates.
38As detailed in Appendix D, the distinction between industrial and smallholder plantations is based on the

landscape and size differences between plantations mapped by Austin et al. (2017) and the mid and small-sized

plantations mapped by Petersen et al. (2016).
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location of smallholder plantation expansion. In the next subsection, we differentiate the effect

of palm fruit prices to provide more insights into this direction.

Deforestation in industrial plantations seems more price elastic than in smallholder plantations.

The difference is especially pronounced in the case of illegal deforestation, where the point

estimate for industrial plantations is more than twice as large as for smallholders, and this dif-

ference is significant at the 90% confidence level (see Table A.7). Hence, industrial plantations

seem more reactive in illegally encroaching on forests than smallholders, when prices increase.

Legal and illegal deforestation. We further break down the estimation according to the legal

status of deforestation39. We find close to zero effects of price signals on legal deforestation,

irrespective of the plantation type. On the other hand, illegal deforestation appears to be price

elastic in every plantation type. Overall, the price elasticity of illegal deforestation is 3. Indus-

trial and smallholder plantations react to a 1% increase in price signals by illegally deforesting

5.2% and 2.1% more respectively.

The positive price elasticity we estimate for illegal deforestation indicates that economic

opportunities encourage plantations to circumvent land use regulations. On the other hand, we

estimate that legal deforestation is not price elastic. This may come from a lack of statistical

power to detect a true positive price elasticity, or to legal deforestation being truly inelastic to

prices. Given the magnitude of the estimate (0.2 across plantation types) and the number of

observations and clusters (sets of reachable mills), we believe that it is rather truly inelastic

to prices. This is most likely the consequence of the long processes necessary to acquire a

plantation license (involving, for example, measuring environmental suitability and commu-

nity consultation; see Paoli et al. (2013) for more detail on the licensing process). If obtaining

the legal green lights to clear the forest and plant palm trees takes several years, and 3 to 4

additional years must then be waited before young trees bear first fruits, it is not surprising that

medium-run price signals do not influence legal deforestation. Plantations probably rely on

more stable signals than those that we capture in this study to formulate long-term expectations

39In this paper, we define illegal deforestation as deforestation occurring outside a known concession and inside

a permanent forest zone designation - cf. Section 3.
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about the profitability of engaging today in legal deforestation.

Table A.7 documents that the differences in the price elasticities of legal and illegal defor-

estation are statistically significant (except for smallholders). The estimated price elasticity of

illegal deforestation is of larger magnitude than for all deforestation (legal, illegal and unknown

combined). This is true for any plantation type (industrial, smallholder, or both). This is es-

pecially pronounced for industrial plantations, where the price elasticity point estimate is more

than twice as large for illegal deforestation. Altogether, these findings about legal and illegal

deforestation indicate that, across plantation types, positive price elasticity is driven by illegal

deforestation.

Immediate and transitional deforestation. As explained in more detail in Section 3, we

observe both the moments of forest loss and of planting and, for industrial plantations only,

can calculate time lags between the two. We consider deforestation to be transitional if more

than 4 years elapse between forest loss and plantation development. Table 4 shows our esti-

mates of the price elasticity of immediate and transitional deforestation, again distinguishing

legal, illegal, and overall deforestation. Overall, the price elasticity of immediate deforesta-

tion (2.7) is larger than for immediate and transitional deforestation taken together (2.1). For

transitional deforestation, it is lower (1.9) and less precisely estimated. However, we note that

the price elasticity of transitional deforestation is substantial in illegal deforestation, where it

is estimated at 6.9. It is more precisely estimated than the also substantial price elasticity of

immediate, illegal deforestation (6.6). Whether immediate or transitional, legal deforestation

has a low and imprecise price elasticity estimate.

[Table 4 here.]

That immediate deforestation is more sensitive to price signals than transitional deforesta-

tion is not surprising from our theoretical point of view. It is expected that higher price signals

motivate plantation agents to clear forest and grow oil palms as soon as possible to realize

higher profits. In other words, it is not expected that oil palm price signals cause forest clear-

ances that are not intended for immediate oil palm development. In this respect, the large and
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precise estimate for transitional illegal deforestation is surprising. It suggests that a significant

number of industrial plantations have observed price signal incentives to develop oil palms and

consequently cleared forest illegally, but then refrained from immediate development. This

constitutes a piece of evidence that long-term land use change dynamics may be initiated by

more medium-run price incentives. We do not observe, and hence do not investigate further,

these transitional dynamics here. One can only hypothesize about the possible mechanisms

behind them. Price elastic transitional illegal deforestation may presumably be due to rapidly

evolving incentives, or to our measure of price signal capturing long-run (>4 years) expec-

tations. It may also be attributed to companies being incentivized to clear the forest in order

to grab land outside oil palm concessions, but then facing delays in plantation development

because of conflicts with local communities or legal proceedings.

Spatial heterogeneity. Finally, we estimate the price elasticities of deforestation for Sumatra

and Kalimantan separately. Table A.5 shows that, in Kalimantan, there are fewer clusters (sets

of reachable mills) and observations than in Sumatra, and thus estimates are less precise. It is

also possible that, in Kalimantan, we managed to geo-localize a lower share of the universe of

palm oil mills, and thus suffer from more noise in the price signal variable, yielding downward

biased estimates. Yet, it is also possible that, during our study period, deforestation in Kali-

mantan was driven by different dynamics than in Sumatra, and that prices were, indeed, less

influential (with a relatively larger role played by political economy factors, for instance).

5.3 Vertical integration and signal dynamics

Here, we investigate how the medium-run crude palm oil price signal affects deforestation. We

disentangle the price elasticity of deforestation in two dimensions: vertical integration and the

time length of price signals. To do so, we use, in turn, two new variables: the medium-run

palm fruit price signal and the short-run crude palm oil price signal. Each of them is arguably

a post-treatment variable in the sense that they do not affect, but are affected by, the treatment

(the medium-run crude palm oil price signal). For the palm fruit price signal, this hinges on

the assumption that mills have market power on their input (palm fruit) market, but not on their
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output (crude palm oil) market. The post-treatment status of the short-run price signal relies

on the temporal causal argument that past prices affect current prices, but the reverse is false.

Therefore, each of them can have an indirect effect on deforestation, whereby the medium-run

crude palm oil price signal affects the post-treatment variable, which then affects deforestation.

These post-treatment variables can also have a moderation effect on deforestation, whereby

they affect the treatment effect. We estimate the partial effects of the post-treatment variables

unconditional and conditional on the treatment40. When conditional on the treatment, the par-

tial effects of the post-treatment and of the treatment variables exclude the indirect effect. In

any case, the partial effects include the moderated and the unmoderated effects (see Appendix

E.2 for more detail). We report the moderation effects as partial effects of terms of interactions

between the post-treatment variable and the treatment.

Palm fruit and crude palm oil price signals. In this study, our main measure of price sig-

nals uses crude palm oil prices (see Section 4.2). Palm tree fruits, commonly called fresh fruit

bunches (FFB), are sold by independent plantations to mills. The effect of palm fruit price

signals on deforestation may thus document the price elasticity of less vertically integrated

plantations. Table 5 shows our estimates of palm fruit and crude palm oil price elasticities,

along with the partial effects of their interactions on deforestation. Table 5 also displays the

partial effects of palm fruit price signals unconditional on the effect of crude palm oil prices.

40The causal interpretation of all these partial effects relies on the same identification strategy as presented

in Section 4.3: plantation and district-year fixed effects plus ownership and local market development controls.

In particular, it relies on the assumption that controls and fixed-effects rule out post-treatment confounders that

would affect both the post-treatment variable and deforestation. This assumption may be stronger in the case

of palm fruit price signals than short-run price signals. Under these assumptions, the conditional partial effects

of the post-treatment and treatment variables can be interpreted as net of the indirect effect. The partial effect

of the treatment variables unconditional on the post-treatment variables presented in the previous section can be

interpreted as total effects. Thus, the difference with conditional partial effects presented here documents indirect

effects.

30



All models are based on the same specifications as the main one, from Equation 2. Because

the spatial distribution of palm fruit price shocks may be more endogenous to deforestation de-

cisions than that of crude palm oil prices, the identification assumptions are probably stronger

in this exercise. Hence, estimates from Table 5 should more cautiously be seen as descriptive

rather than causal.

Palm fruit price signals seem to influence deforestation, but in opposite directions in industrial

and smallholder plantations. In industrial plantations, a palm fruit price increase of 1% causes

an increase in average deforestation of 1.8%. On the other hand, in smallholder plantations,

it causes a decrease in average deforestation of 2%. Over all plantation types, these effects

balance to a positive price elasticity. This pattern is similar whether conditional or not on crude

palm oil prices. For any plantation type, crude palm oil price elasticity estimates are close to

zero once the effect of palm fruit price signals on deforestation is taken into account. The in-

teraction partial effect on deforestation is positive. This means that the effect of crude palm oil

price signals on deforestation increases with palm fruit price signals (and vice-versa).

[Table 5 here.]

In industrial plantations, the bulk of the effect of crude palm oil price signals on deforesta-

tion (as estimated in our main analysis, see Table 3) is actually attributable to the mechanism

of local crude palm oil prices influencing local palm fruit prices which, in turn, affect defor-

estation decisions. This suggests that deforestation in industrial plantations occurs mainly in

independent plantations - presumably as a result of the low vertical integration, even in the

sector’s downstream part (Pirard et al. 2020). The positive interaction effect indicates that palm

fruit price elasticity is even larger where crude palm oil price signals are high. This suggests

that higher crude palm oil prices reinforce expectations about high palm fruit prices and hence

motivate deforestation.

