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a subscription game
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Abstract

I develop a subscription game, modified so as to represent firms’ incentives to par-
ticipate to an environmental Voluntary Agreement (VA). Specifically, I assume the VA
is preemptive, i.e. it occurs under the threat of a mandatory regulation. I suggest the
use of a correlating device to strengthen firms participation, formalized by the concept
of correlated equilibrium (CE). I characterize the multiple pure and mixed Nash equilib-
ria (NE) of the game without the correlating device. I find that such a device not only
solves the problem raised by multiplicity of NE, but also ensures that a higher expected
aggregate payo↵ is reached for any given level of threat. I provide a full comparative e�-
ciency analysis after the optimal CE is characterized, and study the impact of the threat
stringency. Finally, I illustrate the general results in a specified example of pollution
abatement model.
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1. Introduction

Voluntary agreements (VAs hereafter) generically refer to the many and multiform
schemes whereby a group of producers that generates some environmental externality en-
gage in self-regulation. When these proactive behavior are motivated by a background
regulatory threat, whether enacted (e.g. when used in a policy mix coupled with com-
mand and control, see Borkey et al. 4) or merely potential (Glachant 13), the literature
mentions them as “preemptive”. Since potential enactments most often turn out to be
sectoral, preemptive VAs implicitly rely on a collective liability rule. Namely, if some
global environmental cap cannot be voluntarily achieved by a group, the mandatory leg-
islation applies regardless of individual voluntary e↵orts. Likewise, the preemption can
possibly arise from any allocation rule of private reduction objectives as long as it fulfills
the global target. Such an incentive structure is known by the literature on environmen-
tal VAs to generate two main issues. One is free-riding, widely studied in competitive
game-theoretic frameworks without inter-firms communication (see Segerson and Wu 23,
Dawson and Segerson 9, or Brau and Carraro 5). Another issue, hardly mentioned as a
theoretical non-uniqueness property of the solution, is the multiplicity of burden sharing
options, which may practically cause the preemptive VA to fail by lack of coordination.

. To our knowledge, only Glachant 12 mentions the need for devising procedural features
to rule the inter-firms burden sharing process. After he stated the separability between
the setting of the global objective and the means to collectively reach it, he briefly sketches
such a process as a bargaining game between two asymmetric firms. However, a more
complete understanding of multiplicity and free-riding in similar incentive contexts is
provided by the general literature on voluntary provision of public goods (see Palfrey
and Rosenthal 21, Dixit and Olson 10, Moulin 16). Thus, consistent with Glachant 12
separability principle, the present work formalizes preemptive VAs as a subscription game
to a discrete public good, and focuses on firms’ participation decisions. Specifically, the
public good to be provided is the non rival and non excludable regulatory gains that the
firms derive from the mandatory regulation preemption arising from a succeeding VA.
These gains depend on the regulatory threat t, and the cost of providing the public good
(i.e. the cost of satisfying the exogenous VA policy requirement). Full participation is
socially optimal as it is assumed the total cost of providing the public good decreases in
the number of participating firms. Such a framework is general enough to fit the numerous
institutional background2 within which VAs may take place.

Then, I apply Aumann 2’s correlated equilibrium concept, as reflecting the potential
for firms to coordinate. Since correlated equilibria are self-enforcing by nature, the so-
lutions characterized are purely non-cooperative and voluntary. Beyond giving positive

2A widely adopted classification distinguishes between three main categories3, set on the basis of the
regulatory agency involvement level (OECD 19) : (i) public voluntary agreements (the agency elaborates
engagements, to which the firms may voluntarily subscript), (ii) negotiated agreements (the engagements
are collaboratively elaborated by the voluntary firms and the agency), and (iii) unilateral commitments
(the engagements are elaborated by the voluntary firms solely).
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insights about the burden sharing process between firms, a normative result is stated.
I show that, if instead of participation being o↵ered to all the firms from the sector to
be regulated, some third party4 makes private recommendation to each of them, it can
implement a better participation equilibrium than the one that could have been pos-
sibly achieved in a case without private recommandation. This mechanism is called a
correlating device, and such an equilibrium is characterized in the general n-player case.

. The results of this paper relate to the seminal Palfrey and Rosenthal 21 that studies,
inter alia, the mixed Nash equilibria of a subscription game. My findings di↵er from their
own in two ways. While Palfrey and Rosenthal focus on the relationship between the set of
Nash equilibria of provision games with (i.e. subscription games) and without a refund,
I elaborate on the concept of correlated equilibrium and focus on a slightly di↵erent
game design. In the present work, the ’greed’ motivation for free-riding can indeed be
manipulated by the regulator through the tax threat, while assumptions on provision
costs involve that the participation of a subgroup of players is socially ine�cient. This
specification reflects the participation incentives typically arising from preemptive VAs
with an implicit collective liability. Dixit and Olson 10 extends Palfrey and Rosenthal 21
by assuming the fixed total provision cost is equally shared within participating players
in a second stage. While the sharing is said to be the result of a cosean approach, the
first stage is, once again, solved as the Nash equilibrium of a participation game. Same
remarks as for Palfrey and Rosenthal 21 apply.

In contrast, Cavaliere 6 studies the provision of discrete public good by correlated
equilibria. Nevertheless, he restricts his study to the same general game without a re-
fund as studied in Palfrey and Rosenthal 21. He finds that any convex combinations
of pure strategies Nash equilibria are e�cient correlated equilibria. He then introduces
payo↵ externalities by assuming that both the consumption benefits and the contribution
amount increases with the number of contributor, which still substantially di↵ers from
the game analyzed in the present work. In addition, his results rely on a restrictive hy-
pothesis of strategies symmetry. Last but not least, Arce and Sandler 1 make a point
similar as the present work by relating CE to International Environmental Agreements
(IEAs). While undoubtedly fruitful, their contribution consists of highlighting concep-
tual correspondances and illustrating it by 3-players examples under di↵erent aggregation
technologies. Moreover, while central to the present paper, the specific issue of the threat
is not investigated since irrelevant in the application context of IEAs.

. This work is organized as follows. In section 2, I present the base game and the corre-
lating device. The multiple Nash equilibria are characterized in section 3, as benchmarks.
In section 4, I study the set of correlated equilibria and identify the optimum. Section
5 compares the e�ciency of the optimal correlated equilibrium and the nash equilibria.
Then, a static analysis with respect to the threat and the number of firms is provided.
Finally, I numerically illustrate, in section 6, the results in a specified example of pollution

4Of course, such a third party may be real or notional.
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abatement.

2. The model

2.1. The basic game

Consider a regulator willing to achieve a global regulation cap that involves the pro-
duction activities5 of n identical firms. Each firm, indexed by i 2 {1, ..., n}, can voluntarily
choose to participate (si = 1) or not to participate (si = 0) to the achievement of the
target. The modalities of participation to the VA depend on

P
i si ⌘ m, the number

of participating firms. Indeed, for any fixed cap level, implementation costs are equally
shared among the participating firms. Specifically, let c(m) be the individual cost in-
volved in participating, and assume besides the total cost of achieving the target, mc(m),
is decreasing in m:

(m c (m))0 = m c0 (m) + c (m) < 0. (1)

This hypothesis may be seen as representing synergistic e↵ects in the target implemen-
tation and/or convexity of individual costs. As for the second interpretation, think of m
firms that have to share equally an aggregate abatement level. If their individual abate-
ment costs are increasing in individual abatement, then clearly individual participation
costs c(m) are decreasing. If, in addition, individual abatement costs are convex, it is
easily shown that total abatement costs mc(m) are decreasing6.

