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Abstract 

 

Over the last three decades, many industrializing countries have experienced economic growth, 
which coincided with a substantial increase in the use of materials. This puts into question the 
relationship between economic growth and the use of biomass, fossil fuels and minerals. Using 
a Material Kuznets Curve framework, this study investigates whether material use 
automatically reaches a maximum at a given level of development and declines thereafter. 
Using a new indicator, the material footprint (which quantifies all materials extracted to 
produce a country's final demand, including imported materials), we investigate this nexus, 
comparing for the first time different methodologies in the same empirical study. Specifically, 
we measure the evolution of material footprint (per capita) elasticity to GDP (per capita) in four 
different ways. Our main results find that all the models lead in a similar direction, seeming to 
indicate a strong and permanent link between economic growth and development and raw 
material consumption: There is no sign of strong decoupling. Improving the development and 
adoption of material-conserving technologies is thus urgent.  
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1. Introduction 

In the coming decades, growing populations (9.7 billion in 2050, according to the United 

Nations) with higher incomes will drive a strong increase in the global demand for goods and 

services. The amount of materials used throughout the world tripled between 1970 and 1990 

(UNEP, 2016). Economic growth is projected to quadruple between 2011 and 2060, and global 

materials use is projected to more than double, according to OECD scenarios (OECD, 2018). 

The extraction, processing and utilization of materials are responsible for many environmental 

problems ranging from greenhouse gas (GHG) emissions to water, air and soil pollution as well 

as a loss in biodiversity (Brandt, et al., 2014; OECD, 2018; Schandl, et al., 2018). In this 

context, growth in material use coupled with material extraction is likely to increase the 

pressure on resource bases and jeopardise future gains in well-being and global sustainability 

(Steffen, et al., 2015). Today, more than half of greenhouse gas emissions are related to 

materials management activities (OECD, 2018).  

There is now a tendency for empirical studies and technical reports to consider the existence of 

a decoupling between the level of development and consumption. For example, the OECD 

projects that material intensity will decline more rapidly than in the recent decades (-1.3% over 

2017-2060), reflecting a relative decoupling (if global material intensity increases, it will do so 

more slowly than GDP). Since the service sectors have a lower material intensity (materials use 

per unit of output) than agriculture and industry, the organization contends, the global material 

intensity of the economy is likely to decrease by 2060 (OECD, 2018). We thus use 

the Environmental Kuznets Curve (EKC) hypothesis (see Appendix A for more details), which 

maintains that material use will fall at some point in income growth, to investigate the prospects 

of this decoupling of econometric growth and material use.  

 

This paper makes four major contributions to the extensive literature on the EKC material use 

nexus. First, we investigate this relationship using material footprint as the dependent variable 

rather than Domestic Material Consumption (DMC), which is more commonly used in the 

economics literature. We use not only a new database on material footprint instead of the 

domestic material consumption indicator but also global material consumption instead of 

specific natural resources,3 with the largest possible number of countries and time span (164 

countries over 1990-2015). The material footprint of nations is considered a proxy for natural 

 
3 This avoids ignoring transmaterialisation (substitution between natural resources) leading to a perception of 
dematerialisation although we also test the assumption of decoupling for different subcategories of natural 
resources.  
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resource consumption, so we explore whether the data show evidence of decoupling or demand 

saturation.  

Second, we consider the methodological problems related to the endogeneity between GDP and 

material footprint, a problem that has been largely neglected in empirical studies. Neglecting 

this problem leads to an overestimation of the relationship between growth and material 

footprint. To our best knowledge, only in Pothen and Welsch (2019) is this endogeneity 

corrected for. However, these authors use infant mortality as their main instrument, with no 

discussion of the validity of that instrument. Testing endogeneity with the same instrument, 

exogeneity is not found. We consider the lag in GDP to be a better instrument. Moreover, 

Pothen and Welsch (2019) analyse their dataset in a static way over a shorter period of time. In 

our paper, we also assume the persistence of the material footprint over time, which leads us to 

take a dynamic approach in a broader period. This approach of using static and dynamic panel 

data models is not taken by the three other studies using material footprint (MF) (cross-section, 

instrumented between estimator and difference in differences).  

