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Abstract

While relying on the postulates of ecological economics, this paper proposes a Ramsey growth
model with a natural resource and pollution. It studies the impact of voluntary degrowth policies
on production and welfare. The instrument of these policies is a tax on the natural resource. These
public policies are implemented after the downturn of the households’ welfare following from the
increased pollution.

Two kinds of policies are considered and rely either on an optimality criterion or on an inter-
generational equity criterion. With respect to the laissez-faire case, they decrease both production
and pollution on the one hand and increase welfare on the other hand. When the policy is based
on an optimality criterion, a delayed reaction from the public authorities implies a higher tax rate
during the first periods. Optimal degrowth paths appear to be non sustainable from an intergen-
erational point of view. Classes of sustainable degrowth paths characterized by time-constant or
time-increasing tax rates are determined.
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Introduction

Economics of degrowth has been developing as a new research topic for some years. Unsurprisingly,
most contributors belongs to the school of ecological economics which, for a long time, have been
interested in alternatives to unsustainable growth paths. By unsustainable paths, we mean paths
that violate the biophysical limits of the economy but also paths that are undesirable from a social
point of view (for example because welfare decreases or because social inequalities increase).

Although relatively recent, Economics of degrowth has been the subject of numerous contri-
butions. In a review of the literature, Kallis et al. [1] classify the contributions in three streams
of thoughts: (i) Steady-State Economics whose figurehead is Herman Daly, (ii) New Economics of
Prosperity around Tim Jackson and (iii) Degrowth à la Serge Latouche and Joan Martinez-Alier1.

If there are di↵erences and even disagreements between these streams, they all consider that
current economic growth is unsustainable and that another trajectory is desirable. Degrowth is
then defined as the voluntary and fair transition from an unsustainable growth path to a stationary
and sustainable state of the economy (O’Neill [3]). Moreover, even though the transition implies
a decrease in production and consumption, it simultaneously aims at increasing welfare while
complying to environmental constraints in the short and long terms (Schneider et al. [4]). It is
thus a chosen process and it goes without saying that no author pleads for a perpetual degrowth
that would lead to generalized misery.

If there is an abundant literature in Degrowth Economics, few contributions attempt to assess
quantitatively the impacts of a degrowth transition. Bilancini et D’Alessandro [5] and Heikkinen [6]
o↵er theoretical assessments. Bilancini et D’Alessandro contrast “unhappy growth” with “happy
degrowth” in the framework of an endogenous growth model with externalities in consumption,
leisure and production. The consumption externality is negative and leads to a competition be-
tween consumers in terms of social status. The leisure externality is positive and linked to the fact
that leisure contributes to social activities that act like a public good and increase welfare. The
third is linked to the accumulation of capital which stimulates knowledge and technical progress.
The authors show that a decentralized economy is suboptimal from a welfare point of view. They
however identify a “happy” transition toward an optimal path where all externalities are taken in
account. This transition is characterized by (i) a temporary reduction in production and consump-
tion and (ii) an increase in welfare, the decrease in consumption being more than compensated by
the increase in relational activities allowed by a more extensive leisure time. Heikkinen [6] enriches
the model by considering consumers with heterogeneous and time-varying preferences with respect
to the importance of social status and voluntary simplicity. This one is defined as the deliberate
choice of an agent to limit her consumption expenditures. The author shows that the weakening of
status consumption increases aggregate welfare while decreasing the economy growth rate. More-
over, the voluntary simplicity adopted by a subset of consumers less sensitive to status competition
has a positive impact on welfare.

Applied contributions include those of Peter Victor (see Victor [7] for an autobiographical
note). In one of his contributions, Victor uses a macroeconomic model (called LowGrow) to assess
how policies reducing GHG emissions would a↵ect the Canadian economy, in particular growth,
public spending and employment (Victor [8]). Among the considered scenarios, the author studies
a degrowth scenario where the standard of living of the Canadians is more in line with the respect
of the planet’s limits. Using the methodological approach of societal metabolism2, Sorman and
Giampietro [10] analyze the implications of possible degrowth paths from an energetic point of
view. The recent thesis of Briens [11] is also worth mentioning. On the basis of an input/output
macroeconomic model, the author assesses di↵erent degrowth scenarios suggested by a series of
interviews of people involved in the Degrowth movement (or interested by it) in order to obtain
di↵erent detailed visions of what could be degrowth. As those of Victor [8] and Sorman and
Giampietro [10], his results show that the degrowth required given the environmental constraints
is likely to have a considerable impact on the economy and that it is barely conceivable without a

1The interested reader will find in Kallis et al. [1] the references to the contributions of these authors as well as
many others. Another interesting survey dedicated to Degrowth is Petridis et al. [2].

2For an introduction to this literature, see Fischer-Kowalski and Haberl [9].
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deep reorganization of society.
Despite their indisputable interest, the above mentioned papers su↵er from di↵erent limitations.

The theoretical contributions of Bilancini and D’Alessandro [5] and Heikkinen [6] develop growth
models that ignore environmental and resource constraints. The analysis is done in terms of
balanced growth paths and the degrowth phase is actually a transition from a suboptimal to an
optimal growth path. If consumption and/or production decrease during the transition, they start
to increase again once it is achieved. These two contributions also ignore the role that public
policies could play. The applied models mentioned above are not growth models in the usual
sense. They do not rely on a welfare approach, are not closed3 (for example demand is exogenous)
or su↵er from other limitations (for example natural resources are ignored). Let us finally mention
that most of the above mentioned contributions (either theoretical of applied) ignore sustainability
issues.

The present paper develops a stylized theoretical model which aims at studying the impact
of voluntary degrowth policies. Contrary to Bilancini and D’Alessandro [5] and Heikkinen [6],
we explicitly consider environmental externalities. More precisely, we distinguish three types of
externalities, linked respectively to the exploitation of a natural resource, to pollution and to
production. In accordance with ecological economics, the model assumes that (i) substitution
between natural and human factors is limited and (ii) technical progress in the use of the resource
as well as in the treatment of pollution is bounded. Given that the resource is itself limited, infinite
growth is impossible and the economy can at best converge to a stationary equilibrium. In the
laisser-faire situation, the model generates after some time a decrease in the households’ welfare
which echoes the threshold hypothesis of Max-Neef [12]: beyond a certain GDP per capita level
(the threshold), welfare (or quality of life) declines with economic growth. This welfare decrease
motivates the public authorities’ intervention and the implementation of a degrowth policy, whose
instrument is a tax levied on the exploitation of the natural resource. Such a policy is first based
on an optimality criterion (à la Ramsey), but because optimality does not guarantee sustainability,
we also consider sustainable degrowth policies based on a (intergenerational) equity criterion (à la
Brundtland).