Moreover, the regulator may consider the achievement of a given target by too few
agents is cost-ine�cient or not feasible. It is thus assumed that if some participation
threshold w > 1 is not reached, the VA fails and a mandatory regulation is enforced
instead. As a collective threat, the mandatory regulation typically applies to each of
the n firms, whatever their individual willingness to undertake voluntary action may be.
Conversely, if the threshold is reached, the VA succeeds and only the m � w participating
firms implement the global target, each of them bearing the cost c(m). It follows firm i’s
payo↵s are defined by:

u(si,m) =

8
><

>:

�c(m) if si = 1, m � w

0 if si = 0, m � w

�t ifm < w,

(2)

where �t is the cost to comply to the mandatory regulation. I also assume that a VA is
cost-e↵ective, meaning that if at least w firms participate, they prefer, as a whole, the VA
to the mandatory regulation: t > c(w). This condition is one of profitability in the sense

5Such a cap may be for instance to conform some given share of a sector output with an e�ciency
standard (e.g. the ACEA agreement), or to reduce targeted agents’ toxically releases to some limit value
(e.g. the EPA’s 33/50 Program).

6If the aggregate abatement level is A, and individual abatement cost function is d(.), then total costs
are md (A/m), and this function is decreasing when d(.) is convex.
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of self-enforcing equilibrium,7 and it has for direct consequence that the Nash solution is
non trivial.

Aside from profitability, the participation threshold and the threat parameter are
exogenous in this model, so as to keep the analysis as general as possible. However,
their setting may be constrained if considered within some given institutional context8,
as illustrated in section 6.

I now turn to the presentation of the correlating device.

2.2. The correlating device

. The device by which participation decisions correlate builds on the basic game presented
above. Specifically, suppose each firm is now privately recommended to play either si = 0
or si = 1 before she actually makes her decision. Beyond being private, such a recommen-
dation is nominal, i.e. it depends on i. I furthermore assume it results from a random
selection process on S = {1, 0}n, the set of participation profiles. For ease of presenta-
tion, the random selection process can be decoupled as follows. First, it selects m = k,
the number of firms that participate, according to some discrete distribution denoted by
{pk}k2{0,...,n}, with pk � 0 and

Pn
k=0

pk = 1. Let Sk denotes the set of participation
profiles with exactly k participants. Second, contingent upon the realization of m = k,
each firm i has a probability p(i, k) to participate, with

Pn
i=1

p(i, k) = k. It follows, by
construction, that the marginal distribution of firm i’s participation is given by:

nX

k=0

p(i, k)pk := Qi, (3)

while (1� Qi) represents i’s chances not to participate. Please remark that the given of
{p(i, k), pk}nk=0

:= p for all i, is equivalent, in terms of information, to the resulting joint
distribution on S. Most importantly, assume such a distribution is public knowledge at
the time firms deliberate.

This device is a straightforward application of correlated strategies with private9 sig-
naling developed by Aumann 2. Combined with the VA, it thus proceeds according to
the following timing. After p was disclosed to the n firms, and some participation profile
was randomly selected, each firm is only told his individual strategy si, from the outcome
of the selection. Again, the firm can freely follow or reject the private recommendation,
and the VA succeeds as long as w is reached (see figure 1).

7A coalition is said to be self-enforcing (d’Aspremont et al. 8, Dawson and Segerson 9) iif participation
is (i) profitable, (ii) internally and externally stable. While (ii) is conceptually equivalent to a Nash
equilibrium condition, profitability tests for simultaneous (as opposed to unilateral) participating agents’
deviations. In public good games, the use of a breaking rule conjointly with a assumption on payo↵s such
that it is better to participate than not to participate at the threshold (here t > c(w)), allow to mimic
coalitional incentives within a non-cooperative framework.

8Let the mandatory regulation threat be, for instance, a pigouvian tax. In this case, t amounts to
c(n) net of the tax payment, which determines, in turn, a minimum profitable value for w (see Dawson
and Segerson 9). Such a refinement remains a subcase of the general game.

9As will later be shown, some of the forthcoming results may also be reachable through public signaling.
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Figure 1: The timing of the correlated VA
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Of course, firms’ decisions to participate now rely on their expected payo↵s, inferred
from the information provided by the device : the announced p and the recommendation.

2.3. The conditional payo↵s

At the point some distribution p is publicly announced, eq. (2) and eq. (3) imply firm
i’s expected payo↵s write:

V (i, p) = �t
w�1X

k=0

pk �
nX

k=w

pk (p(i, k)c(k)) , 8i. (4)

Then, based on its private prescription, each firm may be able to revise the distribution
on S according to its new piece of information. Let V (i, p, si) denote i’s expected payo↵s
contingent upon prescription si, for a given announced p. Using Bayes’ theorem, I obtain:

V (i, p, 0) = �t
w�1X

k=0

pk

✓
1� p(i, k)Pn

l=0

pl(1� p(i, l))

◆
8i (5a)

V (i, p, 1) = �
w�1X

k=0

pk
p(i, k)Pn

l=0

plp(i, l)
t�

nX

k=w

pk
p(i, k)Pn

l=0

plp(i, l)
c(k) 8i, (5b)

where the ratio p(i,k)P
l plp(i,l)

reads as the probability k firms participate, knowing firm i is

one of them. Please remark for later uses, that expected payo↵s (4), (5a) and (5b) all
continuously depend on the threat level, t.

. I now turn to the equilibria analysis.

3. The outcome of the uncorrelated VA

The present section investigates, as a benchmark case, the voluntary e↵ort when there
is no burden sharing process. Such a scenario is captured by the basic game of VA, in
which the n firms play a Nash equilibrium. Indeed, without preplay prescription or devised
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lottery on the set of participation profiles, each firm may independently mix over {0, 1}
according to its own strategy, {Qi, (1 � Qi)}ni=1

. As the game is finite and symmetric, it
is known there alway exists10 a symmetric mixed NE, and that it is the mixed strategy
profile such that the individual participation probability, Q (where index i is dropped for
symmetry), satisfies:

✓
w � 1

n� 1

◆
Qw�1 (1�Q)n�w t =

n�1X

k=w�1

✓
k

n� 1

◆
Qk (1�Q)n�1�k c (1 + k) , (6)

which is the algebraic form of the condition that to contribute and not to contribute must
yield the same expected gains for each agent. A general characterization11, i.e. which also
includes partial supports, is provided in Appendix A. From condition (6), I establish the
following proposition:

Proposition 1. The uncorrelated VA has a unique symmetric mixed NE, given by

{Q̂(n, t), (1 � Q̂(n, t))}, with @ ˆQ(n,t)
@t

> 0, Q̂(n, 0) = 0, and limt!+1 Q̂(n, t) = 1, where

Q̂(n, t) is defined as the inverse function of:

t(Q) =
n�1X

k=w�1

�
k

n�1

�
�
w�1

n�1

�c (1 + k)


Q

(1�Q)

�k�w+1

. (7)

Proof 1. Algebraic manipulations lead us to rewrite (A.4) with j = m = 0 as t(Q), which
is strictly increasing in q:

@

@q
t(Q) =

n�1X

k=w�1

�
k

n�1

�
�
w�1

n�1

�c (1 + k)


1

(1�Q)2

�k�w+1

> 0. (8)

Since t(0) = 0 and limq!1

t(Q) = +1, it follows t(Q) is invertible on our interval of
interest, Q 2 [0, 1].