In smallholder plantations, our results indicate that deforestation increases in times and

places of low palm fruit prices but high crude palm oil prices. This suggests that it is the com-
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panies owning the mills, wishing to benefit from higher output/input price ratios, that decide

upon the timing and location of smallholder plantations. In the case of plasma smallholders,

this is a known fact, but in the case of independent smallholders it is less clear. Since inde-

pendent smallholders have driven smallholding plantation development since the 2000s, they

should also drive our results. Hence, these results further suggest that the expansion of inde-

pendent smallholders onto forests is driven by mill-level decisions.

Short-run and medium-run price signals. The short-run price signal is the inverse-distance

weighted average of prices at reachable mills’ gates on the same year as the outcome, defor-

estation. The medium-run price signal, the main measure of the treatment variable in this study,

averages short-run price signals over the four past years (see Section 4.2). Table 6 shows our

estimates of short- and medium-run price elasticities, along with the partial effects of their in-

teractions on deforestation. Table 6 also displays the partial effects of short-run price signals

alone - i.e., not conditional on the effect of medium-run price signals. All models are based on

the same specifications as the main one, from Equation 2.

Short-run price signals alone do not explain deforestation. However, once medium-run price

signals are included in the model, the partial effects in the short-run increase substantially (ex-

cept for smallholders). At constant short-run price signals, the effects of the medium-run price

signals are lower than without conditioning to short-run price signals (as in Table 3)41. The

interaction partial effect on deforestation is positive. This means that the effect of medium-run

price signals on deforestation increases with short-run price signals (and vice-versa).

[Table 6 here.]

These results may reflect the fact that more recent developments in prices weigh more

on expectations and hence on deforestation decisions than older prices. Moreover, it seems

that short-run prices influence deforestation only when longer variations are also accounted for.

This is at least partly due to the positive moderating effect of short-run price signals on medium-

41This follows mechanically since the first annual price signal is included in the medium-run measure.
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run ones. Together, these results suggest that, given the perennial and yield-lagging features

of the oil palm crop, plantations look at short-run price signals only to confirm medium-run

dynamics. It is also notable that this pattern comes from industrial plantations, and that it is

reversed in smallholder plantations. Indeed, among smallholders, the total price signal effect

seems to be driven by medium-run variations. One hypothetical explanation for this differ-

ence is that, in times of short-run price spikes, companies prioritize deforestation for industrial

plantations, and then allocate forest land to smallholder plantation development.

Price variability. We here provide an aside note on the effect of price variability, rather than

relative change. We find that the effect of the 4-past-year standard deviation in price signal

on deforestation is not significant, both economically and statistically42. This is true for all

subgroups featured in Table 3. This implies that designing a price instrument to reduce (or

increase) price variability would not have an additional effect on deforestation.

5.4 Scaled-up counterfactuals

In this subsection, we attempt to give a sense of the magnitudes that are implied by our esti-

mated 1.6 micro-level price elasticity of deforestation. First, we discuss the external validity of

our results. In light of this, we then describe how we scale up average partial effects. Finally,

we present and discuss scaled effects of counterfactual price changes.

External validity. Given the specific organisation of the palm oil sector in Indonesia, our

results cannot automatically be extrapolated to other crops or countries. Even within Indonesia,

given the differences between Sumatra and Kalimantan observed in this study, one should be

cautious in extrapolating our results to specific regions like the new deforestation frontier in

Papua. However, as the regions in our analysis include most existing Indonesian oil palm

plantations and deforestation, we are confident in claiming external validity with respect to the

country as a whole. Extending our conclusions in time should also be done with caution, since

our study does not cover recent developments in oil palm-related policies such as the biofuel

42Results available upon request
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mandates (Kharina et al. 2016) or the No Deforestation, No Peat, No Exploitation commitments

from the private sector (Pirard et al. 2015). We believe that, although our sample is restricted to

plantations within 30km (50km in Kalimantan) from at least one mill (to avoid introducing too

much noise into our sample), the results can be extrapolated to plantations located even further

away. This is supported by our finding that price elasticity is not contingent on our measure

of remoteness - the number of reachable mills (Table A.6). Finally, we note that our estimates

mainly capture effects on deforestation at the intensive margin, i.e., occurring after at least one

mill opened43.

Scaling factor. To scale up our estimated average price effects to the whole Indonesian coun-

try, we count the number of individual plantation sites (grid cells) where deforestation is pos-

sible in Sumatra and Kalimantan. Hence, we first count grid cells that are within 82km of at

least one known (as from the UML) palm oil mill. This follows Heilmayr et al. (2020), who

analyzed from RSPO audit reports that 99% of mills’ supply bases were within this straight

line distance. Because, in this area, many plantation sites are actually unlikely to experience

deforestation (either because there is no forest or because of unsuitability to oil palms), we

excluded those that never experienced any deforestation from 2002 to 2014 (as we did to our

analysis sample). Note that, for the sake of simplicity, we count in the scaling area the plan-

tation sites where deforestation occurred before the first mill opened in the catchment radius

- i.e., at the extensive margin. Finally, we aggregate our results over 11396 3x3km plantation

sites in Sumatra and Kalimantan. We assume that this population of plantation sites has the

same average deforestation as predicted in our sample. Under this assumption, we multiply by

the scaling factor to estimate a baseline total deforestation of 134230 ha.

43Mills need a minimal fruit supply basis to operate. At usual mill capacity and plantation yield, this implies

a minimum plantation size of ca. 3000 hectares to be developed alongside any new mill opening (Paoli et al.

2013). As the first palm fruits can be harvested three years after planting, deforestation occurs before the mill

starts operating. On this margin, deforestation occurs far from already operating mills, and thus local price signals

do not exist.
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Counterfactual effects. Table 7 shows the aggregated annual effects of different counterfac-

tual CPO price changes on deforestation in Indonesia. For different price changes, we quantify

the relative change in average deforestation, the scaled effect on deforestation, and the corre-

sponding potential revenue from a CO2 payment. The effect is scaled based on the aggregation

factor presented above. We estimate corresponding carbon pricing revenues from a poten-

tial result-based payment for reducing emissions from deforestation. We apply an average of

638 tCO2 ha−1 emissions due to deforestation (Guillaume et al. 2018)44. CO2 revenues are

based on the $5/tCO2 agreed price Norway paid to Indonesia for its recently avoided deforesta-

tion 45.

Hence, given a 1.6 price elasticity of deforestation, we estimate that average variations

(+5%)46 in CPO price signals incentivize Indonesian oil palm plantations to clear 11kha of

primary forest annually. In the presence of a result-based payment scheme, this represents a

yearly opportunity cost of M$35. To curb annual deforestation 29%47 below the 2002-2014

average with price incentives alone, price signals for individual plantations should be lowered

by 19%. This would save 39kha of primary forest annually, corresponding to revenues from a

potential result-based payment scheme of M$124.

There are at least two reasons why even greater emission reductions could be achieved with

a 19% tax on CPO. First, because a tax would moderate the profitability of illegal deforesta-

tion, shrinking the leakage from legal to illegal economically motivated deforestation that our

results document, and thus make regulatory conservation instruments more effective. Second,

because the tax revenues could be redistributed to compensate plantations claiming (and prov-

ing) avoided deforestation, thus strengthening the price gradient between deforestation-free and

44We apply the 44/12 C to CO2 conversion factor to their 174 Mg C ha−1 lost in conversion of Sumatra

rainforests into oil palm monocultures.
45https://www.regjeringen.no/en/aktuelt/noreg-betaler-530-millionar-for-redusert-avskoging-i-indonesia/

id2722135/

46We compute standard deviations in our price signal regressor variable, in the estimating sample, after remov-

ing variations in fixed-effect dimensions (Mummolo and Peterson 2018).
47Aligning annual deforestation reduction to Indonesian Paris Agreement targets, i.e., 29% GHG emission

(including LUC) below business as usual by 2030 (GoI 2016).
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deforestation-based CPO and increasing even further the incentive to avoid deforestation. On

the other hand, oil palm is not the only land use driving deforestation in Indonesia. Thus, a

19% tax on CPO only, may also achieve lower emission reductions if forest is left vulnerable

to uncontrolled production of another commodity.

[Table 7 here.]

6 Conclusion

In this study, we estimate different price elasticities of primary forest conversion to oil palm

plantations in Indonesia. We find that medium-run crude palm oil price signals have an overall

positive effect on deforestation in the Indonesian oil palm sector. The price elasticity is 1.6.

Industrial, smallholder and illegal plantations are responsive to prices. On the other hand, price

signals have no effects on legal deforestation.

To conclude, we discuss some limitations the reader should be aware of, we present the policy

relevance of our results, and propose further research avenues.

Study limitations. Our estimates of the price elasticities of smallholders and illegal defor-

estation are, to the best of our knowledge, the first in the literature on oil palms. Yet, they

necessarily rely on observational data that are still scarce and incomplete. This prevents us

from ruling out some confounding threats. Notably, the concession data we use to identify le-

gal and illegal deforestation are known not to be exhaustive (see Section D.2). The land zoning

data are time-invariant and thus do not inform us about land releases. For these two reasons,

we may identify too much illegal deforestation. This imprecision may bias our results if it

is correlated locally with prices signals and deforestation. For instance, a district jurisdiction

could release forest estate land to oil palm production land in some areas, impacting local palm

oil prices there, as well as deforestation. This systematic measurement error would bias the

overall estimate.

We also highlight that the external validity of our study may be limited by the exclusion

of the extensive margin in our analysis, i.e. deforestation occurring where no mill is already
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operating. We would expect that such deforestation is less price elastic, because it depends

more on other elements that determine the mill establishment, like capital availability, or the

regional political economy and infrastructure.