The structure of the paper is as follows. Section 1 presents the equations of the model. We
consider two institutional organizations of the economy depending on whether it is decentralized
or centrally planned. The stationary equilibria of the economy are determined in Section 2. The
dynamic paths (including the transitional phase) are computed in Section 3. Section 4 studies the
impacts of voluntary optimal degrowth policies, with a focus on the role of the reaction time of the
public authorities. The role of technical progress is also considered. Section 5 characterizes volun-
tary sustainable degrowth paths satisfying an intergenerational equity criterion. The conclusion
summarizes the principal results and suggests several possible extensions.

1 The model

The economy enjoys an exogenous constant flow R of a renewable natural resource. There is a
continuum of identical price-taking producers defined on the interval [0, N ]. They use physical
capital and the natural resource (NR) to produce final goods.

To produce y

t

units of final output in time t, the representative firm needs a quantity x

t

= µ

t

y

t

of NR. µ

t

measures the quantity of NR per unit of final good and is assumed exogenous and
bounded from below by a strictly positive value µ:

µ

t

� µ > 0, 8t. (1)

It is thus never possible to produce a unit of final good with an infinitesimal quantity of NR, even
if µ

t

may be decreasing through time.
NR is a free common resource but its extraction/transformation process requires physical cap-

3Except the model of Victor [8].
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ital. To handle the quantity x

t

, the firm rents a capital stock k

t

given by:

k

t

=
x

1/�

t

A(K
t

, E

t

)
, 0 < � < 1 (2)

where � is a parameter. � < 1 indicates that returns to scale are decreasing at the level of the
firm. Function A depends on K

t

and E

t

which denote respectively the aggregate stock of capital
and the aggregate extraction rate of the resource. This rate is defined by E

t

= X

t

/R where X

t

is the total quantity of NR extracted by all firms. The relationship between A and its arguments
reflects two external e↵ects:
- A

0
K

> 0 means that the macroeconomic capital stock K

t

has a positive influence on the firm’s
productivity;
- A

0
E

< 0 means that the capital necessary to extract one unit of NR increases with the extraction
rate of the resource.
Because it belongs to a continuum, a firm has no significant impact on aggregate quantities so that
it ignores all external e↵ects. K

t

and X

t

(or E

t

) are therefore exogenous at the firm level.
In each period, with the final good price chosen as numéraire, the profit maximization problem

of the representative firm can be written as:

max
y

t

,k

t

,x

t

⇡

t

= y

t

� v

t

k

t

� ⌧

t

x

t

(3)

under the constraints x

t

= µ

t

y

t

and (2). ⌧

t

denotes the tax per unit of NR levied by the public
authorities and v

t

is the rental price of capital. Perfect competition is assumed so that all prices
are exogenous at the firm level. First order optimality conditions lead to:

k

t

y

t

=
� [1� µ

t

⌧

t

]
v

t

(4)

The product µ

t

⌧

t

represents the e↵ective tax rate per unit of final good.
Given the continuum of identical producers defined on [0, N ], total production in period t is

equal to Y

t

=
R

N

0 y

t

(i)di = Ny

t

. Likewise:

X

t

= Nx

t

= µ

t

Y

t

(5)

and

K

t

= Nk

t

= N

x

1/�

t

A(K
t

, E

t

)

We assume the following functional form: A(K
t

, E

t

) = hK

1
�

�1
t

[1� E

t

]
1
� where h is a positive

constant. Then it is easy to show that (2) leads to:

K

t

= a

X

t

1� X

t

R

(6)

where a is a positive parameter4. The denominator shows that the capital needed to extract NR
tends to infinity when X

t

approaches R. The above equation amounts to assuming that capital and
NR are complementary inputs5. In this sense, it relies on the strong sustainability hypothesis which
postulates that substitutability between natural and man-made inputs is limited. This assumption,
combined with the fact that (i) the quantity of NR per unit of good is bounded from below (see
(1)) and (ii) the flow of NR R is finite, implies that unlimited growth of Y

t

is impossible in the
framework of the present model.

4Indeed K
t

= N
x

1/�

t

hK

1/��1
t

[1�E

t

]1/�

) K
1/�

t

= N

1�1/�

h

X

1/�

t

[1�E

t

]1/�

. Let a1/� = N

1�1/�

h

and (6) follows.

5Indeed (6) can be rewritten as a CES production function of K
t

and R with an elasticity of substitution equal
to 1/2.
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At the macroeconomic level, (4) becomes

K

t

Y

t

=
� [1� µ

t

⌧

t

]
v

t

(7)

We assume that there is a one period lag between investment and the installation of capital.
For the sake of simplicity we also assume a unitary depreciation rate of capital. In other words,
the investment decided in t � 1 is productive in t and scrapped in t + 1. This last assumption
supposes implicitly that a time period lasts several years.

Given the above assumptions and the fact that final output is allocated either to consumption
or to investment, the equilibrium condition of the final good market can be written as follows:

Y

t

= C

t

+ K

t+1 (8)

Let us define z

t

as the inverse of the propensity to consume and s

t

as the savings rate:

z

t

=
Y

t

C

t

and s

t

=
K

t+1

Y

t

(9)

Then output and the capital stock are linked by

K

t+1 =

1� 1

z

t

�
Y

t

= s

t

Y

t

(10)

Final good production is accompanied by a global pollution flow P

t

, which a↵ects negatively
households’ utility. For the sake of simplicity, we assume that pollution is linearly proportional to
production and does not accumulate. Formally:

P

t

= ⌘

t

Y

t

(11)

where ⌘

t

is an exogenous parameter measuring the quantity of pollutant emitted per unit of final
good. ⌘

t

is assumed exogenous and can possibly decrease (monotonically) through time because of
technical improvements making production less polluting. For technical constraints however, we
exclude the possibility to reduce pollution to zero. ⌘

t

is thus bounded from below by a strictly
positive value:

⌘

t

� ⌘ > 0, 8t. (12)

1.1 The decentralized economy

We consider a representative and long-living household who consumes the final good and invests
in productive capital, which she lets to firms. Her instantaneous utility depends positively of
consumption C

t

and negatively of the pollution level P

t

:

u

t

= u(C
t

, P

t

) = ln(C
t

)� �P

t

(13)

where � > 0 is the marginal disutility of pollution. In each period, she receives the whole macroe-
conomic income which consists of the capital rent v

t

K

t

and other incomes ⌦
t

(which include firms’
profits and the receipt of the tax redistributed as a lump sum6). The household’s preferences
are represented by the intertemporal utility function

P
T

f

t=1 �

t

u

t

, where � is her discount factor
(0 < �  1) and T

f

is the exogenous time horizon (possibly infinite). The representative household
chooses her optimal consumption path by maximizing this function under her budget constraint:
C

t

+K

t+1 = ⌦
t

+ v

t

K

t

,8t � 1. Given that the representative household has no direct influence on
the pollution level, we obtain the well-known consumption smoothing behavior described by the
following equation:

1
C

t

= �v

t+1
1

C

t+1
(14)

with K

T

f

+1 = 0 (or equivalently Y

T

f

= C

T

f

) as final condition.
Equations (7), (8), (14) lead to an interesting property.

6Firm profits are given by
R

N

0 ⇡
t

(i)di = N⇡
t

, where ⇡
t

is defined by (3).
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Proposition 1 In a decentralized economy, the path of the inverse of the propensity to consume
z

t

is given by:

z

t

= 1 +
T

fX

✓=t+1

✓Y

'=t+1

↵

'

, t 2 {t + 1, ..., T

f

� 1} (15)

with z

T

f

= 1 as final value7.

Proof. Indeed (8) and (14) imply C

t

C

t�1
= �� [1� µ

t

⌧

t

] Y

t

K

t

, so that K

t

C

t�1
= �� [1� µ

t

⌧

t

] Y

t

C

t

.

Then given (8) : Y

t�1�C

t�1
C

t�1
= �� [1� µ

t

⌧

t

] Y

t

C

t

. Let

↵

t

= �� [1� µ

t

⌧

t

] (16)

Then given (9) we obtain the following first order di↵erence equation:

z

t�1 � 1 = ↵

t

z

t

(17)

This equation describes the evolution of the inverse of the propensity to consume z

t

and its inte-
gration leads to (15).

Besides (5), (6), (10) imply:

Y

t�1


1� 1

z

t�1

�
=

aµ

t

Y

t

1� µ

t

Y

t

R

(18)

Given that µ

t

is exogenous and the fact that z

t

, t 2 {1, ..., T

f

} is determined by (15), it is possible
to solve (18) given the initial value of capital K1 (which determines Y1 via (5) and (6)).

1.2 The planned economy

The central planner is assumed to maximize the intertemporal utility function
P

T

f

t=T+1 �

t

p

u

t

, where
u

t

is the representative household’s instantaneous utility defined by (13). �

p

is the discount factor
of the central planner (0 < �

p

 1) which may be di↵erent from the one of households. T + 1
(0  T < T

f

) is the period from which the central planner runs the economy, which may not
coincide with the initial period t = 1. Given (9) and (11), the objective can be rewritten as:

max
{Y

t

,z

t

}
t=T+1,...,T

f

T

fX

t=T+1

�

t�[T+1]
p


ln

✓
Y

t

z

t

◆
� �⌘

t

Y

t

�
(19)

under constraint (18). (19) expresses that the central planner takes the pollution externality into
account. Through the constraint (18), the central planner also takes care of the external e↵ects
linked to the exploitation of the NR and to the influence of aggregate capital on the productivity
of firms.

We have the following result.

Proposition 2 The path of the planned economy for t > T is governed by equation (18) and by

z

t�1 � 1 = �

p

[z
t

� �⌘

t

Y

t

]

1� µ

t

Y

t

R

�
, t = T + 1, ..., T

f

(20)

with z

T

f

= 1 as final condition and K1 (or Y1) given as initial condition.

(20) follows from the first order optimality conditions of problem (19) (see proof in Appendix A).
7The terminal condition z

T

f

= 1 is equivalent to K
T

f

+1 = 0 for (14).
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2 Stationary equilibria

Stationary states (or equilibria) are characterized by the constancy of all variables, in particular
output, consumption and the flows of NR extraction and pollution. They describe asymptotic zero
growth paths of the economy. Remember that the technological assumptions of the model exclude
perpetual growth.

Stationary states imply the constancy of the exogenous parameters, either because they are
always constant or because they have reached their limit values (in presence of technical progress).
This concerns the quantity of NR per unit of final good µ

t

and the quantity of pollutant per unit
of final good ⌘

t

. The tax rate levied on the NR ⌧

t

must also be constant. Let µ, ⌘ and ⌧ be the
constant (limit) values of these parameters.

We first consider the feasibility of the stationary states, that is the conditions these states must
satisfy to be economically meaningful. Then we characterize successively the stationary states of
the decentralized and of the planned economies.

2.1 Feasibility conditions

To be economically meaningful, a stationary equilibrium must satisfy certain conditions. In par-
ticular output is necessarily bigger than consumption so that, given (9), z � 1. Thus (6) and (10)
imply at the equilibrium:

0  s = 1� 1
z

=
aµ

1� E

 1 (21)

where E = µY/R is the equilibrium extraction rate. 0 < E  1 implies accordingly that aµ < 1.

Should this inequality be unverified, then the economy would be unable to sustain its output level
even by allocating all production to investment.

If aµ < 1, then a stationary equilibrium exists if the corresponding extraction rate satisfies:

0 < E  1� aµ (22)

or equivalently if the corresponding savings rate satisfies:

aµ < s  1 (23)

The feasibility domain of the economy is defined as the set of all possible stationary states
satisfying (22) or (23). It is thus determined by the interval ]0, 1� aµ] for the stationary extraction
rate E or equivalently by the interval ]aµ, 1] for the stationary savings rate s. It must be underlined
that the feasibility domain does not depend on any institutional considerations and, in particular,
on whether the economy is decentralized or planned.