As regards the pure NE of the game, it is easily shown such equilibria are multiple
by using an argument similar as in Palfrey and Rosenthal 21. First, observe any strategy
profile such that m < w�1 is a pure NE, since a unilateral deviation will not a↵ect the VA
status nor the corresponding payo↵s (agents are not pivotal). Conversely, for any profile
such that m = w � 1, each non-participating firm has a unilateral incentive to deviate
and pay c(w) instead of t. Likewise, for any profile such that m > w, each participating
firm has a unilateral incentive not to participate since it will not a↵ect the VA status but
will avoid her the participation cost. Finally, all the profiles such that m = w are pure
NE since any deviation of a non-participating firm will trigger tax enforcement, while
non-participating firms have no interest in participating knowing that the VA is provided
anyway. These results can be summarized as follows.

10See ? for a complete proof of the existence of symmetric NE in finite and symmetric games.
11These results are an extension of Palfrey and Rosenthal 21 to subscription games that feature our

more general payo↵s structure.
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Remark 1. If n� 2 and w � 2, the |Ŝ| =
�
w
n

�
+
Pw�2

k=0

�
k
n

�
pure NE of the VA without

the correlating device are given by Ŝ = {Sw, (Sk)
w�2

0

}, none of which correspond to the
socially optimal allocation, (1)ni=1

. Otherwise, |Ŝ| =
�
w
n

�
and Ŝ = {Sw}.

Remark also that, by the assumption on costs, participation profiles can be Pareto-ranked
simply based onm. In particular, the full participation profile maximizes the deterministic
aggregate payo↵. Two questions then arise from these preliminary results.

Even though pure NE such that the VA succeeds have been identified, a notable issue
is, of course, one of e�ciency. But primarily, multiplicity even raises the question of the
VA feasibility : how will firms coordinate amongst the several subsets of Pareto equivalent
pure NE ?

. The rest of the paper precisely addresses these issues.

4. Characterizing the optimal correlated equilibrium

In this section, I study the set of CE under the correlating device, and characterize
the distribution that ensures the most e�cient expected welfare.

4.1. The set of CE
Still using Myerson 17 interim definition of correlated equilibria, the strategic incentive

constraints can be written as follows. When agents are privately told to play si = 0, the
distribution that was prealably announced must be such that they have no incentive to
unilateraly deviate, ie.

�
kw�1X

k=0

pk
(1� p (i, k))Pn

l=0

(1� p (i, l)) pl
t�

n�1X

k=w

pk
(1� p (i, k))Pn

l=0

(1� p (i, l)) pl
0 � �

kw�2X

k=0

pk
(1� p (i, k))Pn

l=0

(1� p (i, l)) pl
t

�
n�1X

k=w�1

pk
(1� p (i, k))Pn

l=0

(1� p (i, l)) pl
c(k + 1)

must holds for all i, which simplifies to:

pw�1

(1� p (i, w � 1)) (t� c(w))�
n�1X

k=w

pk (1� p (i, k)) c(k + 1)  0. (9)

Such a condition ensures agent i’s expected payo↵ is higher if she complies than if she
decides to participate, provided her prior (i.e. the announced distribution), has been
revised taking into account the fact that the profile randomly selected necessarily features
si = 0. Likewise, when the prescription is si = 1,

�
kw�1X

k=1

pk
p (i, k)Pn

l=0

p (i, l) pl
t�

nX

k=w

pk
p (i, k)Pn

l=0

p (i, l) pl
c(k) � �

kwX

k=1

pk
p (i, k)Pn

l=0

p (i, l) pl
t

�
nX

k=w+1

pk
p (i, k)Pn

l=0

p (i, l) pl
0
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must hold for all i, which simplifies to:

pwp (i, w) (t� c(w))�
n�1X

k=w+1

pkp (i, k) c(k)� pnc(n) � 0. (10)

Again, condition (10) guarantees agent i’s expected payo↵ is higher if she complies than
if she decides not to participate, provided her prior has been revised taking into account
that the profile the regulator selected necessarily features si = 1. Finally, the probability
constraints are given by:

8
><

>:

p(i, k) � 0 8i, k 2 {0, ..., n},
Pn

k=0

pk = 1,

and
Pn

i=1

p(i, k) = k, k 2 {0, ..., n}.
(11)

Conjointly with the 2n inequalities defined by (9) and (10), for all i, these probability
constraints fully characterize the set of CE of the correlated VA. Remark that the set of
CE is by definition self-enforcing or, in other words, voluntary.

4.2. The optimal CE

In a normative perspective, one might be interested in implementing p such that the
social welfare is maximized. Remark that the aggregate payo↵s is actually given by:

nX

i=1

V (i, p) = �nt
w�1X

k=0

pk �
nX

k=w

pk

nX

i=1

p(i, k)c(k)

= �nt
w�1X

k=0

pk � wpwc(w)�
nX

k=w+1

kpkc(k) (12)

Such a distribution should be incentive compatible to be workable, i.e. it has to verify,
for all i, the conditions (9) and (10) characterized above. The maximization problem
therefore writes :

max
{pk,p(i,k)}n0

� nt
w�1X

k=0

pk � wpwc(w)�
nX

k=w+1

kpkc(k) (13a)

st. (9), (10) and (11). (13b)

This non-linear program becomes solvable as soon as one remark that the p(i, k) are not in
the objective. Indeed, as firms are symmetric, the repartition of the burden within firms
for a given k, does not impact the social welfare. In other words, the program (13) can
be decomposed into two separable subproblems. In a first step, summing conditions (9)
and (10) over i, I obtain two necessary conditions, which defines a reduced program that
is solvable by linear programming. In a second step, I substitute the solutions obtained
for {pk}nk=0

into (13), and solve it in p(i, k).

9



Step 1. Thus, summing (9) and (10) over i, and using that
Pn

i=1

p(i, k) = k, I obtain
respectively:

8
>>>><

>>>>:

pw�1

(n� w + 1) (c(w)� t) +
n�1X

k=w

(n� k)pk c (k + 1) � 0 (14a)

wpw (t� c(w))�
nX

k=w+1

kpkc (k) � 0 (14b)

One is now able to recognize a linear programming problem, which can be converted
into its augmented form by introducing two slack variables, denoted x

1

(into constraint
(14a)), and x

2

(into constraint (14b)). Note that the generated standard program is only
composed of j = 3 equality constraints and l = n + 2 variables, since the symmetry
of firms implies the objective is actually optimized in {pk}n

0

. Such a program can be
solved by applying the two-phase simplex algorithm (Padberg 20). However, this method
may imply numerous (and cumbersome) iterations if started without proceeding to a
preliminary heuristic analysis. The next proposition states the result of the program,
while the proof provides both an intuitive and a formal (Appendix B) argument.

Proposition 2. The optimal CE is such that {p⇤k}nk=0

recommends participation either to
everyone, p⇤n = w(t�c(w))

w(t�c(w))+nc(n)
, either to w firms, p⇤w = nc(n)

w(t�c(w))+nc(n)
.

Proof 2. First, observe that (14a) and (14b) do not depend on {pk}w�2

0

. Since t > (̧w), it
is straightforward the optimal distribution must assign a probability 0 to the corresponding
participation profiles. Then, remark that pw�1

appears in (14a) solely, and that it does
not need to be strictly positive. However, as pw must be strictly positive for (14b) to hold,
we know (14a) cannot be equal to 0 at the optimum. Finally, @mc(m)

@m
< 0 implies (14b)

will be binding, since it is now obvious the highest probability should be put on profile (1)i.
We therefore know {x

1

, pw, pn} is the basis which has to be tested in order to confirm
our heuristic solution is optimal. This is done in Appendix B.

Step2. Then, substituting {p⇤k}nk=0

into the general program, the latter rewrites :

max
{p(i,w)}ni=1

�p⇤wc(w)
nX

i=1

p(i, w)� n(1� p⇤w)c(n) (15a)

st. p(i, w) � (1� p⇤w)c(n)

p⇤w(t� c(w))
=

w

n
8i, and

nX

i=1

p(i, w) = w. (15b)

where I used the fact that p⇤w+p⇤n = 1. It is now straightforward the solution is p⇤(i, w) = w
n

for all i, meaning that the optimal marginal distributions are symmetric.