Policy Relevance. Oil palm is a highly profitable crop in Indonesia, with large, suitable but

forested, areas still undeveloped (Pirker et al. 2016). Moreover, installed processing capaci-

ties are far from saturated (Pirard et al. 2020). Thus, the ever growing demand and associated

economic incentives risk to maintain a threat on the country’s primary forest. The existing con-

servation schemes have a limited effectiveness due to the prevalence of smallholders and illegal

plantations. This study shows that these unregulated segments of the oil palm sector can be in-

centivized away from deforestation with a price instrument. We find that such an instrument

would be most effective on illegal deforestation for industrial plantations. In addition, several

parts of our results suggest that smallholder encroachment on forests is determined by mills. In

this case, a market-based conservation scheme would need to be applied at the mill level, on

CPO prices, to address deforestation in smallholder plantations.

Furthermore, our finding that legal deforestation is inelastic to prices suggests that legal

deforestation does not react to medium-run market signals because of long licensing processes.

On the other hand, we estimate a substantial price elasticity of illegal deforestation. This in-

dicates the existence of strong incentives to circumvent land use regulations in order to seize

economic opportunities for palm expansion. These two phenomena probably interact. More

stringent conservation regulations may make the licensing process even longer and, in the ab-

sence of strong monitoring, encourage illegal deforestation in the presence of high price incen-

tives. However, this leakage effect can be contained if price incentives are controlled. Hence,

our results suggest that, in the context of weak monitoring, a market-based instrument may help

regulatory instruments be more effective.

A sector-wide tax on CPO, levied at palm oil mills and refunded against proof of sus-

tainable production would not need local monitoring and hence not reintroduce the risk that

weak institutions hinder effective forest conservation intervention (Heine et al. 2020). Indone-

sian Nationally Determined Contributions (NDC) to the Paris Agreement include an emission

(including LUC) reduction target of 29% below business as usual by 2030. We estimate that
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reducing annual deforestation by 29% with respect to the 2002-2014 average could be achieved

with a 19% tax on CPO.

Finally, our results seem to suggest that the price incentives provided by the Roundtable on

Sustainable Palm Oil (RSPO) are insufficient to reach zero-deforestation palm oil. Indeed, the

price premium offered by the RSPO is around 2% according to Levin (2012), and 7% according

to Preusser (2015).

Further research. We do not attempt in this paper to properly simulate policy effects on

deforestation through prices. We do not model a separation between deforestation-free and

deforestation-based markets (and prices) that is caused by a label or by downstream due dili-

gence on sustainability. Hence, our study does not provide strong insights into the incentivizing

scheme of the Roundtable on Sustainable Palm Oil (RSPO). We leave such efforts to further

research.

We note that our new spatially explicit microeconomic panel dataset of palm oil mills could

be useful to study the economic causes of other important phenomenon in Indonesia, like land

conflicts or intentional forest and peat fires. These data can also help further the understanding

of the economics of palm oil mills, whose operations have remained a black box so far.
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7 Tables

Table 1: Deforestation accumulated over 2002-2014, in kha.

Sample 30km from sample mill 50km from sample mill Total

Sumatra 220.29 564.55 702.02 801.40
Kalimantan 150.32 321.92 565.81 1015.62
Both 370.62 886.47 1267.83 1817.02

NOTE. This table shows measures of accumulated deforestation from 2002 to 2014
in different groups of Indonesian plantation sites. Deforestation is counted as primary
forest loss eventually (by 2015) replaced with oil palm plantations (either industrial or
smallholders). The sample of plantation sites is the one we actually use in estimations.
Sample mills are the 587 palm oil processing plants from the Indonesian manufacturing
census that we have geo-localized.

Table 2: Estimation sample - descriptive statistics

Without missing values With missing values t test KS test

# grid cells = 4757
# grid cell-year = 31721

# grid cells = 8309
# grid cell-year = 87004

mean std.dev. median [min; max] mean std.dev. median [min; max] p-value p-value

Deforestation (ha) 11.71 43.72 0.08 [0; 847.5] 12.8 47.7 0 [0; 903.1] 0.000 0.000
Price signal ($/tCPO) 681.4 91.27 686.8 [349.8; 926.4] 681 90.79 685.1 [349.8; 926.4] 0.587 0.458
Public ownership (%) 14.71 23.71 0 [0; 100] 9.9 22.37 0 [0; 100] 0.000 0.000
Domestic private ownership (%) 69.98 28.39 75.81 [0; 100] 72.03 33.2 85.4 [0; 100] 0.000 0.000
Foreign ownership (%) 15.3 21.38 5.11 [0; 100] 18.07 28.56 0 [0; 100] 0.000 0.000

# reachable mills 9.45 5.51 8 [1; 37] 7.2 4.97 6 [1; 37] 0.000 0.000

NOTE. This table shows descriptive statistics of the variables used in our main regression, for the sample of plantation sites (3x3km
grid cells) actually used in estimations (without missing values), and the same sample but without removing observations with missing
values. # means ”number of”. The two right-most columns show p-values of Welch two-sided t-tests, where the null hypothesis is
that the true difference in means between the two groups is null, and the groups’ variances are not assumed to be equal; and p-values
of Kolmogorov-Smirnov tests where the null hypothesis is that the variables in the two groups are drawn from the same continuous
distribution. Price signal and ownership variables at the plantation level are inverse-distance weighted averages of these variables at
reachable mills.
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Table 3: Price elasticities of deforestation across Indonesian oil palm plantations

Industrial plantations Smallholder plantations All

Legal Illegal All Legal Illegal All Legal Illegal All

Estimate 0.51 5.18 2.11 0.14 2.09 1.53 0.2 3.03 1.64
95% CI [-1.21; 2.23] [1.98; 8.38] [0.59; 3.63] [-2.13; 2.42] [0.66; 3.52] [0.22; 2.84] [-1.24; 1.64] [1.33; 4.73] [0.49; 2.78]
Observations 13081 4951 25249 2971 3412 8611 15139 7848 31650
Clusters 635 443 1141 208 270 527 749 628 1439

NOTE. This table shows our main estimates of the price elasticity of deforestation. They are to be interpreted as points of percentage change in average deforestation associated with a 1%
increase in price signals. The price signal is measured as the 4-year average of annual inverse-distance weighted averages of crude palm oil prices at the gates of reachable mills. Deforestation
is measured as primary forest loss eventually replaced with oil palm plantations. We differentiate industrial from smallholder plantations based on scale and landscape criteria (Austin et al.
2017; Petersen et al. 2016). We identify illegal deforestation as occurring outside a known oil palm concession and inside a permanent forest zone designation. There are places where not
enough information is available to designate the legal status. All estimates are derived from a generalized linear model of the quasi-Poisson family. All regressions include unit and district-year
fixed effects, as well as ownership shares and the annual count of reachable mills as covariates. Sample observations are annual records of 3x3km grid cells in Sumatra and Kalimantan from
2002 to 2014. They all have a positive remaining primary forest extent, and are within a 50km (30km in Sumatra) radius from at least one of our sample mills. 95% confidence intervals (CI)
are based on standard errors computed with the delta method and clustered at the set of reachable mills.
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Table 4: Price elasticities of immediate and transitional deforestation in Indone-
sian industrial plantations

Immediate conversion Transitional conversion

Legal Illegal All Legal Illegal All

Estimate 1.23 6.61 2.7 -0.34 6.92 1.95
95% CI [-0.9; 3.36] [2.16; 11.06] [0.79; 4.61] [-3.15; 2.47] [2.87; 10.97] [-0.37; 4.26]
Observations 11308 3959 21629 5945 2185 11704
Clusters 589 403 1051 453 296 815

NOTE. This table shows our estimates of the price elasticity of deforestation in industrial oil palm plantations. They are to be
interpreted as points of percentage change in average deforestation associated with a 1% increase in price signals. The price
signal is measured as the 4-year average of annual inverse-distance weighted averages of crude palm oil prices at the gates of
reachable mills. Deforestation is measured as primary forest loss eventually replaced with oil palm plantations. We differentiate
immediate from transitional deforestation based on the time lapse between forest loss and plantation development (the cut-off
point is 4 years). We identify illegal deforestation as occurring outside a known oil palm concession and inside a permanent
forest zone designation. There are places where not enough information is available to designate the legal status. All estimates
are derived from a generalized linear model of the quasi-Poisson family. All regressions include unit and district-year fixed
effects, as well as ownership shares and the annual count of reachable mills as covariates. Sample observations are annual
records of 3x3km grid cells in Sumatra and Kalimantan from 2002 to 2014. They all have a positive remaining primary forest
extent, and are within a 50km (30km in Sumatra) radius from at least one of our sample mills. 95% confidence intervals (CI)
are based on standard errors computed with the delta method and clustered at the set of reachable mills.
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Table 5: Palm fruit and crude palm oil price elasticities of deforestation across
Indonesian oil palm plantations

Industrial plantations Smallholder plantations All plantations

FFB price signal
Estimate 1.82 2.95 -1.97 -1.43 1.28 2.07
95% CI [0.43; 3.2] [0.8; 5.1] [-3.41; -0.53] [-2.67; -0.18] [0.18; 2.37] [0.66; 3.48]

CPO price signal
Estimate 0.86 1.44 0.93
95% CI [-1.49; 3.2] [-0.15; 3.04] [-0.65; 2.52]

Interaction
Estimate 0.14 0.04 0.09
95% CI [0.04; 0.25] [-0.04; 0.12] [0.02; 0.15]

Observations 22903 17918 8250 7087 29070 23185
Clusters 1036 987 500 483 1331 1276