2.2 The decentralized economy

Proposition 3 The decentralized stationary equilibrium (DSE) is unique and characterized by the
following values:

s⇤ = ↵ = �� [1� µ⌧ ] (24)

z⇤ =
1

1� ↵

(25)

E⇤ = 1� aµ

↵

(26)

Y⇤ =
E⇤R

µ

=
h
1� aµ

↵

i
R

µ

(27)

C⇤ =
Y⇤
z⇤

= [1� ↵]
h
1� aµ

↵

i
R

µ

(28)
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See proof in Appendix B.1.

Production Y⇤ is proportional to the extraction rate of the NR E⇤, which depends positively
on the savings rate s⇤. Now this rate depends negatively of ⌧. Accordingly, a higher tax on NR
implies lower extraction and savings rates and a lower output level. The impact on C⇤ is however
ambiguous8.

For the DSE to be feasible, the extraction rate of the NR defined by (26) must satisfy (22),
which implies:

⌧ <

1
µ


1� aµ

��

�
(29)

The term between brackets must be positive, which imposes that aµ < �� : households’ discount
factor must be high enough and the returns to scale at the firm level must not be too decreasing.
Furthermore, if the previous inequality is satisfied, the tax rate on NR must not be too high.
Indeed, as the tax discourages savings and investment, a too high tax rate would imply insu�cient
savings to maintain output at its equilibrium level.

2.3 The planned economy

Proposition 4 (a) The optimal stationary equilibrium (OSE) is unique and characterized by the
following values:

�⌘


1� aµ

s0

�
R

µ

=
1

1� s

o


1� s

2
0

�

p

aµ

�
(30)

z

o

=
1

1� s

o

E

o

= 1� aµ

s

o

Y

o

=
E

o

R

µ

=

1� aµ

s

o

�
R

µ

C

o

=
Y

o

z

o

= [1� s

o

]

1� aµ

s

o

�
R

µ

(b) s

o

2
⇤
aµ,

p
�

p

aµ

⇤

(c) The OSE belongs to the feasibility domain if the following inequality is satisfied:

aµ < �

p

(31)

See proof in Appendix B.2.

Unfortunately (30) does not admit an explicit solution so that s0 must be computed numerically.
Knowing s0, all other values characterizing the OSE can be determined.

It is easy to show that s

o

2
⇤
aµ,

p
�

p

aµ

⇤
. This last property is useful to show that the OSE is

unique. It is also useful to obtain (31), which means that the discount factor of the central planner
should not be too small for the OSE to be feasible.

The OSE can be decentralized if there exists a tax rate that allows a decentralized economy to
reach it, in other words if:

9⌧ 2

0,

1
µ

�
: s⇤ = ↵ = �� [1� µ⌧ ] = s

o

(32)

Then:
⌧

o

=
1
µ


1� s

o

��

�
(33)

8Given the previous subsection, C⇤ is a function of ↵ on the interval ]aµ, 1] . As C⇤ is positive on the interval
and nil at the two boundaries, it must be a non monotonic function of ↵.
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where s

o

is the solution of (30). A necessary and su�cient condition that ensures (32) is that
s

o

< ��. This inequality is not very helpful because s

o

is not known explicitly. However we
know by Proposition 4 that (i) s

o

2
⇤
aµ,

p
�

p

aµ

⇤
and (ii) s⇤ decreases from �� to aµ when ⌧

increases from 0 to 1
µ

h
1� aµ

��

i
(see (24)). Accordingly a su�cient condition for (32) to be satisfied

is
p

�

p

aµ < �� or equivalently

�

p

<

�

2
�

2

aµ

In words, the authorities should not have a too high discount factor if they want to decentralize
the OSE.

3 Dynamics

3.1 The baseline scenario

In the particular case where ↵

t

is constant (which requires that the tax rate per unit of final good
µ

t

⌧

t

is constant), then (15) leads to:

z

t

=
1� ↵

T

f

+1�t

1� ↵

. (34)

Furthermore if the time horizon is infinite (T
f

!1) and given that ↵ < 1, z

t

is constant and

z

t

=
1

1� ↵

. (35)

In this case, C

t

= [1� ↵]Y
t

and the savings rate is constant and equal to ↵ = �� [1� µ⌧ ] 9. ↵ is
higher (i) the higher the discount factor of household � and (ii) the lower the elasticity of capital
to production at the firm level

⇣
y

t

k

t

@k

t

@y

t

= 1
�

⌘
. Likewise ↵ is an inversely proportional function of

the tax rate per unit of final good µ⌧ .
Moreover, given (35), (18) becomes:

Y

t�1 =
aµ

↵

Y

t

1� µY

t

R

(36)

Then:

Proposition 5 When the savings rate is constant, output is determined by the following expres-
sion:

Y

t

=


1
Y1
� µ

R

1
1� aµ

↵

� h
aµ

↵

i
t

+
µ

R

1
1� aµ

↵

��1

(37)

Proof. (36) may be rewritten as 1
Y

t�1
= ↵

aµ

h
1
Y

t

� µ

R

i
, or again x

t

= aµ

↵

x

t�1 + µ

R

, where

x

t

= 1/Y

t

. The solution of the associated homogeneous equation is c

⇥
aµ

↵

⇤
t

, where c is a constant
of integration to be determined. A particular solution of the previous equation is µ

R

1
1� aµ

↵

, so

that the general solution can be written as x

t

= c

⇥
aµ

↵

⇤
t + µ

R

1
1� aµ

↵

. If Y

t

= Y1 in t = 1, then

c =
h

1
Y1
� µ

R

1
1� aµ

↵

i
aµ

↵

. Accordingly (37) follows.

In the Baseline Scenario (BS), there is neither technical progress nor resource tax. Figures
1.a-f illustrate the path of the principal variables for this scenario. The initial level of output

9It is important to underline that the constancy of the savings rate is not an assumption: it results from certain
hypotheses of the model (logarithmic utility function and unitary depreciation rate of capital) and only holds when
T

f

is infinite.
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Y1 is assumed to be close to 0 and the output trajectory follows a logistic behavior (Figure 1.a).
Because NR extraction is characterized by decreasing returns to scale, growth slows down and Y

t

tends monotonically toward a stationary value Y⇤. The inverse of the propensity to consume z

t

is
a constant in accordance with (35) and the same is true for the savings rate s

t

= ↵ (Figure 1.b-c).
Accordingly, consumption C

t

= Y

t

/z = [1� ↵]Y
t

follows the same pattern as output (Figure 1.d).
By contrast, the instantaneous utility u

t

behaves non monotonically because pollution increases
with production (Figure 1.e). After a growing phase, u

t

goes through a maximum and next
decreases toward its stationary value u⇤. In a laisser-faire framework, households benefit from a
continuous increase of their consumption level, but the same does not apply in terms of utility
because of the harmful impact of pollution.