Proposition 3. Under the optimal CE, the probability to participate and not to partici-
pate are given, for all i, by 1 + p⇤w

�
w
n
� 1
�
and p⇤w

�
1� w

n

�
, respectively.
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Proof 3.
P

k p
⇤(i, k)p⇤k = p⇤(i, w)p⇤w + p⇤n = 1 + p⇤w(p

⇤(i, w)� 1) where p⇤(i, w) = w
n
.

The best self-enforcing distribution, {p⇤(i, k), p⇤k}
n
k=0

:= p⇤, that is implementable by the
correlating device is such that each firm’s fear of being pivotal (and loosing (t � c(w))),
just compensates for its fear of being superfluous on the full participation profile (and
loosing c(n)). Of course, such a trade o↵ depends on the threat, t, and the number of
firms.

. Next section performs a comparative e�ciency analysis and derives practical results
about the way participation could be enhanced through the use of the correlating device.

5. A social welfare analysis

I show that not only the correlating device solves the coordination issue, but it allows
to reach a higher social welfare than the uncorrelated VA.

5.1. Coordination and e�ciency

A general result of Aumann (Aumann 3, 2 and Nisan et al. 18) states that any convex
combination of Nash equilibria is a correlated equilibrium. It has two main normative
implications in this framework, which the next proposition details.

Proposition 4. The correlating device allows : (i) firms to coordinate on any NE of
the uncorrelated VA. In particular, the participation profiles that are pure NE can be
implemented through public signaling. (ii) to achieve, for all level of threat t, a higher
social welfare than the uncorrelated VA, given by:

nV (p⇤) = �n
tc(n)

(t� c (w)) + n
w
c (n)

, (16)

Proof 4. See Appendix C.

Any joint distribution derived from a CE can be implemented by the correlating device
since it fulfills both (9) and (10) as well as the probability constraints. In practice,
some third party can perform the drawing and the private prescriptions. Depending on
the institutional background, it may be an industry association (negotiated VAs) or the
regulatory body itself (public VAs).

In particular, the distribution that assigns 1/(wn) for all (si)i 2 Sw and 0 otherwise, is
a CE that can be implemented by public signaling. Indeed, one can easily check that the
incentive constraints rewrite (n�w)pwc(w+ 1) � 0 and wpw(t� c(w)) � 0, with pw = 1.
Moreover, as each profile that may be drawn is a pure NE, the equilibrium is robust to
prescriptions’ disclosure. This holds for any distribution over a subset of strong Nash
equilibria (see Moreno and Wooders 11 for a general demonstration).

Public signaling may for instance take the form of published lists, but it can also plau-
sibly be argued to be exogenous, and thus to represent inter-firms communication arising
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from self-regulation initiatives in the absence of a proper third-party. The present frame-
work is therefore fully relevant to analyse preemptive VAs in all its variations, including
the case of self-regulation.

Another practical result of interest regards preemption:

Corollary 1. When the optimal CE is implemented, the VA always succeeds. In contrast,
it fails with probability �(t, n) =

Pw�1

k=0

�
k
n

�
Q̂k(1 � Q̂)n�k under the mixed NE, in which

case the mandatory regulation is implemented.

This last statement directly follows from proposition 2 and the definition of Q̂(n, t).

5.2. Comparative statics

In the rest of this section, I investigate the e↵ects of the number of firms and the tax
threat, both on free-riding and social welfare.

Free-riding. In participation games, the expected participation rate provides a direct
measure for free-riding, defined as the ratio of participating firms. Remark that under
the optimal CE, participation profiles with the same number of participating firms are
equiprobable (see propositions 2 and 3). Likewise, by definition of mixed NE, Q̂(n, t)
induces a probability

�
n
k

�
Q̂n(1 � Q̂)n�k = p̂k

k
that k firms participate to the VA. Some

elementary combinatorics then show that p̂(i, k) = (k�1
n�1)/(kn) =

k
n
for all i.

It follows that the mixed NE induces the distribution { k
n
, p̂k}nk=0

:= p̂, and that the
following can be stated:

Remark 2. The expected participation rates under the VA with the mixed NE or the
optimal CE, verify 1

n
(
P

k kpk) = Q in both cases.

Proof 5. Under p⇤ and p̂, it holds for all firm i that : p(i, k) = k
n
, k 2 {0, ..., n}. It follows

1

n
(
P

k kpk) =
Pn

k=0

p(i, k)pk, which is the marginal distribution of participation.

This statement12 implies an analysis of free-riding can be provided simply by studying

Q⇤(n, t) =
w

n
pw + p⇤n and Q̂(n, t) =

nX

k=0

k

n
p̂k.

Note, for comparison purpose, that the pure NE’s participation rate of a succeeding VA is
given by w

n
. It follows the tax threat has no impact on the participation rate of the pure

NE (as long as t > c(w)), but it decreases the free-riding both under the optimal CE:

@Q⇤(n, t)

@t
=

@

@t

⇣
1 + p⇤w

⇣w
n
� 1
⌘⌘

=
tnc(n) (n� w)

n (w (t� c (w)) + nc(n))2
> 0.

12Notice that this results holds for any distribution on S such that profiles with the same number of
participating firms are equiprobable, and that such a restriction is not as strong (namely su�cient yet
not necessary) as assuming firms’ individual participation probabilities are symmetric.
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and under the symmetric mixed NE (see that eq. (8) in proposition 1 is positive).
Then, the e↵ects of a rise of n on the incentives to rely on voluntary e↵orts of other

firms can be described as follows. Under the pure NE, free-riding unambiguously increases
in n : @

@n
w
n
= � w

n2 < 0. However, under the optimal correlated VA, while a rise of n directly
enhances the incentive to free-ride (firms are less afraid of being pivotal, @

@n
p⇤(i, w) < 0),

this e↵ect is mitigated by the decrease of nc(n) (the losses arising from being superfluous
are lower):

@

@n

⇣w
n
p⇤w + (1� p⇤w)

⌘
=

>0z }| {
w (w � n) c0(n) (t� c(w))+

<0z }| {
wc(n) [(c(w)� t)� c(n)]

(w (t� c(w)) + nc(n))2

As regards p̂, the reader can report to Hong and Lim 15 for a similar analysis.13 Some
results will also be detailed in the specified example.

Social welfare. Obviously, the aggregate payo↵ does not depend on the threat under the
pure NE. In contrast:

Corollary 2. As the level of threat intensifies, the expected aggregate payo↵ under p⇤

increases and tends toward the level of aggregate welfare generated by the full participation
profile, �nc(n).

Proof 6.

@

@t
nV (p⇤) =

�wnc (n) + w2tnc (n)

w (t� c (w) + nc (n))2
> 0 and lim

t!+1

w (t� c(w))

w (t� c(w)) + nc(n)
= 1.

Furthermore, even though the e↵ects of a change in t are non monotonic under the mixed
symmetric NE, the expected aggregate payo↵s can be shown to converge towards nc(n).
Hence, the following result can be stated:

Corollary 3. The di↵erence between the expected aggregate payo↵s generated by the op-
timal CE and the symmetric NE decreases in the level of threat from t � t

1

:

lim
t!+1

n (V (p⇤)� V (p̂)) = 0, t � t
1

,

where t
1

is defined as the minimum threat level beyond which an increase of t leads to an
increase of V (p̂).