NOTE. This table shows our estimates of the palm fruit and crude palm oil price elasticity of deforestation. They are to be interpreted
as points of percentage change in average deforestation associated with a 1% increase in price signals. The price signal is measured
as the 4-year average of annual inverse-distance weighted averages of either palm fruit or crude palm oil prices at the gates of
reachable mills. The last block of rows shows estimates of the partial effects of the interaction of both, evaluated at the sample
mean. Deforestation is measured as primary forest loss eventually replaced with oil palm plantations. We differentiate industrial
from smallholder plantations based on scale and landscape criteria (Austin et al. 2017; Petersen et al. 2016). We identify illegal
deforestation as occurring outside a known oil palm concession and inside a permanent forest zone designation. There are places
where not enough information is available to designate the legal status. All estimates are derived from a generalized linear model
of the quasi-Poisson family. All regressions include unit and district-year fixed effects, as well as ownership shares and the annual
count of reachable mills as covariates. Sample observations are annual records of 3x3km grid cells in Sumatra and Kalimantan from
2002 to 2014. They all have a positive remaining primary forest extent, and are within a 50km (30km in Sumatra) radius from at least
one of our sample mills. 95% confidence intervals (CI) are based on standard errors computed with the delta method and clustered
at the set of reachable mills.
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Table 6: Short-run and medium-run price elasticities of deforestation across In-
donesian oil palm plantations

Industrial plantations Smallholder plantations All plantations

Short-run price signal
Estimate 0.34 1.11 0.19 0.463 0.31 0.826
95% CI [-0.06; 0.73] [0.613; 1.607] [-0.26; 0.64] [-0.128; 1.055] [-0.02; 0.64] [0.43; 1.222]

Medium-run price signal
Estimate 0.96 1.23 0.888
95% CI [-0.286; 2.206] [0.245; 2.215] [-0.036; 1.811]

Interaction
Estimate 0.03 0.042 0.029
95% CI [0.001; 0.059] [0.003; 0.08] [0.003; 0.05]

Observations 53173 25249 15118 8611 64302 31650
Clusters 1430 1141 659 527 1779 1439

NOTE. This table shows our estimates of the short- and medium-run price elasticity of deforestation. They are to be interpreted as points of percentage
change in average deforestation associated with a 1% increase in price signals. The short-run price signal is measured as the inverse-distance weighted
average of crude palm oil prices at the gates of reachable mills. The medium-run price signal is the 4-year average of short-run price signals. The last
block of rows shows estimates of the partial effects of the interaction of both, evaluated at the sample mean. Deforestation is measured as primary forest
loss eventually replaced with oil palm plantations. We differentiate industrial from smallholder plantations based on scale and landscape criteria (Austin
et al. 2017; Petersen et al. 2016). We identify illegal deforestation as occurring outside a known oil palm concession and inside a permanent forest zone
designation. There are places where not enough information is available to designate the legal status. All estimates are derived from a generalized linear
model of the quasi-Poisson family. All regressions include unit and district-year fixed effects, as well as ownership shares and the annual count of reachable
mills as covariates. Sample observations are annual records of 3x3km grid cells in Sumatra and Kalimantan from 2002 to 2014. They all have a positive
remaining primary forest extent, and are within a 50km (30km in Sumatra) radius from at least one of our sample mills. 95% confidence intervals (CI) are
based on standard errors computed with the delta method and clustered at the set of reachable mills.
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Table 7: Counterfactual annual effects of different CPO price changes on defor-
estation in Indonesia

+1 std. dev. -1% -19%

Relative change (%) 8.31 -1.63 -29
Total change (ha) 11083 -2170 -38699
Potential CO2
revenues (M$) -35.4 6.9 123.5

NOTE. This table shows scaled-up effects of counterfactual changes in
crude palm oil (CPO) price signals. To compute total change effects, we
apply relative changes to average predicted deforestation from our main
econometric model, with a scaling factor of 11396, equal to the number of
3x3km grid cells in Sumatra and Kalimantan within 82km to any known
palm oil mill where deforestation occurred at least once between 2002
and 2014. Potential CO2 revenues correspond to result-based payments
paid at a price of $5 per tCO2 avoided, assuming average emissions of
174tC per hectare deforested.

44



References

Abadie, Alberto, Susan Athey, Guido Imbens, and Jeffrey Wooldridge (2017). When Should

You Adjust Standard Errors for Clustering? w24003. Cambridge, MA: National Bureau of

Economic Research, w24003.

Ai, Chunrong and Edward C. Norton (2003). “Interaction Terms in Logit and Probit Models”.

In: Economics Letters 80.1, pp. 123–129.

Amiti, Mary and Jozef Konings (2007). “Trade Liberalization, Intermediate Inputs, and Pro-

ductivity: Evidence from Indonesia”. In: The American Economic Review 97.5, pp. 1611–

1638.

Austin, Kemen, A. Mosnier, J. Pirker, I. McCallum, S. Fritz, and P.S. Kasibhatla (2017). “Shift-

ing Patterns of Oil Palm Driven Deforestation in Indonesia and Implications for Zero-

Deforestation Commitments”. In: Land Use Policy 69, pp. 41–48.

Baudoin, Alice, P.M. Bosc, C Bessou, and P Levang (2017). Review of the Diversity of Palm

Oil Production Systems in Indonesia: Case Study of Two Provinces: Riau and Jambi. Center

for International Forestry Research (CIFOR).

Bellavia, Andrea, Matteo Bottai, Andrea Discacciati, and Nicola Orsini (2015). “Adjusted Sur-

vival Curves with Multivariable Laplace Regression:” in: Epidemiology 26.2, e17–e18.

Bellemare, Marc F., Takaaki Masaki, and Thomas B. Pepinsky (2017). “Lagged Explanatory

Variables and the Estimation of Causal Effect”. In: The Journal of Politics 79.3, pp. 949–

963.
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Appendix

A Tables

Table A.1: Descriptive statistics of palm oil mills in the Indonesian manufacturing census

Geo-localized IBS palm oil mills
n = 587 mills

All IBS palm oil mills
n = 930 mills t-test KS test

mean std.dev. median [min; max] mean std.dev. median [min; max] p-value p-value

First year in IBS 1999 8.19 2001 [1975; 2015] 2000 8.78 2002 [1975; 2015] 0.000 0.000
FFB farm gate price (USD/ton) 124.7 35.69 127.4 [16.84; 241.5] 123.3 35.73 125.8 [16.84; 242.2] 0.108 0.274
FFB input (ton) 149047 115114 133193 [0; 1035319] 148035 114416 132552 [0; 1035319] 0.692 1.000
CPO farm gate price (USD/ton 684.9 172.5 706.8 [170.1; 1191] 679.8 173.4 700.8 [170.1; 1191] 0.192 0.287
CPO output (ton) 36082 24384 32902 [0.64; 179142] 35795 24363 32389 [0.64; 179142] 0.587 0.999

PKO farm gate price (USD/ton) 399.9 140 389.4 [12.53; 827] 398.4 139.8 386 [12.53; 832.9] 0.676 1.000
PKO output (ton) 8441 8918 6917 [0.11; 96775] 8368 8861 6846 [0.11; 96775] 0.724 1.000
CPO export share (%) 16.85 33.37 0 [0; 100] 15.75 32.55 0 [0; 100] 0.072 0.375
Central government ownership (%) 15.39 35.48 0 [0; 100] 14.64 34.76 0 [0; 100] 0.227 0.961
Local government ownership (%) 2.25 14.65 0 [0; 100] 2.1 14.17 0 [0; 100] 0.562 1.000

National private ownership (%) 65.75 46.02 100 [0; 100] 66.76 45.7 100 [0; 100] 0.214 0.831
Foreign ownership (%) 16.62 34.89 0 [0; 100] 16.51 34.88 0 [0; 100] 0.862 1.000

NOTE. This table reports summary statistics for set of variables from the Indonesian manufacturing census (IBS), at the palm oil mill level, annually in 1998-
2015. The sample of geo-localized IBS palm oil mills is a sub-sample of all IBS palm oil mills. IBS palm oil mills are identified here as IBS plants that report
crude palm oil (CPO) or palm kernel oil (PKO) outputs, or fresh fruit bunches (FFB) inputs at least one year, and are not in Java nor Bali islands. Farm gate
prices are measured with mean unitary values (the ratios of value on quantity). USD is 2010-constant. We report p-values of Welch two-sided t-tests where
the null hypothesis is that the true difference in means between the two groups is null, and the groups’ variances are not assumed to be equal; and p-values of
Kolmogorov-Smirnov tests where the null hypothesis is that the variables in the two groups are drawn from the same continuous distribution.
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Table A.2: Estimation sample for industrial plantations - descriptive statistics

Legal Illegal All

# grid cells = 1979
# grid cell-year = 13081

# grid cells = 781
# grid cell-year = 4951

# grid cells = 3853
# grid cell-year = 25249

mean std.dev. median [min; max] mean std.dev. median [min; max] mean std.dev. median [min; max]

Deforestation (ha) 12.25 45.68 0.08 [0; 847.5] 10.69 44.21 0 [0; 763.2] 11.29 45.04 0 [0; 847.5]
Price signal ($/tCPO) 663 89.06 658.4 [394.9; 926.4] 686.5 97.87 700.1 [349.8; 921.4] 672 92.06 669.8 [349.8; 926.4]
Public ownership (%) 14.95 24.55 0 [0; 100] 11.96 21.24 0 [0; 100] 14.45 23.98 0 [0; 100]
Domestic private ownership (%) 68.19 29.54 75.04 [0; 100] 74.02 24.97 77.37 [0; 100] 69.32 28.85 75.47 [0; 100]
Foreign ownership (%) 16.86 23.25 6.23 [0; 100] 14.02 18.88 6.46 [0; 100] 16.23 22.37 6.06 [0; 100]

# reachable mills 10.27 6.22 9 [1; 37] 9.52 5 9 [1; 34] 9.59 5.73 8 [1; 37]

NOTE. This table shows descriptive statistics of the variables used in our main regression, for the samples of industrial and smallholder plantations together.
We break it down to legal, illegal, and both or unknown (”All”) categories. # means ”number of”. Price signal and ownership variables at the plantation
level are inverse-distance weighted averages of these variables at reachable mills.