Third, we check and test for the elasticity of natural resource consumption relative to GDP per 

capita in different development stages, over time (different time periods) and with a large 

number of controls4 (economic structure, effect of international trade, demographic structure, 

GDP content/capital formation, urbanization and population density). We also ensure that the 

results are robust when using other forms of the material Kuznets curve (MKC) (country 

consumption instead of consumption per capita). Fourth, we offer a simple and general 

framework to unify and clarify the literature on MKC, decoupling (delinking) and the bell-

shaped intensity of use hypothesis.  

 

A major contribution in our results comes from the use of different methodologies and 

sophisticated econometric models that all lead to similar results: All the models seem to indicate 

a strong and permanent link between economic growth and development and raw material 

consumption. Overall, we show that neither the global economy nor its various subgroups 

strongly decouple from natural resource consumption. There are neither signs of strong 

decoupling from economic growth over time nor saturation of raw material demand observable 

for richer countries. Even worse, the income per capita elasticity of material footprint is 

 
4 4 Wiedmann, et al. (2015) control for population density and domestic extraction, Zheng et al. (2018) check – 
but do not necessarily control - for the importance of investment, population density, industrialization, domestic 
extraction and a time trend, while Pothen and Welsch (2019) do not control for any factor (except time trend in 
their static fixed-effects model). 



 
 

4 

constant across different levels of development. The GDP per capita elasticity to natural 

resources per capita is found to range from 0.43 to 1.061 depending on the chosen model. In 

this context, the empirical evidence fails to demonstrate spontaneous decoupling between raw 

material use and economic growth even as it has become urgent to decrease material use.  

 

The rest of the paper is organized as follows. In the next section, we present a detailed literature 

review on the nexus between raw material consumption and economic growth. In the third part, 

we present the theoretical background of our econometric study, the IPAT identity framework. 

We then present the data and main descriptive statistics in section 4. In section 5, the 

methodological approach we have taken and the different empirical frameworks we have used 

are presented. In section 6, we present the general results; we discuss them in section 7. We 

conclude in section 8. 

 

2. Literature  

2.1 Limited resources and depletion: limits to growth and growth of limits 
 
The sustainability of economies in terms of natural resources availability is likely to be traced 

to the beginning of economics. Indeed, research on the availability of materials with respect to 

the economy has a rather long history. Emerging from pre-classical economics, this debate has 

been progressively extended to a discussion between scientists in other fields, as can be seen in 

the multitude of studies on this topic disseminated in the last two centuries5. Progressively, the 

intense friction generated on this issue (called sometimes the issue of weak or strong 

substitutability of natural capital for human-made capital) has led to a scission of economists 

between environmental and resource economics and ecological economics. While the first view 

argues that technical progress and free markets have constantly overcome the threat of natural 

resource depletion (through substitution, exploration, efficiency, scale economies, backstop 

technologies, etc.), the other side stresses that natural resources and energy are essential factors 

of economics and cannot be fully replaced by technical or human capital in the long term 

 
5 Numerous examples are scattered throughout the literature: the dispute between classical economists about the 
stationary state and the decreasing marginal yield of natural resources (Robinson, 1989)(Robinson, 1989), the coal 
question described by Jevons (1865), the claims of the Conservation Movement at the end of the 19th century 
(Tilton, 2003), the seminal work of Hotelling Gray and Cassel on the exhaustible nature of natural resources 
(Cassel, 1923; Gray, 1914; Hotelling, 1931), the initiative launched by the President’s Material Policy Commission 
(Commission, 1952) on the availability of natural resources for the US economy, the end of oil considered in the 
peak oil theory (Hubbert, 1956), the work on the cost and prices of natural resources initiated by Barnett and Morse 
(1963), the Limits to Growth report (Meadows, et al., 1972) and the quick replies it generated among economists 
(Dasgupta and Heal, 1974; Goeller and Weinberg, 1978; Nordhaus, et al., 1973; Solow, 1974; Solow, 1974; 
Stiglitz, 1974; Stiglitz, 1979). 
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(Boulding, 1966; Daly, 1979; Daly, 1987; Daly, 1997; Georgescu-Roegen, 1971; Georgescu-