The hump-shaped trajectory of the utility level described by Figure 1.e calls to mind the
threshold hypothesis formulated by Max-Neef [12], which states that above a certain level of GDP
per capita, welfare (or quality of life) is likely to decline with economic growth. This hypothesis
is confirmed empirically by Kubiszewski et al. [13]. Applying the Genuine Progress Indicator as
a measure of welfare10 to the period 1950-2005 for a set of countries including more than the half
of world population, these authors have shown that this indicator reached its maximum in 1978
(corresponding to a GDP per capita around 7000$US of 2005) and declined (or remained capped)
afterward.

3.2 The planned economy

(18) and (20) describe the behavior of the centralized economy. These equations must be solved
numerically. Figures 1.a-f compare BS to a simulation V0 where the central planner manages
the economy since the beginning (T = 0), using a discount factor equal to the one of households
(�

p

= �).
Starting with the same initial capital stock K1, output Y

t

first grows more quickly in V0 than
in the case of the decentralized economy but it converges to a significantly lower stationary level
(Figure 1.a). The initial value of the inverse of the propensity to consume z

t

is very high reflecting a
strong desire to grow at the beginning of the path (Figure 1.b). As a result, the initial consumption
level C1 is lower than in the decentralized economy (Figure 1.d). The same is true for the initial
utility level u1 since the pollution level is the same in the two scenarios BS and V0. We may thus
say that the optimal policy of the central planner ”sacrifices” the first generations of the dynasty.
But the following generations enjoy a higher and monotonically increasing utility level thanks to
the fact that the impact of pollution is taken into account (Figure 1.e).

The implementation of the central planner’s choice in a decentralized framework implies a
variable tax rate whose path is illustrated by Figure 1.f. During the first periods, this rate is
negative: the public authorities must subsidize NR extraction11. Later, ⌧

t

becomes positive and
tends to the stationary value ⌧

o

given by (33).

4 Optimal degrowth policies

In this section, we study the economic impacts of voluntary and optimal degrowth policies. These
policies rely on the use of a variable tax rate on resource extraction and are optimal, i.e. such that
the tax rate is varied so as to replicate the optimal path chosen by the central planner (according
to (19)).

These policies only make sense in a decentralized framework and public authorities implement
them after observing a decrease in households’ welfare. This implementation may take place several
periods after the welfare peak. The analysis of the cause of such a delay goes beyond the scope

10This indicator, authored by Daly and Cobb [14], is obtained by correcting aggregate consumption via several
positive or negative ”adjustments”, linked in particular to the distribution of income, environmental costs, domestic
work... It is thus much wider than the concept of utility used here, which only depends on consumption and pollution
levels.

11Because public finances are assumed to be balanced, the financing of the subsidy comes from a lump sum levy
on households’ income.
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Figure 1: Comparison of simulations BS and V0
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of this paper. We thus assume that the implementation delay is exogenous and analyze how its
length impacts households’ welfare. We also assume that the public authorities do not announce
the degrowth policy so that it is not expected by households. This assumption has the merit
to ease the model resolution since then the laisser-faire path (the one which precedes the public
intervention) does not depend on the degrowth path (the one that follows the intervention). It can
also be justified by the fact that the implementation of a degrowth policy is unprecedented and is
thus surprise for households.

4.1 Comparison with the baseline

Figures 2.a-f compare BS with variant V1 where the public intervention takes place quite quickly
after the utility peak (2 periods). W.r.t. BS, the tax implies a decrease in output Y

t

already from
T +2 (Figure 2.a). Indeed, the tax implementation decreases the firms’ profitability, which reduces
their demand for capital. Accordingly the rental price of capital decreases, which leads households
to save less. The capital stock thus decreases, which implies in turn a decrease of output. Figure
2.d shows that it is also the case for consumption even though the investment cut initially allows a
higher C

T+1 (in V1 than in BS) at the initial level of production12. As shown by Figures 2.b-c, this
positive variation of C

T+1 (w.r.t. BS) leads to a noticeable decrease of z

T+1 and s

T+1 (w.r.t. BS),
which is made possible by a su�ciently high tax rate at the start of the degrowth policy (see Figure
2.f). Later, the decrease in output (and thus in pollution) reduces the optimal tax rate and reduces
the gap between the values of z

t

, s

t

and ⌧

t

in V1 and in BS. As shown by Figure 2.e, the degrowth
policy increases welfare in T + 1 w.r.t. BS. In T + 1, this welfare increase follows from the one in
C

T+1 (see above) at unchanged pollution level. For t > T + 1, the variables tend monotonically
to their respective stationary values, except u

t

which first increases for a while, before decreasing
monotonically to u

o

. This ”complex” behavior is understandable by the fact that utility depends
of the di↵erence between two variables (Y

t

and C

t

) that behave in the same way.
Figures 2.a and e show that the policy respects two main principles of a voluntary degrowth

policy, namely a decrease in both output and pollution and a simultaneous increase in households’
welfare (w.r.t. to the laisser-faire situation).

What happens if the authorities react later? Figures 2.a-f illustrate Variant V2 where the
intervention of the authorities starts ten periods later than in V1. The results are quantitatively
but not qualitatively di↵erent. As the authorities react later, production and consumption have
increased more before the implementation of the tax (see Figures 2.a and d). The stationary
equilibrium being the same for V1 and V2, the downward correction is accordingly stronger. This
is also true for z

T+1 and s

T+1, (see Figures 2.b and c). This is only possible via the imposition of
a higher tax rate at the beginning of the intervention compared to V1 (see Figure 2.f).