Table A.3: Estimation sample for smallholder plantations - descriptive statistics

Legal Illegal All

# grid cells = 385
# grid cell-year = 2971

# grid cells = 522
# grid cell-year = 3412

# grid cells = 1189
# grid cell-year = 8611

mean std.dev. median [min; max] mean std.dev. median [min; max] mean std.dev. median [min; max]

Deforestation (ha) 7.32 23.22 0.31 [0; 438.7] 16.32 43.45 0.92 [0; 653] 9.93 31.87 0.23 [0; 653]
Price signal ($/tCPO) 709.6 85.43 725.6 [349.8; 895.3] 717.5 79.04 729.8 [349.8; 898.3] 714.5 80.31 727.7 [349.8; 898.3]
Public ownership (%) 16.17 23.67 0.71 [0; 100] 13.07 20.67 0 [0; 100] 15.41 22.57 4.5 [0; 100]
Domestic private ownership (%) 74.46 25.56 80.26 [0; 100] 76.85 24.23 81.16 [0; 100] 73.98 25.93 78.76 [0; 100]
Foreign ownership (%) 9.37 14.1 0 [0; 96.38] 10.08 14.58 0 [0; 97.43] 10.61 15.46 0 [0; 100]

# reachable mills 9.63 4.58 8 [1; 27] 8.78 4.16 8 [1; 22] 9.14 4.51 8 [1; 27]

NOTE. This table shows descriptive statistics of the variables used in our main regression, for the samples of industrial and smallholder plantations together.
We break it down to legal, illegal, and both or unknown (”All”) categories. # means ”number of”. Price signal and ownership variables at the plantation
level are inverse-distance weighted averages of these variables at reachable mills.
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Table A.4: Price elasticity and partial effects of control variables on deforestation across Indonesian oil
palm sectors

Industrial plantations Smallholder plantations All

Legal Illegal All Legal Illegal All Legal Illegal All

Price elasticity
Estimate 0.51 5.18 2.11 0.14 2.09 1.53 0.2 3.03 1.64
95% CI [-1.21; 2.23] [1.98; 8.38] [0.59; 3.63] [-2.13; 2.42] [0.66; 3.52] [0.22; 2.84] [-1.24; 1.64] [1.33; 4.73] [0.49; 2.78]

Partial effects of:
Domestic private
mill ownership

Estimate 0.44 -0.86 -0.38 -1.21 0.36 0.57 0.32 -0.13 -0.05
95% CI [-1.19; 2.08] [-3.11; 1.38] [-1.47; 0.71] [-2.88; 0.46] [-1.44; 2.15] [-0.26; 1.41] [-1.02; 1.66] [-1.4; 1.15] [-0.92; 0.82]

Foreign mill
ownership

Estimate 0.1 -2.32 -1.32 -2.78 -0.23 -0.4 0.02 -1.77 -1.06
95% CI [-1.87; 2.08] [-5.63; 0.99] [-2.81; 0.17] [-5.29; -0.26] [-3.07; 2.6] [-2.19; 1.38] [-1.67; 1.72] [-3.67; 0.13] [-2.25; 0.13]

# reachable mills
Estimate -7.18 22.5 -5.44 -0.72 0.47 -2.73 -8.34 7.43 -5.94
95% CI [-22.45; 8.09] [-2.55; 47.55] [-16.81; 5.93] [-14.42; 12.99] [-15.35; 16.3] [-11.96; 6.51] [-20.6; 3.91] [-4.92; 19.78] [-13.92; 2.05]

Observations 13081 4951 25249 2971 3412 8611 15139 7848 31650
Clusters 635 443 1141 208 270 527 749 628 1439

NOTE. This table shows our main estimates of the price elasticity of deforestation, along with estimated partial effects of control variables. Price elasticity estimates are to be interpreted as points of percentage change in average
deforestation associated with a 1% increase in price signals. The price signal is measured as the 4-year average of annual inverse-distance weighted averages of crude palm oil prices at the gates of reachable mills. Ownership variables
are measured as the annual inverse-distance weighted averages of the capital shares of reachable mills. Public (either local or central) ownership is the excluded category. The number of reachable mills is measured as the count of
mills within 50km (30km in Sumatra) annually, based on the universe of known palm oil mills. The estimates of the covariates are also scaled to percentage points. Deforestation is measured as primary forest loss eventually replaced
with oil palm plantations. We differentiate industrial from smallholder plantations based on scale and landscape criteria (Austin et al. 2017; Petersen et al. 2016). We identify illegal deforestation as occurring outside a known oil
palm concession and inside a permanent forest zone designation. There are places where not enough information is available to designate the legal status. All estimates are derived from a generalized linear model of the quasi-Poisson
family. All regressions include unit and district-year fixed effects, as well as ownership shares and the annual count of reachable mills as covariates. Sample observations are annual records of 3x3km grid cells in Sumatra and
Kalimantan from 2002 to 2014. They all have a positive remaining primary forest extent, and are within a 50km (30km in Sumatra) radius from at least one of our sample mills. 95% confidence intervals (CI) are based on standard
errors computed with the delta method and clustered at the set of reachable mills.

Table A.5: Price elasticities of deforestation across the oil palm sector, by island

Industrial plantations Smallholder plantations All

Legal Illegal All Legal Illegal All Legal Illegal All

Sumatra
Estimate 1.98 5.51 3.09 0.17 2.09 1.54 0.37 3.03 1.75
95% CI [0.01; 3.96] [1.89; 9.14] [1.08; 5.1] [-2.1; 2.45] [0.66; 3.52] [0.23; 2.85] [-1.51; 2.24] [1.24; 4.81] [0.35; 3.15]
Observations 4434 3332 11680 2624 3407 8137 6183 6226 17668
Clusters 283 300 678 195 268 510 389 484 970

Kalimantan
Estimate -0.53 3.12 0.95 -17.86 -14.15 -0.55 3.1 1.02
95% CI [-2.93; 1.86] [-1.99; 8.23] [-1.36; 3.25] [-44.54; 8.81] [-38.82; 10.51] [-2.93; 1.84] [-2.01; 8.2] [-1.25; 3.29]
Observations 8647 1619 13569 347 474 8956 1622 13982
Clusters 352 143 465 13 17 360 144 472

NOTE. This table shows our estimates of the price elasticity of deforestation by island. They are to be interpreted as points of percentage change in average deforestation associated with a 1%
increase in price signals. The price signal is measured as the 4-year average of annual inverse-distance weighted averages of crude palm oil prices at the gates of reachable mills. Deforestation
is measured as primary forest loss eventually replaced with oil palm plantations. We differentiate industrial from smallholder plantations based on scale and landscape criteria (Austin et al.
2017; Petersen et al. 2016). We identify illegal deforestation as occurring outside a known oil palm concession and inside a permanent forest zone designation. There are places where not
enough information is available to designate the legal status. All estimates are derived from a generalized linear model of the quasi-Poisson family. All regressions include unit and district-year
fixed effects, as well as ownership shares and the annual count of reachable mills as covariates. Sample observations are annual records of 3x3km grid cells in Sumatra and Kalimantan from
2002 to 2014. They all have a positive remaining primary forest extent, and are within a 50km (30km in Sumatra) radius from at least one of our sample mills. 95% confidence intervals (CI)
are based on standard errors computed with the delta method and clustered at the set of reachable mills.
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Table A.6: Price elasticity heterogeneity across ownership and local market development

Industrial plantations Smallholder plantations All

Legal Illegal All Legal Illegal All Legal Illegal All

Price signal
Estimate 1.3331 4.8232 2.4158 0.2293 1.5775 1.3196 0.9656 2.6192 1.835
95% CI [-0.3299; 2.996] [1.8742; 7.7722] [0.8908; 3.9409] [-1.7059; 2.1645] [-0.3398; 3.4948] [-0.1305; 2.7698] [-0.3826; 2.3139] [1.094; 4.1444] [0.7106; 2.9593]

Interaction with
Domestic private
ownership

Estimate 8e-04 9e-04 1e-04 5e-04 4e-04 2e-04 7e-04 8e-04 2e-04
95% CI [1e-04; 0.0016] [-0.0017; 0.0036] [-4e-04; 7e-04] [-1e-04; 0.0011] [-6e-04; 0.0014] [-2e-04; 7e-04] [1e-04; 0.0012] [-2e-04; 0.0017] [-2e-04; 6e-04]

Foreign ownership
Estimate 0.0012 -1e-04 3e-04 -3e-04 3e-04 -5e-04 0.001 0 3e-04
95% CI [2e-04; 0.0021] [-0.0034; 0.0032] [-4e-04; 0.0011] [-0.0015; 9e-04] [-0.0013; 0.0018] [-0.0013; 4e-04] [2e-04; 0.0018] [-0.0014; 0.0014] [-4e-04; 9e-04]

# reachable mills
Estimate 0.002 0.0099 -0.001 -3e-04 -0.0031 -0.0016 0.0019 0.0014 -0.0012
95% CI [-0.0011; 0.0051] [-0.0015; 0.0213] [-0.0045; 0.0024] [-0.0043; 0.0036] [-0.0098; 0.0036] [-0.0049; 0.0016] [-6e-04; 0.0044] [-0.0036; 0.0064] [-0.0036; 0.0013]

Observations 13081 4951 25249 2971 3412 8611 15139 7848 31650
Clusters 635 443 1141 208 270 527 749 628 1439

NOTE. This table shows our estimates of the price elasticity of deforestation, along with estimated partial effects of interaction variables. Price elasticity estimates are to be interpreted as points of percentage change in average deforestation associated with a 1%
increase in price signals. The price signal is measured as the 4-year average of annual inverse-distance weighted averages of crude palm oil prices at the gates of reachable mills. Interaction terms are the product of the price signal and interacting variables, or
covariates. These interacting variables are ownership variables measured as the annual inverse-distance weighted averages of the capital shares of reachable mills (public ownership is the excluded category), as well as the annual count of all known reachable mills.
The partial effects of interaction terms are second-order cross derivatives evaluated at the sample mean. Deforestation is measured as primary forest loss eventually replaced with oil palm plantations. We differentiate industrial from smallholder plantations based
on scale and landscape criteria (Austin et al. 2017; Petersen et al. 2016). We identify illegal deforestation as occurring outside a known oil palm concession and inside a permanent forest zone designation. There are places where not enough information is available
to designate the legal status. All estimates are derived from a generalized linear model of the quasi-Poisson family. All regressions include unit and district-year fixed effects, as well as ownership shares and the annual count of reachable mills as covariates. Sample
observations are annual records of 3x3km grid cells in Sumatra and Kalimantan from 2002 to 2014. They all have a positive remaining primary forest extent, and are within a 50km (30km in Sumatra) radius from at least one of our sample mills. 95% confidence
intervals (CI) are based on standard errors computed with the delta method and clustered at the set of reachable mills.