Proof 7. Observe that: @p̂k/@ ˆQ = kQ̂k�1(1� Q̂)n�k � (n� k)(1� Q̂)n�k�1, hence the prob-
ability on profiles in Sk increases in Q̂(t, n) if and only if k > nQ̂(t, n), the expected
participation, and n @

@t
Q̂(t, n) > 0. Thus, an increase of the threat induces two e↵ects on

13Hong and Lim 15 provides an analysis for free-riding in the case of a lumpy good provision with
constant total costs.
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the cost of failure, t�(n, t). On one hand, �(n, t) decreases for the benefit of more e�cient
participation profiles, which increases V (p̂). On the other hand, the tax applied in case of
failure is higher, which lowers V (p̂). Appendix D shows that from some t

1

> c(w), the first
e↵ect dominates the second one. Moreover, proposition 1 implies limt!+1 Q̂(n, t)n = 1,
hence:

lim
t!+1

�
nX

w

kQ̂(n, t)k(1� Q̂(n, t))n�kc(k) = lim
t!+1

nV (p⇤) = �nc(n).

I close this comparative static analysis by a quick study of the e↵ect of n on average
expected aggregate payo↵s :

@

@n
V (p⇤) = �tw

c0(n)w (t� c (w))� c(n)2

(w (t� c (w)) + nc (n))2
> 0 and � @

@n

c(w)

n
=

c(w)

n2

> 0.

In other words, even if there is more incentives for free-riding, which may decrease firms
individual participation probabilities: (i) the probability on full participation under the
optimal CE does increase, @p⇤n

@n
> 0, while (ii) under the pure NE, the VA still succeeds at

the threshold, which implies decreasing average cost.

6. A numerical example

I apply the model of VA to a specified pollution abatement model. I numerically
illustrate the general results stated in the previous sections.

6.1. The pollution abatement model
Consider n symmetric firms producing a good and pollutant emissions which are en-

gaged in Cournot competition. Let ⇡ (ei) be the indirect profit function, with
@2⇡(ei)
@2ei

 0.
Specifically, assume that:

⇡ (ei) = aei � be2i + k, (16)

with a, b > 0 and a constant k � 0. The optimal level of emission at laisser-faire is
eLF = a/2b. Let n" be the emission target, where " 2 [0, eLF ], and which amounts to an
aggregate abatement n(eLF � "). Assume the regulator chooses w such that it is feasible,
i.e. formally w = dn(1� "/eLF )e. As in the general participation game, I denote the threat
by t. It follows the payo↵s of firm i in the basic game are given by :

u(si,m) =

8
><

>:

�c(m) = �n2
(a�2b")2

4bm2 si = 1 and m � w

0 si = 0 and m � w

�t m < w

(17)

where c(m) is the participation cost which, by the concavity of indirect profits, decreases
in m. Following the general game, c(m) is obtained as the di↵erence between the profit
at laisser faire and the profit when m firms participate :

c(m) = ⇡
�
eLF
�
� ⇡

✓
n"� (n�m) eLF

m

◆
=

n2(a� 2b")2

4bm2

.
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Likewise, t is the di↵erence between the profit at laisser faire and the profit under the
mandatory regulation scheme. This illustration also requires I specify what would be
the mandatory regulation in this context. I assume it is a two-part scheme, primarily
composed of a pigouvian tax, i.e. a tax on emissions set at a level tpig such that each of
the n firms produces ei =

�
eLFi � "

�
and the target n" is reached:

tpig =
@⇡ (ei)

@ei

����
ei="

= a� 2b".

The second part of the scheme is a lump-sum transfer, which may be interpreted as
transaction costs, denoted ⌧ . It follows the expression for t:

t = ⇡(eLF )� ⇡ (") + tpig"+ ⌧ =
a2

4b
� b"2 + ⌧. (18)

I assume furthermore ⌧ 2 [⌧min, ⌧max], where ⌧max corresponds to a zero profit condition
under the pigouvian tax :

⌧max = ⇡ (")� tpig" =
4b2"2

4b
+ k. (19)

The lower bound ⌧min stands for the minimum tax level such that the profitability condi-
tion is satisfied at w, defined as the feasible threshold:

⇡
�
eLF
�
� ⇡

 
eLF �

n
�
eLF � "

�

dn(1� "/eLF )e

!
> t ) ⌧min = b"2 (20)

if dn(1� "/eLF )e = n(1� "/eLF ). I can now calculate the optimal CE, the unique symmetric
mixed NE and the social welfare associated with the optimal CE, as functions of n, w
and the target n".

6.2. The symmetric mixed NE and the optimal CE:
The optimal CE of the game is defined by:

p⇤n =

⇣
a2

4b
� b"2 + ⌧

⌘
w � 1

b
n2

(a�2b")2

4w
�
a2

4b
� b"2 + ⌧

�
w � 1

b
n2

(a�2b")2

4w
+ (a�2b")2

4b

and p⇤w = 1� p⇤n.

The induced expected social welfare is given by:

nV (p⇤, ⌧) = n
w(a� 2b")2(a

2

4b
+ ⌧ � b"2)

(1� n
w
)n(a� 2b")2 + 4bw

�
a2

4b
� b"2 + ⌧

� .

Finally, I characterize the symmetric mixed NE:

t(Q) =
n�1X

w�1

✓
(w � 1)! (n� w)!

k! (n� 1� k)!

◆
n2(a� 2b")2

4b(k + 1)2

✓
Q

1�Q

◆k�w+1

. (21)

and t = ⌧ � b"2 + a2

4b
, which yield the inverse function Q̂(n, t(⌧)).
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6.3. The numerical results

The results are based on an example with a = 40 and b = 2. The optimal emission
level at laisser faire is eLF = 10 which yields ⇡

�
eLF
�
= 200+ k. Before proceeding to the

numerical analysis, please remark that eq. (21) rewrites as an hypergeometric function,

t(Q) = n2
(a�2b")2

w2
4b

3

H
2

[{w�n, 1, w}{1+w, 1+w}, Q
Q�1

]. Using the Euler integral transform

rule, the latter can be decomposed as a function of
2

H
1

[{w�n, 1}{1+w}, Q
Q�1

] as follows:

3

H
2


{w � n, 1}{1 + w}, Q

Q� 1

�
= w2

Z
1

0

xw�1

Z
1

0

(1� x)w�1(1 + x)w�1

✓
Q

1�Q

◆n�w

| {z }
=

�(w+1)
�(1)�(w) 2

H1[{w�n,1}{1+w}, Q
Q�1 ]

dxdx

The probability to participate of the mixed NE is now analytically solvable as a function
of the threat ⌧ , thus I am able to fully study the static comparative with respect to n.

The analysis is first performed for an emission target " = 4 and n = {5, 10}. The
cost of the mandatory regulation is t(⌧) = 168 + ⌧ , where the pigouvian tax per unit of
emission is tpig = 24, while ⇡(") = 128 + k. Since participation is feasible for w = 3n

5

, the
profitability condition requires a minimum level of ⌧ > ⌧min = 32. Likewise, the threat
can not exceed the profits under the mandatory regulation, i.e. ⌧max = 32 + k.

� ��� ��� ��� ��� ���
�

-���

-���

-���

-���

�(�	�	
)	 �(�)

�(�*����)
�(�)
�(������)
�(�������)

V (p⇤, ⌧, n)

V (p̂, ⌧, 5)

V (p̂, ⌧, 10)

⌧min

t(⌧), V (p, ⌧, n)

⌧
t(⌧)

Figure 2: The probability to participate under the mixed NE and the optimal CE as the number of firms
rises from 10 to 100.