Given that the authorities react later, households’ utility has decreased more strongly before
the intervention (see Figure 2.e). For the same reasons as in the previous paragraph, the ulterior
utility rise toward the same stationary utility level as in V1 is thus stronger in V2. In the framework
of our simple model, the time of tax implementation has no long run impact and leads to the same
stationary equilibrium. However, in the short term, a later intervention implies a more aggressive
degrowth policy with a higher initial tax rate.

4.2 The impact of technical progress

The above results rely on the assumption that there is no technical progress, i.e. µ

t

and ⌘

t

are
constant. This assumption could a priori be considered as rather restrictive. However, as Germain
[15] has shown in a companion paper, it does not change fundamentally the story. Hereafter we
summarize his main conclusions w.r.t. two variants of technical progress.

In a first variant, technical progress reduces the resource intensiveness of output. However
this technical progress is bounded in the sense that µ

t

declines through time from µ1 to µ =
lim

t!+1 µ

t

> 0, where µ1 and µ are respectively the initial and final values of the resource
12In T + 1, output is determined by the capital stock inherited from the past (i.e. before the intervention of the

public authorities). Thus Y BS

T+1 = Y V 1
T+1.
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Figure 2: Comparison of simulations BS, V1 and V2
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content of one unit of good. In a laisser-faire framework and w.r.t. to the situation where technical
progress is absent, the (instantaneous) utility of households u

t

grows initially more quickly, attains
its peak sooner and finally decreases to a lower stationary equilibrium. Resource saving technical
progress is thus beneficial only temporarily. It becomes deleterious in the long term because of a
rebound e↵ect implying an increase in output and pollution and because agents do not take care of
the externalities linked to pollution. On the contrary, the implementation of a degrowth policy by
the public authorities enables the economy to converge to a stationary equilibrium characterized
by a higher utility level w.r.t. the level obtained in the absence of technical progress. In the long
term, the impact of a resource saving technical progress is thus positive or negative depending on
the institutional framework (i.e. on whether the public authorities ”laissent faire” or regulates the
economy).

In a second variant, technical progress makes production less polluting. Parameter ⌘

t

declines
through time from ⌘1 to ⌘ = lim

t!+1 ⌘

t

> 0, where ⌘1 and ⌘ are respectively the initial and final
pollution levels per unit of good. For technological reasons or because of a complete treatment of
pollution would have a prohibitive cost, ⌘ is strictly positive. Contrary to the case of a resource
saving technical progress, improvements in the pollution treatment do not induce a rebound e↵ect.
W.r.t the situation where there is no technical progress, the (instantaneous) utility curve peaks at
higher level and at a later period, before declining to a higher steady state. Thus in a laisser-faire
economy, a technical progress that reduces pollution (ceteris paribus) has a positive impact both in
the short and long terms. This does not prevent a degrowth policy to be beneficial by allowing the
economy to reach a higher welfare level than in a laisser-faire economy. The welfare gain (w.r.t. to
the laisser-faire situation) is however lower in the presence of a technical progress in the pollution
treatment.

5 Sustainable degrowth policies

Optimality does not guarantee sustainability and vice versa (Bonneuil and Boucekkine [16])13.
Now sustainability is a concept that ”has been rather ambiguously defined” by the literature
(Baranzini and Bourguignon [17], p.341). One possible definition relies on intergenerational equity
in the sense that the welfare level of future generations should not be lower than the one of the
contemporaneous generation. We exploit this idea hereafter.

Assuming an infinite horizon, intertemporal social welfare at time t is equal to:

V

t

=
+1X

✓=t

�

✓�t

u

✓

(38)

where u

t

is the representative household’s instantaneous utility defined by (13).
In our discrete time framework, the Brundtland sustainability criterion as formulated mathe-

matically by Arrow et al. [18] stipulates that:

V

t

 V

t+1, 8t > T (39)

In words, after the implementation of the degrowth policy from period T, social welfare as measured
by V

t

must not decrease over time.
To simplify our analysis, we assume that there is no technical progress so that µ

t

and ⌘

t

are
constant and equal respectively to µ and ⌘. We have the following useful result.

13Using viability theory in the framework of the Ramsey growth model, Bonneuil and Boucekkine [16] characterize
optimal viable, optimal non viable and viable optimal viable paths, where a path is said to be viable if it satisfies a
minimum consumption condition coupled to a sustainability criterion.
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Lemma 6 A degrowth path such that

u

t

 u

t+1, 8t > T (40)

where

u

t

= ln
✓

Y

t

z

t

◆
� �⌘Y

t

(41)

satisfies the Brundtland sustainability criterion (39).

See Appendix C for the proof.

(41) follows from (9), (11) and (13). Lemma 6 states that if after the implementation of the
degrowth policy instantaneous utility is non decreasing over time, then the path of the economy is
(Brundtland) sustainable. This result is useful because (40) is much easier to check than criterion
(39).

Figure 2.e shows that the optimal degrowth policy analyzed in section 4 does not satisfy the
criterion defined by (40). Indeed it does not lead to a monotonic evolution of households’ instan-
taneous utility14.

Hereafter we determine tax rates able to lead to sustainable degrowth paths (SDP) in a decen-
tralized economy, i.e. paths that
(i) are governed by equations (17) and (18) (the economy is decentralized);
(ii) verify the sequence Y

t

� Y

t+1, 8t > T (the path is a degrowth path);
(iii) verify the criterion (40) (so that the path is sustainable given Lemma 6).
Moreover ↵

t

, z

t

, Y

t

must be positive along such paths.
First note that the sequence Y

t

� Y

t+1, 8t > T is possible only if Y

T+1 � Y⇤, i.e. the initial
level of production is higher or equal to the asymptotic level. Given (27), the last inequality implies
that: h

1� aµ

↵

i
R

µ

� Y

t+1 (42)

where ↵ is given by (24).
Characterizing all the SDPs that satisfy the above conditions is beyond the scope of this paper.

In the sequel, we will limit our analysis to particular classes of SDPs. We proceed in two steps.
We first determine SDPs that are generated by time-constant tax rates. We next determine SDPs
that are generated by time-increasing tax rates.