Table A.7: p-values from equality tests of price elasticities

All plantations Industrial plantations Smallholder plantations

Ho Legal Illegal All

industrial = smallholders 0.7980 0.0944 0.5967
legal = illegal 0.0110 0.0156 0.1370

NOTE. This table shows p-values of two-sided t-tests, where the null hypothesis is that the true difference in price elasticities of deforestation between
two groups is null.

56



B Figures

Figure B.1: Study samples of palm oil mills and plantations

NOTE. This figure maps the samples of palm oil mills (dark dots) and plantations (light grey area) used in this study. The plantation sample comprises all 3x3km grid cells within a mill
catchment radius and where deforestation occurred at least once from 2001 to 2014. The geographical area includes the Indonesian regions of Sumatra (left) and Kalimantan (right).
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Figure B.2: Estimates of the Indonesian price elasticity of deforestation under different specifications
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NOTE. This figure shows point estimates (white dots in upper panel) of the overall Indonesian price elasticity of deforestation estimated in this paper.Grey bars in the upper panel represent
95% confidence intervals. Darker marks in the lower panel mean that the corresponding vertical estimate is derived from a model that has the corresponding horizontal feature. The main
specification is highlighted.
The minimum forest cover in 2000 is 50%. The IBS to UML mill ratio designates the number of mills from our sample relative to the total number of known reachable mills. It is also set to
50% (included). Alternative catchment radius is 50km in Sumatra and 30km in Kalimantan.
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C Robustness analysis

Here, we document a battery of alternative estimation and identification strategies. We explain

why these different specifications are relevant and we justify why we do not keep them in

our main analysis. Figure B.2 shows how they compare with the overall price elasticity in

Indonesian plantations estimated with the main specification (Equation 2) and sample described

above. We mention only single departures from the main specification. We do not discuss

combinations of alternative specifications.

IBS data cleaning. We check two departures from our main analysis in terms of preparation

of IBS variables, including price signals and ownership controls.

The first one is the set of imputations described in Appendix D. In our main analysis, we

use stronger imputations, in order to reduce statistical noise due to duplicates and outliers, in

particular. The weaker cleaning imputations indeed leave statistical noise in the regressors and

yield an attenuation bias.

In the second one we check the estimate difference due to not lagging IBS variables. Recall

that, in our main analysis, we lag IBS variables to correct for a suspected measurement lag

between them and remote sensing variables. Not lagging IBS variables yields a lower point

estimate. This does not disprove our belief that prices recorded in IBS in a given year have

little effect on the deforestation recorded that same year.

Sampling. We report the price elasticity estimates for two additional sampling conditions. In

our main analysis, no such conditions are applied.

Under the first one, we include in the sample only plantations where more than 50% of the

area was covered with primary forest in 2000. This condition is relevant because it makes the

sample more homogeneous in terms of initial land use. It is not included in our main analysis

because it also limits the external validity of our results.

Under the second condition, we include in the sample only the plantations for which the set of

known reachable mills is constituted of at least 50% of IBS geo-localized mills. This excludes

plantations for which the measurement error is too high due to our geo-localized IBS mill data
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set not being exhaustive. In our main analysis, we do not apply this condition for the sake of

generality and simplicity.

Both conditions yield very similar estimates to the main one.

Catchment modelling. How we model the true relationships between mills and plantations

is a critical point in our analysis. Therefore, we explore three alternatives to the model used in

our main estimation strategy - catchment radii of 30km in Sumatra and 50km in Kalimantan.

The first alternative consists in the assumption that plantations are only influenced by prices

at the nearest mill. This is the simplest model possible. Not surprisingly, it is very imprecise.

This estimate’s confidence interval is so large that we do not feature it in Figure B.2 for the

sake of readability.

The second alternative is a different catchment radius in each island: 50km in Sumatra and

30km in Kalimantan. In Section 4.2, we discuss the size of the catchment radius and the reason

why it should be lower in Sumatra than in Kalimantan. The alternative catchment radii yield

a higher but less precise estimate48. This loss of precision makes us more confident that our

choice of catchment radii in the main analysis is efficient to model the relationships between

plantations and mills.

Finally, we model the catchment area of each mill not as a circle defined by a radius, but as the

set of plantations that can reach the mill within two hours of driving (see Harahap et al. (2019)

for a discussion on the driving time49). This modelling is highly relevant because often, mills,

although close to plantations in straight line distance, may actually not be reachable in time by

trucks following weaving roads (and the opposite is also true). However, this modelling is not

done in our main, preferred analysis because it may introduce endogeneity. Indeed, plantations

likely expand (and hence deforest more) in parts of districts where the road infrastructure is bet-

ter, while in the same area, prices are probably affected by the better access to markets enabled

48We also get an estimate under a 10km catchment radius assumption, but here again we do not present it in

Figure B.2 as the confidence interval is so wide that it complicates the reading of the whole figure.
49Harahap et al. use a four-hour constraint, grounding on https://goldenagri.com.sg/

plantation-mill-24-hours/. Here we present a twice shorter constraint because the estimation with the

four-hour constraint yields too large a confidence interval to be displayed next to the other estimates.
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by better roads. This bias should be attenuated in our main analysis as we arbitrarily draw

a line beyond which plantations are not connected to a mill although the road infrastructure

would actually make the mill’s prices influence deforestation. The estimate under this catch-

ment area model is lower than in the main analysis and not statistically significantly different

from zero. We interpret this as resulting from a negative bias due to the endogeneity introduced

in catchment modelling with driving-time constraints.

Price signal time average. As explained in Section 4.2, our main measure of price signal is a

4-year average of annual price signals. We present here price elasticity estimates with different

time average lengths.

Unsurprisingly, the short-run, annual price signal measure alone yields a non-significant esti-

mate. Indeed, we expect the development of perennial crops to have little responsiveness to

annual variations. This is confirmed by the narrow confidence interval.

The price elasticity point estimate increases with the average length of the price signal time,

while precision decreases. With a 5-year average, too much noise enters the price signal mea-

sure and the price elasticity becomes less precise.

Distributional assumptions. Our preferred distributional assumption is a quasi-Poisson dis-

tribution (that allows the variance to be different from the mean). A Poisson distribution as-

sumption yields the same point estimate and very similar standard errors. This suggests that our

data are not subject to over or under dispersion. The negative binomial distribution assumption

is another option for count data. In our case, it yields a slightly higher but less precise estimate.

Control variables. We explore specifications with all combinations of control variables50.

These include the mill ownership and the number of reachable mills control variables in our

main specification, and three additional control variables.

The first of these is the 1-year lagged outcome variable, i.e., deforestation. Deforestation has

been often shown to be an auto-regressive process, and indeed we find that, in our data, lagged

50Except the case without any control, and the 4-year lagged outcome variables that constrain estimations over

a significantly different time period.
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deforestation is positively correlated with current deforestation (results available upon request).

Furthermore, we expect that prices from the 4 past years that we average in our price signal

measure also influenced past deforestation. Indeed, in our data, we find that a price signal mea-

sured as an average of prices over 3 years does influence deforestation (cf. the above paragraph

on different time average lengths). However, we do not believe that 1-year lagged deforestation

can impact price signals, as first fruits can be harvested only 3 years after planting. Therefore,

we suspect 1-year lagged deforestation to be an intermediate factor. We find that neither the

magnitude nor the precision of our estimate varies with the inclusion of 1-year lagged deforesta-

tion. Thus, we conclude that the effect we measure is not inflated by the spurious accumulation

of intermediate effects by which past prices would cause past deforestation that would then

cause present deforestation.

The second additional control variable is the 4-year lagged deforestation. Again, this control

is motivated by the auto-regressive nature of deforestation. But here, we control for the risk

that past deforestation affected prices through reverse causality. Indeed, it is possible that past-

enough deforestation (four years ago) leads to increased production of fresh fruit bunches, that

affects the marginal costs of surrounding mills (e.g. through increased market power of plan-

tations, or economies of scale) and hence price signals. We find that adding this control to

the main specification yields a price elasticity point estimate of 2.3 (). This contrasts slightly

with our main estimate of 1.6. This difference seems to be due to the time period over which

the regression with this control variable is estimated. The long lag (4 years) in deforestation

restricts the estimating sample to the time period 2005-2014 (as deforestation is observed only

as of 2001). Estimating our main model over this same period yields a point estimate of 2.3

(confidence interval [0.7; 3.9]). Hence, this robustness check makes us more confident that our

results are not confounded by reverse causality.