. Figure 2 shows the participation rates and the expected payo↵s under the optimal CE,
the mixed NE and the mandatory regulation, expressed as functions of the punishment
parameter ⌧ 2 [⌧min, ⌧max]. A first observation is that both the optimal CE (thick line)
and the mixed NE (dotted lines) generate higher payo↵s than the mandatory regulation
(dashed lines) within [⌧min, ⌧max], since by assumption: t > c(w). A second observation
is that the expected payo↵ per player under the optimal CE does not depend on the
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number of player. Two explanations are: (i) since the target is expressed in terms of
individual and equally shared burden, an increase of n does not imply a decrease of the
individual abatement (hence nor c(n) = (a�2b")2

4b
= 72, neither t(⌧) (see eq. 18), depend

on n) (ii) by definition of feasibility, the participation threshold w is linear in n (hence
p⇤(i, w) = d(1� "/eLF )e is a constant). Then, observe that the individual expected payo↵s

Figure 3: The probability to participate under the mixed NE and the optimal CE as the number of firms
rises from 10 to 100.
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under the mixed NE is lower when n = 10, which highlights the e�ciency losses due to
free-riding. Specifically:

Z
1

0

xn(1� "
eLF )�1[

Z
1

0

⇣
n
⇣
1� "

eLF

⌘
� 1
⌘
(1� x)n(1�

"
eLF )�2

✓
1 + x

Q

1�Q

◆n "
eLF

dx

+

Z
1

0

⇣
n(1� "

eLF
)� 1

⌘
xn(1� "

eLF )�2dx

Z
1

0

(1� x)n(1�
"

eLF )�1

✓
1 + x

Q

1�Q

◆n "
eLF

dx

+

Z
1

0

n
"

eLF
(1� x)n(1�

"
eLF )�1

✓
1 + x

Q

1�Q

◆n "
eLF �1

dx] dx =
@

@n
3

H
2

w2

. � 0

As a result, it can be concluded that:

@t(Q, n)

@n
=

@

@n

✓
n2(a� 2b")2

w24b
3

H
2

◆
� 0.

This means, as illustrated by figure 3, that Q̂(n, t(⌧)) decreases in the number of firms
for all ⌧ , i.e. induces free-riding.

On the other hand, notice that a more stringent threat induces a higher expected
participation nQ(n, t(⌧)), i.e. deters free-riding. However, as shown in the general case
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for n > 30 (see corollary 3), an increase of participation under the mixed NE does not
necessarily involve higher expected aggregate payo↵s though, since the rise of ⌧ also
increases agents’ costs in case of failure. Table 1 gives probability that the uncorrelated
VA fails, �(t(⌧), n), for several values of the tax threat.

Threat parameter, ⌧ 32 50 100 150 200 500 +1
n=5 firms 1 0.974 0.721 0.507 0.370 0.107 0
n=10 firms 1 0.999 0.926 0.770 0.622 0.226 0

Table 1: Probability of failure of the VA under the mixed NE, when " = 4.

Thus, depending on the number of players and ⌧max(k), the use of deterrence may
be ine�cient if the VA is not augmented with private prescriptions. In particular, the
background threat induces a gain of expected payo↵s from ⌧ = 84 (respectively ⌧ = 171)
when n = 5 (respectively, n = 10). The use of the correlating device is therefore especially
recommended when profits strongly rely on the level of emissions to be regulated. Namely,
here, if k is such that ⌧max(k)  t

1

.

7. Summary and concluding remarks

This study developed a subscription game with a payo↵ structure representing the
participation incentives of firms that face a preemptive VA. Two key features are the
exogenous sectoral target (modeled by a minimum participation threshold, w) and the
use of a tax threat with a collective liability rule (t > c(w) applies to each firm if the VA
fails). Most importantly, this basic VA game is augmented with a correlation device, cast
as mimicking the burden sharing process. All the results are demonstrated in the general
n-player case.

First, the unique symmetric mixed NE and the pure NE of the basic VA game are
characterized, and it is pointed out they can be implemented by the correlating device.
Such a device may be embodied by an industry association, the regulator itself or, in the
case of the pure NE, some exogenous source of public signal.

Then, the paper shows the correlating device does not only solve the problem raised
by multiplicity, but it also ensures e�ciency gains. Specifically, the best CE is such that it
randomly implements either the full or the minimum participation level so as to optimally
take advantage of the fear for each firm to be pivotal. A related finding is that the optimal
CE yields, for all t > c(w), a higher aggregate payo↵ than the symmetric mixed NE. In
addition, the free-riding is shown to decrease in the threat level under both distributions.
One last result is that, from some tax level t

1

> c(w), the relative e�ciency gain of the
optimal CE decreases in t. Nevertheless, this claim must be qualified by the fact that
a credibility requirement would actually limit the regulator in his choice of the threat
stringency (section 6).

Remark that, conversely to standard cooperative (Foley 11, Rosenthal 22) or mech-
anism design approaches (e.g. Groves and Ledyard 14, Clarke 7) to the burden sharing
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process, the mechanism developed in this paper does not require a pre-stage of adher-
ence.14

Two research directions are left for further work. First, remark there is some potential
for considering asymmetric firms in this framework, where it may be assumed that the
third party only know the agents’ type distribution.

It would also be worth studying experimentally correlated strategies of participation
to a public good game, as an extension of Hong and Lim 15’s protocol, where a direct
application could be license plate-based driving restrictions.

Appendix

Appendix A. Mixed strategies Nash equilibria of the basic game

As in Palfrey and Rosenthal 21, we restrict our analysis to the cases such that there are j agents
with a strategy support {0} and m agents with a strategy support {1}. The rest of agents is mixing in
the support {0, 1} according to a symmetrical distribution :

pi(si) =

(
Q if si = 1

1�Q if si = 0
. (A.1)

with S strictly positive, and (m, j, w, n) an admissible vector of parameters such as defined in Palfrey
1984 (ref.), namely

(m, j, w, n) 2 {(m, j, w, n) | 0  j  n� w and 0  m  w � 1}.

Admissibility both guarantees that the parameters define a partition of the set of players (ie. n�m� j �
0), and that there exists a unique and strictly positive best response probability q for mixing agents.
Indeed, if j > n � w, mixing agents are not pivotal and any Q 2 [0, 1] is a best response. Likewise, if
m > w � 1, the unique best response of potentially mixing agents is Q = 0. For the sake of convenience,
let us introduce the notation

A = n�m� j (A.2)

B = w �m. (A.3)

before seeking for admissible combinations of parameters values (w,m, j,Q) and n, such that no player
has an incentive to unilaterally change his strategy in the model. It is the case when the following
incentive constraints are simultaneously satisfied

�
✓

m

m+ j

◆ A�1X

k=B�1

✓
k

A� 1

◆
Q

k (1�Q)A�1�k
c (1 +m+ k)

�
✓

m

m+ j

◆B�2X

k=0

✓
k

A� 1

◆
Q

k (1�Q)A�1�k
t =

�t

✓
m

m+ j

◆B�1X

k=0

✓
k

A� 1

◆
Q

k (1�Q)A�1�k

14Dixit and Olson 10 pointed out that the literature on devices to achieve e�ciency in the public good
provision game implicitly assume that all players agree to participate to such devices.
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,
✓
B � 1
A� 1

◆
Q

B�1 (1�Q)A�B
t =

A�1X

k=B�1

✓
k

A� 1

◆
Q

k (1�Q)A�1�k
c (1 +m+ k) , (A.4)

which is the algebraic form of the condition that to contribute and not to contribute must yield the same
expected gains for the mixing agents, and

�
✓

m� 1
m+ j � 1

◆ AX

k=B

✓
k

A

◆
Q

k (1�Q)A�k
c (m+ k)