Roegen, 1975). From this perspective, the finitude of natural resources prevents perpetual long-

term economic growth. The debate is then on who will have the last word, between the growth 

of limits (cornucopians) and the limits to growth (doomsdayers). This diverging view is still 

observable in opinion surveys among economists and scientists of other fields (Drews and van 

den Bergh, 2017). 

 

2.2 Twin literatures: Linking the bell-shaped intensity of use hypothesis and the material 

Kuznets curve 

 

With the 1986 oil counter-shock, the research agenda of environmental and resource economics 

has become increasingly focused on the capacity of the biosphere to absorb the waste generated 

by the anthroposphere (Fisher and Ward, 2000; Simpson, et al., 2005). Many scientists in 

several fields are now warning that global planet boundaries are being crossed (Rockström, et 

al., 2009; Steffen, et al., 2015) and that this great acceleration has propelled us into a new, 

instable geological era: the anthropocene (Steffen, et al., 2015). In this context, global warming 

is but one of the most prominent issues (IPCC, 2014). In addition, while some economists argue 

that environmental issues are distinct from natural resources issues (Giraud, 2014; Pearce, 

1988) other scholars see the increasing emissions of wastes and other pollutants as the other 

face of unsustainable increasing natural resource consumption (Behrens, et al., 2007; Brooks 

and Andrews, 1974; Krausmann, et al., 2017; Schandl and West, 2010; Smil, 2013; UNEP, 

2019). 

Resource scarcity aside, other resource economists have been trying to demonstrate empirically 

that substitution, technical change and structural change lead economies to become "resource 

lighter" over time thanks to economic development (increasing GDP per capita). In this specific 

view, becoming richer naturally provides the solution to the natural resource scarcity issue6 

(Beckerman, 1992). First popularized by (Malenbaum, 1978), the intensity of use hypothesis 

refers to a bell-shaped relationship (inverted U) between natural resource intensity (natural 

resource consumption divided by GDP) and GDP per capita. The theory behind this stylized 

fact involves three main steps (Jaunky, 2012) . In the first step, the industrialization of the 

agrarian economy requires large quantities of metals and other resources per unit of wealth due 

to the great need for raw materials for infrastructure construction. The intensity of use increases 

 
6 If the economic growth of wealth is not too great to compensate for the efficiency obtained by the decreasing 
intensity of use of natural resources.  
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at the same time as GDP per capita. In the second step, the demand for industrial goods is 

saturated while the infrastructure already in place only claims limited quantities of raw 

materials for its maintenance and replacement, resulting in a peaking intensity of use in the 

country. In the third step, the economy makes a massive switch to services, and competition 

from alternative materials and technical change leads to a declining material intensity of use. 

According to a review by Cleveland and Ruth (1998), this hypothesis is regularly supported for 

different metals and materials during the 1980s and 1990s although most of these studies use 

the Domestic Material Consumption7 (thereafter DMC), now well known to be an international 

production-biased indicator, and inadequate econometric or visual methods. Several authors 

have also improved this theory by adding complexity. For instance, Bernardini and Galli (1993) 

hypothesize that the peak of intensity of use declines when reached more belatedly due to the 

diffusion of technologies. In these conditions, developing economies switch directly to the best 

production technologies without necessarily having crossed all the steps (leapfrogging). Other 

scholars like Labys and Waddell (1989) argue that the bell-shaped intensity of use for one 

material is not an evidence of dematerialisation of the economy but simply proof of 

transmaterialisation. In other words, the substitution between materials leads to successive bell-

shaped intensities of use. 