5.1 SDPs with constant tax rates

If the tax rate is constant over time (⌧
t

= ⌧, 8t > T ) and if the horizon time is infinite (T
f

!1),
we know (see subsection 3.1) that (i) the inverse of the propensity to consume is constant and
given by (35) and (ii) the dynamic behavior of output is determined by:

Y

t

=


1
Y

T+1
� µ

R

1
1� aµ

↵

� h
aµ

↵

i
t�(T+1)

+
µ

R

1
1� aµ

↵

��1

, 8t > T (43)

If (42) is satisfied, it is clear that Y

t

decreases monotonically from Y

T+1 to Y⇤.
(43) implies directly a first result:

Lemma 7 Consider two di↵erent tax rates ⌧

a and ⌧

b such that ⌧

a

< ⌧

b

. Then Y

a

t

> Y

b

t

, 8t > T :
the output path corresponding to the lower tax rate is everywhere above the one corresponding to the
higher tax rate. In particular, the lower the tax rate, the higher the stationary output: Y

a

⇤ > Y

b

⇤ .

Then the following result follows:
14The non monotonicity of u

t

for simulations V1 and V2 is barely perceptible but is real. Now the non monotonicity
of u

t

could be more pronounced for other simulations. As the model is highly stylized, we pay more attention to
the general shape of the trajectories than to the numerical values.
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Proposition 8 A degrowth path generated by a constant tax rate and satisfying the inequality
Y⇤ � 1

�⌘

is sustainable.

Proof. Given (41), we have @u

t

@Y

t

= 1
Y

t

� �⌘  0 if and only if 1
�⌘

 Y

t

. Given that Y⇤ =
min

t>T

{Y
t

} , if Y⇤ � 1
�⌘

then Y

t

� 1
�⌘

,8t > T. Then, the sequence Y

t

� Y

t+1, 8t > T and the fact
that z

t

is constant imply obviously (40). Then sustainability follows from Lemma 6.

In words, Proposition 8 states that a degrowth path generated by a constant tax rate must
be characterized by a su�ciently high stationary output to be sustainable. On the contrary, if
the inequality Y⇤ � 1

�⌘

is not satisfied, there is a period after which the decrease of output due
to the (too high) taxation of the natural resource is no more compensated by the corresponding
decrease of pollution, so that households’ instantaneous utility decreases and the criterion (40) is
not verified.

We now consider two particular SDPs. The first one, ⇤
l

, is characterized by the stationary
output Y

l = 1
�⌘

. Let ↵

l be the value of ↵ that generates ⇤
l

. It is easily computable from (27):⇥
1� aµ

↵

l

⇤
R

µ

= 1
�⌘

) ↵

l = aµ

1� µ

�⌘R

. Then using ↵ = �� [1� µ⌧ ], we obtain the tax rate that generates
the path ⇤

l

:

⌧

l =
1
µ

� a

��

h
1� µ

�⌘R

i (44)

The second SDP, ⇤
h

, is characterized by a constant output level equal to Y

T+1, i.e. Y

t

=
Y

T+1, 8t > T

15. Let ↵

h be the value of ↵ that generates ⇤
h

. From (43), it follows that

↵

h =
aµ

1� µY

T+1
R

(45)

which is the particular value of ↵ that makes (42) an equality. The corresponding tax rate is:

⌧

h =
1
µ

� a

��

h
1� µY

T+1
R

i (46)

Proposition 9 A constant tax rate ⌧ such that

⌧

h  ⌧  ⌧

l (47)

generates a SDP.

Proof. Given Lemma 7, if ⌧

h  ⌧ , then the path generated by ⌧ is everywhere under (or equal
to) the (constant) path ⇤

h

. It follows in particular that Y⇤  Y

T+1, so that (42) is satisfied. Given
(43), the path is monotonously decreasing and is thus a degrowth path.

Given Lemma 7, if on the other hand ⌧  ⌧

l, then the path generated by ⌧ is everywhere above
(or equal to) the path ⇤

l

and therefore satisfies the condition Y⇤ � 1
�⌘

.
Then the path generated by ⌧ is a SDP according to Proposition 8.

Figures 3.a-b illustrate output and utility characterizing the Baseline Scenario (BS) and the
SDPs generated by a constant tax rate. As for Figure 2, when a public intervention occurs in
t = T + 1, BS lasts from t = 1 to t = T and is followed by a degrowth path. Starting with an
initial output (resp. utility) level Y

T+1 (resp. u

T+1), a SDP generated by an admissible constant
tax rate (i.e. belonging to the interval

⇥
⌧

h

, ⌧

l

⇤
) is between path ⇤

l

and path ⇤
h

. Together, all
admissible SDPs generate the green surfaces in Figures 3.a-b16.

15The path ⇤
h

is indeed a SDP because z
t

and Y
t

constant ensure that u
t

is constant (given (41)), so that (40)
is satisfied.

16Contrary to Figures 1 and 2, Figure 3 is purely illustrative and does not rely on numerical computations.
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Figure 3: Sustainable degrowth paths
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5.2 Sustainable degrowth paths with increasing tax rates

For a degrowth path to be sustainable, the tax rate must not necessarily be constant. In the sequel,
we characterize a class of SDPs that are associated to sequences of increasing tax rates that verify:

⌧

T+2  ...⌧

t

 ⌧

t+1...  ⌧⇤ (48)

where 0 < ⌧

T+2 and ⌧⇤ 2
i
0,

1
µ

h
. ⌧⇤ is the asymptotic tax rate and the condition ⌧⇤ < 1/µ ensures

that ↵

t

> 0,8t > T + 1.

17

We have the following lemma:

Lemma 10 A sequence of increasing tax rates such as (48) leads to the sequence:

z

T+1 � ...z

t�1 � z

t

... � z⇤ (49)

where z⇤ = 1
1�↵⇤

(> 1).

Proof. Indeed (16) and (48) imply:

(1 >) �� > ↵

T+2 � ...↵

t

� ↵

t+1... � ↵⇤ (50)

where ↵⇤ = �� [1� µ⌧⇤] . (15) )

z

t

= 1 + ↵

t+1 + ↵

t+1↵t+2 + ↵

t+1↵t+2↵t+3 + ...

z

t�1 = 1 + ↵

t

+ ↵

t

↵

t+1 + ↵

t

↵

t+1↵t+2 + ...

Then obviously (50) ) (49).

Proposition 11 If the initial tax rate ⌧

T+2 and the final tax rate ⌧⇤ are chosen such that

⌧

h  ⌧

T+2  ⌧⇤  ⌧

l (51)

where ⌧

l and ⌧

h are defined by (44) and (46), a sequence of increasing tax rates such as (48)
generates a SDP.