�
✓

m� 1
m+ j � 1

◆B�1X

k=0

✓
k

A

◆
Q

k (1�Q)A�k
t �

✓
m� 1

m+ j � 1

◆ BX

k=0

✓
k

A

◆
Q

k (1�Q)A�k
t

,
✓
B

A

◆
Q

B (1�Q)A�B
t �

AX

k=B

✓
k

A

◆
Q

k (1�Q)A�k
c (m+ k) , (A.5)

�
✓

m

m+ j � 1

◆B�1X

k=0

✓
k

A

◆
Q

k (1�Q)A�k
t �

�
✓

m

m+ j � 1

◆ AX

k=B�1

✓
k

A

◆
Q

k (1�Q)A�k
c (m+ k)

�
✓

m

m+ j � 1

◆B�2X

k=0

✓
k

A

◆
Q

k (1�Q)A�k
t

,
✓
B � 1
A

◆
Q

B�1(1�Q)A�B+1
t 

AX

k=B�1

✓
k

A

◆
Q

k (1�Q)A�k
c (m+ k) , (A.6)

which are the algebraic forms for the conditions that (i) contributing is at least as good than not con-
tributing for participating agents (A.5) and (ii) not contributing is at least as good than contributing for
non participating agents (A.6). These results are an extension of Palfrey and Rosenthal 21 to subscription
games with our more general payo↵s structure.

Note that if (i) m = 0, only conditions (A.4) and (A.6) need to be satisfied (ii) j = 0, only conditions
(A.5) and (A.6) need to be satisfied (iii) j = m = 0, only condition (A.6) applies and (iv) for m+j = n�1,
the admissibility constraints hold at equality and the conditions rewrite as the pure Nash equilibria
conditions with Q 2 {0, 1}.
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Appendix B. Proof of Proposition 2

Let us write the standard form constraints, and rearrange them so as to isolate the basis variables
x1, pw and pn:

x1 = pw�1

✓
(n� w)nc (n)

w (c(w)� t)� nc (n)
c (w + 1)

◆
+ (n� (w � 1)) (c(w)� t)

�

+
n�1X

k=w+1

pk

✓
(n� k) c (k + 1) +

✓
nc (n)� kc (k)

w(c(w)� t)� nc (n)
(n� w) c (w + 1)

◆◆

� (n� w)nc (n)

w(c(w)� t)� nc (n)
c (w + 1)� x2 (n� w)

w(c(w)� t)� nc (n)
(c (w + 1))

+
w�2X

k=0

pk

✓
(n� w)nc (n)

w(c(w)� t)� nc (n)
c (w + 1)

◆

pw =
w�1X

k=0

pk

✓
nc (n)

w(c(w)� t)� nc (n)

◆
� nc (n)

w(c(w)� t)� nc (n)

+
n�1X

k=w+1

pk

✓
nc (n)� kc (k)

w(c(w)� t)� nc (n)

◆
� x2

w(c(w)� t)� nc (n)
(B.1)

pn = 1�
w�1X

k=0

pk

✓
w(c(w)� t)

w(c(w)� t)� nc (n)

◆
+

nc (n)

w(c(w)� t)� nc (n)

�
n�1X

k=w+1

pk

✓
w(c(w)� t)� kc (k)

w(c(w)� t)� nc (n)

◆
+

x2

w(c(w)� t)� nc (n)
(B.2)

We substitute (B.1) and (B.2) into the objective (12). It follows the objective depends only on the n

non-basic variables :

"
w�1X

k=0

pk

✓✓
nc (n) (w(c(w)� t))

w(c(w)� t)� nc (n)

◆
�
✓

wc (w)nc (n)

w(c(w)� t)� nc (n)

◆
� nt

◆#

+

"
n�1X

k=w+1

pk

✓
nc (n)

✓
w(c(w)� t)� kc (k)

w(c(w)� t)� nc (n)

◆
� wc (w)

✓
nc (n)� kc (k)

w(c(w)� t)� nc (n)

◆
� kc (k)

◆#

+nc (n)

✓
tw

w(c(w)� t)� nc (n)

◆
+

✓
wc (w)� nc (n)

w(c(w)� t)� nc (n)

◆
x2 (B.3)

Rearranging (B.3) we obtain :

w�1X

k=0

pk

✓
�nc (n) tw

w(c(w)� t)� nc (n)
� nt

◆
+ nc (n)

✓
tw

w(c(w)� t)� nc (n)

◆
(B.4)

+
n�1X

k=w+1

pk

✓
tw (kc (k)� nc (n))

w(c(w)� t)� nc (n)

◆
+

✓
wc (w)� nc (n)

w(c(w)� t)� nc (n)

◆
x2 (B.5)
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Then, let us remark that: ✓
nc (n)

nc (n) + w(t� c(w))

◆

| {z }
<1

w < n. (B.6)

Coe�cients (dual variables) associated to {pk}w�1
0 are therefore negative. Assumptions on cost and

profitability imply the remaining components of (B.5) are negative as well.
Since non-basic variables are all set to 0 while constrained to non-negativity, it can be concluded the

program is solved for:

8
><

>:

(n� w) pwc (w + 1) = x1

w pw (t� c(w))� npnc (n) = 0

pw + pn = 1

)

8
><

>:

x

⇤
1 = (n�w)nc(n)c(w+1)

w(t�c(w))+nc(n)

p

⇤
w = nc(n)

w(t�c(w))+nc(n)

p

⇤
n = w(t�c(w))

w(t�c(w)+nc(n) .

(B.7)

Appendix C. The symmetric mixed NE is a CE

Remark that symmetry, added to the independence of individual participation decisions, imply for
all i:

pkp (i, k)Pn
k=0 p(i, k)pk

=

✓✓
n

k

◆
Q

k(1�Q)n�k

◆
k

nQ
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n� k
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1

1�Q

,

Now, using the two previous equalities, we can rewrite condition (9) of CE as follows:
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Likewise, condition (10) of CE rewrites:
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Now, notice that (C.1) and (C.2) imply:
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which is the symmetrical mixed NE condition when m=j=0. It follows the unique mixed NE is a symmetric
CE. As p

⇤ is the optimum, it generate a higher aggregate expected payo↵s than the symmetric mixed
NE.

Appendix D. Proof of Corollary 3

First, remark that the probability constraint involves the derivative of V (p̂) with respect to t can be
rearranged as follows:

� d

dt

dnQ(t)e�1X

w

pk

✓
kc (k)

n

� t

◆
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dt

nX
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since d
dt

Pw�1
0 pk + d

dt

PdnQ(t)e�1
w pk = d

dt

Pn
dnQ(t)e pk. As m obviously follows the binomial B(n,Q(t)),

it can be approximated by the normal distribution \(0, 1), with change of variable: M = m�nQ(t)p
nQ(t)(1�Q(t))

.

The derivative (D.1) therefore rewrites :
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Assuming t > c(w) and (mc(m))0 < 0, we know the terms (D.2b) and (D.2c) are positive. Finally, as
Q(t) increases in t, and w�nQ(t) < 0 < n�nQ(t) for all Q(t) > 0, we know the first term (respectively,
the second term) of (D.2a) increases (respectively, decreases) in t. It follows there exists t0 such that
R 0

w�nQ(t0)p
nQ(t0)(1�Q(t0))

1
2⇡ e

� x

2

2
dx = �A, as well as t1 < t0 from which the whole expression becomes positive.

Appendix E. The two-player example

In order to illustrate the general study, let us consider the game when n = 2 and w = 1. The strategic
form is the following :
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s2 = 1 s2 = 0
s1 = 1 �c(2),�c(2) �c, 0
s1 = 0 0,�c �t,�t

where wc(w) = c(1) ⌘ c. From the study above, we know this game has two pure Nash equilibria
corresponding to the strategy profiles such that m = w, namely (1, 0) and (0, 1), and that the set of
admissible vectors is

(m, j, w, n) = {(0, 0, 1, 2) , (0, 1, 1, 2)} .