Beginning with the work of Grossman and Krueger (1995, 1991) and the World Bank's 1992 

development report, the Environmental Kuznets Curve (EKC) applies the overall idea of the 

Kuznets (1955) curve to environmental issues. Although very close to the framework of the 

intensity of use inverted U, strangely enough, EKC applied to materials (MKC) is not explicitly 

connected to the work of Malenbaum (1978). The studies associated with this literature 

empirically try to understand whether per capita natural resource consumption can have an 

inverted U relationship with GDP per capita. Some other studies have related this question to 

the decoupling assumption8 (UNEP, 2011; World Bank, 1992): that is to say, the possibility 

that GDP per capita increases without involving a proportional increase of natural resource 

consumption (weak decoupling) or without being accompanied by any absolute increase of 

natural resource consumption (NRC) at all (strong decoupling). In fact, we can easily show that 

bell-shaped intensity and MKC analyses are equivalent and follow the same general form (see 

Appendix A). Specifically, if the inverted U intensity of use of one country decreases more 

 
7 DMC is based on a production perspective (materials used within the national economy) and does not include 
the upstream natural resource flows associated with international trade (imports and exports). For instance, it does 
not include the feed needed for imported meat or the minerals and energy for the production of copper wire. 
8 The report uses the term delinking instead of decoupling 
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quickly (in the declining phase) than the growth of GDP per capita, we can observe MKC for 

the country. Scholars then mention the possibility of peak demand for natural resources (Pearce, 

2012). A more complex path than EKC is also considered possible in Canas, et al. (2003) and 

de Bruyn and Opschoor (1997), where a third phase following MKC is characterized by 

technical change slowdown leading to an N-shaped curve. Moreover, less theoretically focused 

scholars estimate an inverted N-shaped curve (Pothen and Welsch, 2019), or R-shaped curve, 

for increasing and then stabilizing MKC9 (Bleischwitz, et al., 2018). Using a more robust 

measure of raw material consumption (material footprint) and based on a cross-section over the 

year 2008 for 137 countries, Wiedmann, et al. (2015) show that material footprint (as well as 

its subdivisions) is linearly linked to GDP per capita (see Table 1). Using the metal footprint of 

nations, the study of Zheng, et al. (2018) focuses on 43 countries over the 1995-2013 period to 

show that GDP per capita is strongly coupled to their dependent variable and that the 

importance of capital formation (as share of GDP) greatly impacts the relationship between the 

two variables. Lastly, another article by Pothen and Welsch (2019) examining 144 countries 

over 1990-2008 shows that a linear relationship between GDP per capita and material footprint 

is the most reasonable assumption10. 

 

Table 1 Main results found in recent studies estimating material footprint-GDP per capita 
elasticity.  
 

Study MF-GDP per capita 
elasticity 

Period Model Comments 

Wiedmann 
et al. 2015 

0.6 (MF) 
0.9 (ores) 

0.86 (construction 
materials) 
1.23 (fuel) 

0.57 (crops) 
0.46 (fodder) 

2008 
(137 

countries) 

Cross-section 
 

All elasticities are 
significant. 
Controls: 
Domestic 

extraction and 
population 

density 
Zheng et al. 

2018 
1.909 (no controls) 
0.837 (control of 
investment share) 
1.264 (control of 

developed Annex B 
countries)* 

 

1995-2013 
(43 countries) 

DIF and DIF 
model 

Metal footprint 
only. 

Developed 
countries only. 

No strict control 
of endogeneity. 

Controls: 
population 

density, 
 

9 The authors mainly explain the r curve with the saturation of the demand for materials. We then observe a plateau 
of demand. 
10 Compared to other assumptions like quadratic or cubic relationships and when taking endogeneity into account. 
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industrialization, 
domestic 

extraction not 
correlated to MF. 