The third additional control variable is the (inverse-distance weighted) average share of crude

palm oil (CPO) exported by reachable mills. This proxies plantation exposure to the Indone-

sian export tax (Rifin 2014) and to international supply chains and hence might control for

additional potentially confounding systematic differences between plantations. Adding it to

the main control set yields a similar estimate.
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The fourth additional control variable is the baseline forest trend. This is built as an interaction

between the primary forest cover in 2000 and the year. It captures differential trends between

plantations with different initial land uses. These trends likely explain deforestation. If they

are also correlated with price signals, they can bias our estimate. However, adding them to the

main control set yields a similar estimate.

We present estimates with a fifth control variable: the 4-year lagged deforestation in neigh-

boring sites. This is measured as the average of deforestation in the 8 neighboring plantation

sites (grid cells) four years ago. As such, this variable captures the potential bias that could arise

from global spatial spillovers (LeSage 2014). These spillovers occur when deforestation in sur-

rounding areas affects local deforestation. They are likely to occur (Robalino and Pfaff 2012;

Shevade and Loboda 2019), and in particular it is possible that surrounding deforestation in the

past, (i.e., temporally and spatially lagged) affects current local deforestation. Such spillovers

can bias our estimates if past surrounding deforestation also affects current local price signals

(which are 4-year averages). This would occur if, around a plantation site in a given year t-4,

deforestation was important enough so that four years later, when palm trees bear their first

fruits, local prices in year t are impacted.

Over all plantation and deforestation types, controlling for the neighbors’ past deforestation,

the price elasticity point estimate is 2.3 (confidence interval [0.8; 3.8]). This contrasts slightly

with our main estimate of 1.6. This difference seems to be due to the time period over which

the regression with this control variable is estimated. The long lag (4 years) in deforestation

restricts the estimating sample to the time period 2005-2014 (as deforestation is observed only

as of 2001). Estimating our main model over this same period yields a point estimate of 2.3

(confidence interval [0.7; 3.9]). We see at least two explanations for the absence of bias from

the neighbors’ past deforestation. First, the important and heterogeneous time lapse between

deforestation (observed in t-4) and palm tree planting mitigates the effect of deforestation -

even aggregated over 8 plantation sites - on prices. Second, the limited market power of mills

on the crude palm oil market makes it less likely that deforestation - even aggregated over 8

plantation sites - affects prices.

63



Given the substantial change in the sampling time period implied by the addition of this control

variable and its negligible incidence, we do not investigate it in combination with the other

robustness control variables presented above.

Fixed effects. Our main analysis uses a combination of plantation and district-year fixed

effects, as we believe that most price endogeneity arises at the district level. Different fixed

effects absorb variations at different levels. The plantation fixed effect only controls time-

invariant heterogeneity but still allows macro-level shocks to confound the estimate, leading to

less precise estimates. Adding a year fixed effect additionally controls for country-wide annual

shocks, but not for more local confounding shocks. Adding, rather, a local-year fixed effect,

i.e., ruling out common shocks at the level of province, district, subdistrict or village, yields

positive estimates. These are precise in the case of province-year and district-year fixed effects,

larger but less precise in the case of subdistrict-year fixed effects, and very imprecise in the

case of village-year fixed-effects (which we do not display in Figure B.2 in order to better read

it). This shows that most of the effect of price signals on deforestation is at play above the

village-year level.

Clustering. We show in Figure B.2 how allowing correlations in standard errors within differ-

ent observation clusters affects confidence intervals. Price elasticity estimates are statistically

different from zero with more clusters than in our main analysis - i.e., with plantation and vil-

lage clusters. They also remain significant with larger and hence fewer clusters; namely, with

district clusters and two-way plantation and district-year clusters.
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D Data

In this section, we present the data we use to measure the components of Equation (2). The

first subsection documents our original micro-economic dataset of geo-localized palm oil mills.

The methodology to measure price signals and transform the mill data into the final sample of

plantations is not described here but in Section 4.1. The second subsection presents the land

use data, along with the methodology to measure deforestation.

D.1 Micro-economic data: an original merge of the Indonesian manufac-

turing census and the Universal Mill List

We matched two existing data sets to produce an original spatially explicit microeconomic data

set of palm oil mills in Indonesia from 1998 to 2015.

Indonesian manufacturing census (IBS). The Indonesian manufacturing census (IBS)51 is

issued by the Indonesian office of statistics (BPS). It reports annual establishment-level data

for all manufacturing facilities employing at least 20 employees52. We identified palm oil mills

with 9-digit commodity codes53 from 1998 to 2015. The variables available in the manufac-

turing census and used in our analysis are geographic variables54; mill-level input and output

quantities and values at the 9-digit commodity level; mill-level ownership shares across four

categories (national public, regional public, domestic private and foreign private); and product-

level export shares.

Cleaning IBS data We use two main routines to clean input and output quantity and value

variables: we remove duplicates, and we remove outliers. For each routine, we construct two

51The data has also been referred to as Statistik Industri in the literature
52The average mill in IBS has 137 employees, and 75% of the mills have more than 87 employees. Thus, we

are not worried that the 20-employee threshold is a threat in terms of selection bias.
53KKI codes used are 151410102, 151410103 for crude palm oil and crude palm kernel oil respectively, and

011340101 or 011340501 for fresh fruit bunches.
54The data we obtained from BPS provided the district (kabupaten) information over the 1998-2015 period.

However, the sub-district (kecamatan) and the village (desa) information were provided over 1998-2010 only.
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cleaned variables: one with the stronger imputations (suffixed ”imp1”), and one with the weaker

imputations (suffixed ”imp2”). The one with the stronger imputations described a more mod-

ified sample, in an attempt to reduce statistical noise (the term ”removed” means ”is given

a missing value” throughout the paragraph). For duplicates within a firm identifier, imp1-

variables observations are removed if either quantity or value is duplicated. For imp2-variables,

observations are removed only if both quantity and value are duplicated. For duplicates within

a year, imp1- and imp2-variables observations are removed only if both quantity and value are

duplicated.

We define statistical outliers as observations that, within a year, are higher than p75+ 1.5iqr

where p75 is the 75th percentile value and iqr is the interquartile range. We define outliers

as observations of quantity variables that are statistical outliers and fail one of three tests. The

first test asks whether the observation’s input-output ratio is also a statistical outlier. The second

tests asks whether the observation’s crude palm oil-palm kernel oil ratio is a statistical outlier.

The third tests asks whether an observation’s variation rate with respect to the previous period

is an outlier. This procedure allows us to use all available information to deem an observa-

tion an outlier. For value variables this is not possible and we deem an observation an outlier

as long as it is a statistical outlier within a year. We express all monetary values used in the

analysis in 2010 USD. We then compute price variables as mean unitary values: the ratios of

quantities and values. We finally remove observations whose price variables are either upper or

lower statistical outliers. Removing price upper outliers removes observations whose quantity

is mismeasured (too low) relative to value, or whose value is mismeasured (too high though not

outlier) relative to a true small quantity. Removing price lower outlier removes observations

whose value is mismeasured (too low) relative to quantity, or whose quantity is mismeasured

(too high though not outlier) relative to a true small value.

Finally, with these cleaned variables, we identified 930 plants as palm oil mills, based on

the criteria that they sourced FFB at least once or sold CPO or PKO at least once, and that they

are not located in Java or in Bali.
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Universal Mill List (UML). In the latest version we use, the Universal Mill List features

1140 Indonesian palm oil mills, with their names and coordinates (UML 2018). We merge the

UML with a newer data set of palm oil mills (Heilmayr et al. 2020), containing information

on parent companies and establishment dates, but we further refer to the whole data set as the

UML.

Matching the manufacturing census and the UML. We matched the palm oil mills from

these two data sets to make the manufacturing census economic data spatially explicit. The

matching strategy leverages a third document: the manufacturing directories. This is a list

of manufacturing establishments, with their names, 5-digit industry codes, main commodity

names, addresses (often incomplete), and number of workers. Although they are edited annu-

ally, we could find them only for years 2003, 2006, 2009-2015. Since the number of workers

in the directories is sourced from the manufacturing census55, we used this variable together

with district (and village when available) information to match mills from the manufacturing

census with manufacturing directories’ names. These names were then used to match the man-

ufacturing census mills with UML coordinates. All conflicts were resolved after a case-by-case

investigation. Finally, we match 466 mills from the manufacturing census with a UML palm

oil mill (and four more which never reported CPO or PKO output, nor FFB input, or are located

in Java)

There are 464 palm oil mills from the manufacturing census that could not be matched with the

UML by the method explained above. Out of these, we approximate the geo-localization of the

121 additional mills for which village information is reported in the manufacturing census. To

do so, we use the centroids of the polygons of the most recent valid village identifier. Because,

in Indonesia, since 2000, there is a trend to village splits rather than to village mergers, the

most recent information also tends to be the most spatially accurate56.

55although with many lags, leads, and inconsistencies between the two
56Due to administrative village splits, plants do not necessarily report their correct village names or codes

every year. This can be particularly misleading because codes for “parent” villages may be re-used in the next

iteration but for different villages than their “child” villages. Therefore, we deemed that the village information a

plant reported in a given year was valid if the corresponding “parent” village (in 2000) matched with the mode of
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D.2 Land use change from forest to oil palm plantations

In this section, we explain how we construct our measures of land use change from forest to oil

palm plantation (referred to as ’deforestation’ here)57.

Forest loss. We use maps from the Global Forest Change (GFC) dataset (Hansen et al. 2013).

They cover the whole of Indonesia with a resolution of 1 arc-second per pixel (i.e., approxi-

mately 30 meters per pixel in our near-equator region of interest58) annually from 2001 to 2018.

A forest loss event is defined at the pixel level, as the year when complete removal of tree (with

a minimum height of 5m) canopy cover is observed where such cover was still present in 2000.

A minimum canopy cover threshold defines what is counted as forest in 2000 at the pixel level.