Substituting the parameters values in the relevant general conditions (A.6) and (A.4), we get

(
(1�Q) t = (1�Q) c+Qc (2) if j = 0

t = c and 0  Qc if j = 1
, (E.1)

conjointly characterizing the symmetrical mixed Nash equilibria of the game. Note then that the inequal-
ities induced by j = 1 imply that mixed Nash equilibria with asymmetrical supports exist if and only if
t = c, in which case one player i does not contribute while any distribution on S�i is also a best response
for its opponent. Finally, we can derive a unique mixed strategy equilibrium from the first case equality,
with the symmetrical distribution

Q̂ =
2 (c� t)

2 (c� t)� 2c (2)
and 1� Q̂ =

2c (2)

2c (2) + 2 (t� c)
. (E.2)

More general conditions to characterize Nash equilibria such that both agents do mix strategies are easy
to derive in this simple game, and show that the distribution exhibited in the symmetrical case actually
exhausts the mixed strategy equilibria. The corresponding aggregate payo↵ is

X

s2S

 
Y

i

pi(si) (u1(s) + u2(s))

!
= (2 (c� t)� 2c(2))Q2 + (2Q� 1) 2t� 2Qc

= � 2t

2t+ 2c (2)� 2c
2c (2) . (E.3)

From our assumption on costs, we know that 2c(2) < 2c, which implies that
⇣
Q̂, 1� Q̂

⌘
yields a smaller

payo↵ than the socially optimal pure allocation. For a minimum tax t = c, the payo↵ under
⇣
Q̂, 1� Q̂

⌘

is �2c < �c, and then strictly increases in the threat stringency with

lim
t!+1

� 2t

t+ c (2)� c

c (2) = �2c(2) (E.4)

Specifically, mixed strategies are Pareto improving compared to the pure Nash equilibria allocations for
a tax level

t >

c(2c(2)� 2c

2(2c(2)� c)
(E.5)

Thus, extending the set of pure strategies to mixed strategies allows to reach higher expected aggregate
payo↵s for a high enough tax threat, provided agents find a way to coordinate on equilibria multiplicity.
Let us see what would be the set of reachable payo↵s in the voluntary agreement with mediated commu-
nication such as described in our coordination device. We already know that any mixed strategies Nash
equilibria of a game is also a correlated equilibria of this game (Myerson 17), meaning that the VA with
the coordination device certainly allows to implement (Q̂, 1 � Q̂). But we want to check if even higher
payo↵s could be implemented as correlated equilibria for a given threat level, since we know that a cred-
ibility requirement would actually limit the regulator in his choice of t. Accordingly to the general case,
we denote pkl the probability assigned by the regulator to the pure strategy profile (s1 = k, s2 = l) 2 S,
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with
P

s2S ps = 1. Then, following Myerson 17’s interim definition of correlated equilibrium, let us write
the strategic incentive constraints in our two-player game

p11

p11 + p10
c (2) +

p10

p11 + p10
c  p10

p11 + p10
t

p00

p01 + p00
t  p01

p01 + p00
c (2) +

p00

p01 + p00
c

p11

p11 + p01
c (2) +

p01

p11 + p01
c  p01

p11 + p01
t

p00

p10 + p00
t  p10

p10 + p00
c (2) +

p00

p10 + p00
c

with the probability constraint
(
p11 + p10 + p01 + p00 = 1

p11 � 0, p10 � 0, p01 � 0 and p00 � 0
, (E.7)

which is the algebraic form for the condition that for any individual suggestion from the regulator to an
agent, and provided a given probability distribution on S that was prealably announced, the agent has
no incentive not to follow the suggestion. The incentive constraints rewrite

p10

✓
t

c (2)
� c

c (2)

◆
� p11 � 0 (E.8a)

p00

✓
c

c (2)
� t

c (2)

◆
+ p01 � 0 (E.8b)

p01

✓
t

c (2)
� c

c (2)

◆
� p11 � 0 (E.8c)

p00

✓
c

c (2)
� t

c (2)

◆
+ p10 � 0 (E.8d)

and a maximization program for the regulator can be formulated as follows

max

p11,p10,p01,p00

� c (p10 + p01)� 2c (2) p11 � 2p00t (E.9)

s.t. (E.8a), (E.8b), (E.8c), (E.8d) and (E.7).

Using the assumption t > c, and denoting correlated strategies as vectors

(p11 p10 p01 p00)
T
,

we first notice that the set of vectors solving program E.7 must be a subset of (p11 p10 p01 0)T 2
R4. Specificaly, by substituting p00 = 0 into (E.8b), (E.8d) and (E.7), we get the set of candidates

(p11 p10 p01 0)T 2 R4 such that 8
>>>><

>>>>:

p10 � p11
C(2)
2(t�c)

p01 � p11
C(2)
2(t�c)

p11 � 0

p11 + p10 + p01 = 1

(E.10)

Geometricaly, it is the area bounded by the inequalities

p10 � 2c (2)

2 (t� c) + 2c (2)
�
✓

2c (2)

2 (t� c) + 2c (2)

◆
p01 (E.11)

p10 � 1�
✓
1 +

2 (t� c)

2c (2)

◆
p01 (E.12)

p10  1� p01 (E.13)

25



on the a�ne hyperplane defined by p11 = (1� p10 � p01), with the two first inequalities intersecting in

p01 = p10 =
c (2)

2c (2) + t� c

, (E.14)

as illustrated in figure E.4. Provided our assumption on costs, it is now obvious the regulator maximizes

1

1

p
10

p
01

p*
01

p*
10

q*(1-q*)

Figure E.4: The set of correlated equilibria in the two-player example.

the objective by assigning a maximal probability to the full-participation profile. Consequently, the
solution of the program is

0

BB@

p

⇤
11

p

⇤
10

p

⇤
01

p

⇤
00

1

CCA =

0

BBB@

t�c
2c(2)+t�c
1
2

2c(2)
2c(2)+t�c

1
2

2c(2)
2c(2)+t�c

0

1

CCCA
, (E.15)

and the value of the objective (or expected aggregate gain) is

V (p⇤, t) =
X

s2S

p

⇤
s (u1 (s) + u2 (s))

= �c (p10 + p01)� 2c (2) p11

= � 2c (2) t

2c (2) + t� c

. (E.16)

Note that both p

⇤
01 = p

⇤
10 are decreasing in t, while p

⇤
11 = 1� (p⇤01 + p

⇤
10) is increasing in t. In other

words, a higher threat rises the probability on the socially optimal allocation

@

@t

✓
t� c

2c (2) + t� c

◆
=

2c (2)

(2c (2) + t� c)2
> 0. (E.17)
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Or, geometrically, the grey area extends along the bisectrice on figure E.4. The aggregate payo↵ tends
then to the payo↵ corresponding to the socially optimal allocation

lim
t!+1

V (p⇤, t) = �2c (2) . (E.18)

Finally, let us remark as previously mentioned, that the pure and mixed Nash equilibria of the game
do satisfy the correlated equilibria conditions (easily verified by substituting p11 = (q⇤)2, p10 = p01 =
Q

⇤ (1�Q

⇤) and p00 = (1� q

⇤)2 into (E.8a)-(E.8d)). But we know now that they yield a smaller aggregate
payo↵ than the optimal correlated equilibrium for all t. Specifically, we have the following ranking

V (p⇤, t) > �2
c (2) t

c (2) + (t� c)
> �c, (E.19)

implying that the coordination device not only solve the problem raised by multiplicity, but also ensures
that a higher expected aggregate payo↵ is reached for a given credible level of threat.
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