Proof. (i) The first step proves that a sequence of increasing tax rates verifying (48) and
⌧

h  ⌧

T+2 generates a degrowth path, satisfying:

Y

T+1 � ...Y

t�1 � Y

t

... � Y⇤ (52)

See Appendix D for the details.
(ii) The second step proves that the path is sustainable. First we know by Lemma 10 that (48)

imply sequence (49).
On the other hand, given (24) and (27), ⌧⇤  ⌧

l ) ↵⇤ � ↵

l ) Y⇤ � Y

l. Now ⌧

l generates the
stationary output Y

l = 1
�⌘

, so that Y⇤ � 1
�⌘

.
Finally, given (41), we have @u

t

@Y

t

= 1
Y

t

� �⌘  0 if and only if 1
�⌘

 Y

t

. Given that Y⇤ =
min

t>T

{Y
t

} , if Y⇤ � 1
�⌘

then Y

t

� 1
�⌘

,8t > T.

It is then clear that the sequences (49) and (52) imply (40), which ensures sustainability given
Lemma 6.

The first inequality of (51) ensures that the path degrows from the beginning. The increasing
sequence of tax rates defined by (48) shows that the degrowth policy is enhanced over time. But as
shown by the last inequality of (51), it is not too much enhanced in order to avoid the detrimental
e↵ects of a too high tax rate on output (see the comment following Proposition 8).

17The sequence (48) starts indeed at T + 2 and not at T + 1 (first period of the degrowth phase) because z
t

is
function of ↵

t+1 through (17) (and thus of ⌧
t+1 given (16)).
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6 Conclusion

This paper innovates by studying voluntary degrowth policies, which is rather unusual in the eco-
nomic literature, in particular in growth theory. In the framework of a Ramsey growth model
with natural resource and pollution and technological assumptions consistent with ecological eco-
nomics, this paper analyzes the impacts of such policies on output, consumption and welfare. The
instrument of these policies is a tax on the natural resource.

We begin by comparing the dynamics and final states of the economy when it is decentralized
or governed by a central planner. In the decentralized case, economic agents do not care of the
externalities present in the economy (in particular those which are linked to pollution). Output and
consumption increase monotonically and converge to their respective stationary levels. Besides,
households’ utility first increases, reaches a peak and then declines due to the harmful impact
of pollution. On the contrary, by taking all externalities into account, the central planner rules
the economy in such a way that output, consumption and utility increase monotonically to their
stationary levels. The asymptotic production (resp. utility) level is lower (resp. higher) than in
the decentralized case.

We then study the implementation of optimal degrowth policies, i.e. voluntary degrowth policies
that aim at replicating in a decentralized economy the optimal path chosen by the central planner.
The path of the economy thus consists of two phases: (i) a first phase characterized by laisser-faire
followed by (ii) a second phase generated by the degrowth policy. With respect to the laisser-faire
situation, the main impact of these degrowth policies is to decrease production and pollution but
to increase welfare. It is also shown that a later public intervention implies a more aggressive
policy in the short term, in the sense that the tax rate must be higher in the first periods.

Unfortunately the above mentioned optimal degrowth policies appear to be unsustainable, at
least on intergenerational equity grounds. Relying on a sustainability criterion that states that
social welfare should be non decreasing over time, we study the implementation of sustainable
degrowth policies in a decentralized economy. We first determine the interval of time-constant tax
rates that generate sustainable degrowth paths. Secondly we extend the preceding set of solutions
by characterizing a class of sustainable degrowth paths associated to increasing tax rates.

This paper relies on several assumptions that have the merit to simplify the model but which
also limits its implications. Several extensions are thus possible and we mention three of them here-
after. First the natural resource as well as pollution have been modeled as flows. The model could
be made more realistic by modeling them as stocks, which would also enrich the variety of possible
paths of the economy. For example a decrease in output (and not only in utility) would then be
possible in a laisser-faire framework (Germain [19]). A second extension could introduce consump-
tion externalities as in Bilancini et D’Alessandro [5]. This would allow us to assess whether the
degrowth policies considered here have positive impacts when social competition via consumption
is present18. Finally it would be interesting to remove the assumption of a representative household
in order to study the sustainability of degrowth policies from an intragenerational equity point of
view.
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8 Appendix

A. Proof of Proposition 2

Given (19) and taking the logarithm of constraint (18), the Lagrangian writes:
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T
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where �

t

is the multiplier associated to the constraint at time t. To be acceptable, a path should
verify Y

t

� 0 and z

t

� 1. We ignore temporarily these conditions and verify them numerically a
posteriori.

First order conditions for an interior maximum lead to:
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B. Stationary states

B.1 Proof of Proposition 3

(14) ) 1 = �v⇤ )
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1
�

(17) ) z⇤ � 1 = ↵z⇤ )
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Y⇤ at the DSE. Given (54),

K⇤ = ↵Y⇤

21



At the DSE, ↵ = �� [1� µ⌧ ] coincides with the savings rate.
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B.2 Proof of Proposition 4
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which allows us to compute z0.

It is possible to rewrite (56) in terms of the savings rate s0. (56) ) 1
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, and we obtain indeed (30).

Knowing s0, all other values characterizing the OSE can be obtained in a similar manner as
for the DSE.

Because the left-hand side of (30) is positive, the term between brackets at the right-hand side
must be positive, which implies s
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be the left- and right-hand member of (30) respectively. Because of result (b), we
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1. LM(s0) is a monotonically increasing function, nil for s0 = aµ and equal to �⌘


1�

q
aµ

�

p

�
R

µ

for s0 =
p

�

p

aµ. On the other hand RM(s0) is equal to 1
1�aµ

h
1� aµ

�

p

i
for s0 = aµ and nil for

s0 =
p

�

p

aµ. Because the two functions are continuous, they admit at least one intersection and
thus at least one OSE exists.

We now show that there is only one intersection, by looking at the behavior of the derivative
of RM(s0).
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The two roots of the numerator are s0 = 2±
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monotonically decreasing on the interval. There is thus only one intersection and one OSE.

C. Proof of Lemma 6
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D. Proof of step (i) of Proposition 11

First note that (18) )
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and ↵
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h], this last inequality is equivalent to ⌧
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