However, the GFC dataset does not enable us to distinguish between 2000 tree canopy cover

(and hence loss) in primary forest, secondary forest, or tree plantations.

Primary forest extent in 2000. The map we use to measure primary forest extent in 2000

comes from Margono et al. (2014). It covers the whole country, with the same resolution as the

GFC data set. Primary forest in 2000 is a subset of the 2000 tree canopy cover from the GFC

data set, with canopy cover of at least 30%. It is defined as ”mature natural forest cover that

has not been completely cleared in recent history and consisted of a contiguous block of 5ha or

more” (Margono et al. 2014). Two primary forest types are distinguished: intact and degraded.

The former, following Potapov et al. (2008), shows no sign of alteration by humans, while the

second has been subjected to human disturbances, such as selective logging. They correspond

to the Indonesian Ministry of Forestry’s primary and secondary forest cover types (Margono

all annual village information reported by the plant (also expressed in “parent” village).
57All rasters used in this study are aligned with the resolution of forest loss maps from Hansen et al. (2013)

and all spatial data are projected with a Cylindrical Equal Area projection centered on Indonesia (longitude = 115,

latitude = 0).
5827.8 x 27.6 meters with our projection.
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et al. 2014). In this study, we regroup them.

Oil palm plantations. In this study, we use two different maps, from Austin et al. (2017)

and Petersen et al. (2016). These maps have been produced by visual interpretation of Landsat

imagery. They both recognize areas with signs of future cultivation as plantations. The former

product, from Austin et al. (2017), includes only large-scale oil palm plantations and covers

the regions of Sumatra, Kalimantan, and Papua for the years 1995, 2000, 2005, 2010 and 2015,

with a 250m pixel resolution. The latter product, from Petersen et al. (2016), includes and

distinguishes between large plantations of more than 100ha, mid-size plantations and small-

size plantations. It is a snapshot of the whole of Indonesia, computed with images from 2013

and 2014. Mid and small-size plantations are mosaic landscapes. Mid-size plantation mosaic

landscapes are at least 100 hectares wide, have oil palm patches between 10 and 100 hectares,

comprising at least 50% of the landscape. Small-size plantation mosaic landscapes have oil

palm patches smaller than 10 hectares, again comprising at least 50% of the landscape.

In our main analysis, we use the maps from Austin et al. (2017) to study industrial plantations,

and we pool small and mid-sized plantation maps from Petersen et al. (2016) to study small-

holder plantations. Where these map sources overlap, we characterize plantations as industrial,

as remote sensing for this landscape is less error-prone.

Measuring deforestation. We combine these data sets to compute annual maps of deforesta-

tion, which we measure in different ways.

First, we consider two alternative forest definitions at the pixel level, and hence two different

forest extents in baseline year 2000: tree canopy cover of at least 30 percent outside of 2000

industrial oil palm plantations (as observed by Austin et al. (2017))59, and tree canopy cover of

59This ensures that canopy closure removals within already existing plantations (i.e., palm replacements) are

not counted as deforestation. This approach is the best we can do in the absence of other tree plantation maps

for 2000, but it still has some pitfalls. For instance, if an area was covered with another plantation type (like

timber) in 2000, cleared and converted to an oil palm plantation before 2015, it would be mistakenly counted as

deforestation.
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at least 30 percent within all (i.e., intact or degraded) primary forest. The latter is the closest

to the official forest definition by the Government of Indonesia (Austin et al. 2017; MoF 2008)

and, therefore, the one used for our main analyses.

Then, annual forest loss pixel events observed within the two 2000 baseline forest extents are

deemed deforestation events if they later fall within an oil palm plantation. This means that

we count a deforestation pixel-event the year the forest is cleared, and not the year the palm

trees are planted or when they become productive. Therefore, our observation is close to the

moment when the deforestation decision is actually taken, and irrespective of provisional land

uses. Such provisional land uses between forest clearance and oil palm planting, however, seem

rare (Gaveau et al. 2018)60 Moreover, note that our approach does not count forest degradation

as deforestation, because the tree loss pixel-event is counted only once, the year a near-zero

canopy closure is observed (Hansen et al. 2013).

For industrial plantations, we further distinguish between immediate and transitional defor-

estation. We use the time lapse between the forest loss event and the year when a plantation

is observed for the first time in data from Austin et al. (2017). Deforestation is deemed im-

mediate if the time lapse is between 0 and 4 years. It is deemed transitional if the time lapse

is between 5 and 14 years. For smallholder plantations (data from Petersen et al. (2016)), we

only observe one cross-section for the year 2014 and, hence, we cannot differentiate immediate

from transitional deforestation.

60In Borneo, Gaveau et al. (2018) found that 92% of the forest cleared for oil palm plantations was planted

with oil palms the same year it was cleared.
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E Empirical framework

E.1 Estimation strategy

Functional form and estimation In this study, we estimate an exponential mean model by

Poisson Quasi maximum likelihood. The Poisson distributional assumption has been made

elsewhere in statistical studies of (Indonesian) deforestation (e.g., Burgess et al. (2012), Busch

et al. (2012), and Busch et al. (2015)). Hence, we also seek comparability of our results with, in

particular, Busch et al. (2015). The quasi-Poisson distribution imposes weaker assumptions on

our data, as it only requires the mean (and not the variance) to be correctly specified. We use the

standard log-link function. We perform the estimation of equation (2) with the feglm algorithm

from the R package fixest. This method estimates generalized linear models using weighted

ordinary least squares (OLS) estimations with demeaning along fixed effect dimensions in the

OLS steps and no presence of the incidental parameter problem (Bergé 2018).

E.2 Partial effects

In all regressions, the price signal variable is scaled to the natural logarithm. The partial effects

of price signals on deforestation are computed as the relative difference between predicted de-

forestation at the sample means, with and without a 1% increase in the price signal, multiplied

by 100 (hence, all estimates are scaled to percentage points). From Equation 2, this simplifies

to 100(1.01α̂ −1)% and hence does not depend on sample means (Bellavia et al. 2015). This

only slightly differs from the exponential of regression coefficients as it gauges the effect for a

“full” 1% change in a right-hand-side variable and not for an infinitesimal change. We present

results this way because it is more consistent with computation of effects for larger changes

(e.g., one standard deviation) or when second-order terms are included on the right-hand side.

We estimate the variance of the partial effect with the delta method (Greene 2012).

To investigate synergies, in Section 5.3, we use interaction terms: right-hand-side variables

computed as the product of the treatment (price signal here) and an interacting variable which

is also featured in the right-hand side. Because our model is not linear, the informative estimate
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is the partial effect of the interaction term, not its coefficient (Ai and Norton 2003). Hence,

interaction estimates discussed in Section 5.3 and displayed in Tables 6, 5 and A.6 are second-

order cross-derivatives of predicted deforestation, evaluated at the sample mean.
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F Comparison with existing estimates

Here, we attempt to compare our findings with the closest estimates in the literature. Yet, we re-

mark that none of the studies discussed here have provided a price elasticity of deforestation as

their main estimate. Therefore, they may naturally have focused less on identification concerns

about this parameter. The first (in time) study we can compare our estimates to, is Wheeler

et al. (2013). They estimate a log-log regression of deforestation on a time series of palm oil

futures prices and other economic variables. We can compare our estimated price elasticity to

their model coefficient of 0.816. Using our spatial variation, we hence find a price elasticity

twice as large as theirs. We shall note that this difference may also come from differences in

the measure of deforestation between our two studies.

Comparing with Busch et al. (2015) requires more assumptions, because this study pro-

vides an estimate of the effect of agricultural revenue - and not price - on deforestation. They

find that an additional $100 (in 2005 USD) is associated with a 1.02-1.18% increase in de-

forestation. Converting to 2010 USD, assuming an average yield of 3.5 ton CPO per hectare

(Khatiwada et al. 2018) and an average price of $680 / ton CPO over the period (based on our

own data), we convert their estimates into a 0.13-0.15 price elasticity61. This is much lower

than our estimated 2.1 price elasticity of deforestation in industrial plantations, which is the

most comparable setting to theirs. One should note that the agricultural revenue in Busch et al.

(2015) is computed at each land parcel for the most potentially lucrative crop, which is oil palm

69% of the time. Beside this point, one possible explanation of our finding a much larger price

elasticity is that our estimation benefits from reduced random measurement error, and hence

less bias towards zero.

In Cisneros et al. (2020) the effect of price exposure (calculated as the interaction of inter-

national prices and suitability) on deforestation is expressed for one standard deviation. Thus,

in order to compare our analyses to theirs, we compute our partial effects for one standard de-

61We convert the additional $100 to a 100 ∗ $100/(0.518 ∗ 3.5 ∗ 680) ≈ 8.110924 percentage change in CPO

prices (where 0.518 is approximately the deflator we use). We then scale the associated percentage change in

deforestation - either 1.02 or 1.18% - by this relative price change.
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viation in our data (remaining after fixed-effect variations are absorbed). In their study, a one

standard deviation higher palm oil price exposure results in an 8% increase in deforestation.

This is exactly equivalent to the effect of one standard deviation in our setting (corresponding

to our main 1.6 price elasticity estimate). However, for the two studies to be more aligned, we

compare our price elasticity in industrial plantations (10.2% increase in deforestation for a one

standard deviation increase in price signals) to their estimated effect of price exposure on de-

forestation in new industrial oil palm plantations by 2015 (3% and imprecise). Hence, here too,

our research setting seems to capture a larger effect of prices on deforestation in the Indonesian

oil palm sector. Our findings are also quite divergent in the exercise of comparing immediate

and transitional dynamics: while they find respectively a precise 31.3% and -16.5% price expo-

sure effect, we find significant and non-significant 12.9% and 8.5% effects, respectively. Here,

the difference from our results may be explained by Cisneros et al. capturing mechanisms at

the district level while we use more local variations only.
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