 
Pothen and 

Welsch 
2019 

Linear (full) 
0.276 

Quadratic (full) 
-0.74y+0.061y² 

Cubic (full) 
-6.952y+0.801y²-

0.029y3 
 

1990-2008 
(144 

countries) 

Static panel 
data (country 
fixed effects) 

GDP per capita in 
cubic form seems 

to better fit 
although no 
correction of 
overfitting. 

Controls: time 
trends 

Pothen and 
Welsch 

2019 

Linear (full) 
0.752 

(144 observation) 
0.92 (Metal ore) 
0.44 (MF bio) 

1.027 (Construction 
Materials) 

1.383 (Fossil fuels) 
0.785 (OECD) 

0.79 (non-OECD) 
 

 

Average for 
each country 

Instrumental 
variable 
between 
estimator  

Control of 
endogeneity via 

instrumental 
variable and non-
stationarity with 

between estimator 
(Country average 

for the whole 
period). 

No controls. 
Cubic form is no 

longer significant. 
Few observations 
in sub-regressions 

(<30) 
Note: y denotes log of GDP per capita. * Annex B country growth interaction dummy is not significant when 
controlling for investment share. 
 
All these studies can in fact be connected to the older theoretical debate of the limits to growth 

or growth of limits. Indeed, in a finite world in terms of materials11, the consumption of natural 

resources can only decrease asymptotically to zero (Solow (1974); Stiglitz, 1974) . In order to 

maintain a constant growth of GDP, we would need a forever-increasing material efficiency 

(inverse of intensity of use) or a permanent and progressive unbounded substitution of natural 

resources by man-made capital. The proof that material efficiency can increase endlessly is 

under discussion in the empirical literature discussed above. If we substitute natural resources 

and material efficiency develops quickly enough, we should be able to observe a strong 

decoupling between economic growth and natural resource consumption. On the other hand, 

weak decoupling prevents the compatibility of economic growth and finite resources because 

resource consumption fails to diminish. 

 
11 The earth is not a stricto-sensus closed system due to yearly meteorite landings, but this mass is negligible for 
the earth and human consumption. 
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3. IPAT Identity framework 
   
For our econometric modelling, we use the IPAT12 identity framework developed by Ehrlich 

and Holdren (1971): 

 !(#, %, &) = 	# × % × & (1) 

where I denotes the impact (consumption or waste), P the population (inhabitants), A the 

affluence (GDP per capita) and T the technology factor (pollution/material intensity of wealth). 

While the intensity of use literature has focused its analysis on the relationship between A and 

T, the MKC and decoupling studies directly examine the relationship between I/P and A. If we 

adapt the IPAT identity to the natural resource consumption (C) issue, we get: 

 +(#, %, &) = 	# × % × & (2) 

where T is now the material intensity of wealth (C/GDP). More specifically, T depends on the 

material intensity of products from sector j and the share of the value added by this sector j to 

GDP (structural effect). Thus, we can formulate the previous equation as follows: 

 
+(#, %, &) = 	# × % × ,- +.

/%.
× /%.
01#

2

.34
5 (3) 

where +. is the material consumption of sector j and /%. the value added by sector j. In the 

literature, some scholars (Lohani and Tilton, 1993) assume that structural effect depends on 

GDP per capita (consumer preference schools) while material intensity of products depends on 

the effect of technology through time (leapfrogging school). 

In this paper we regress C/P (approximated by the material footprint per capita13) against A 

(GDP per capita: y), year fixed effects capturing technological progress (alternatively, temporal 

trend) and other control factors (X) identified by the literature as main determinants of natural 

resource consumption per capita (Cleveland and Ruth, 1998; Dinda, 2004; Gan, et al., 2013; 

Hwang and Tilton, 1990; Vehmas, et al., 2007). We then have: 

 

ln 8+#9:,;
= <: + <; + >4 ln(?:;) +- ln	(@A,:;)

B

A34
 (4) 

where>4 =1 indicates strong coupling, 0 < >4 < 1  indicates weak decoupling and >4 <
0	indicates strong decoupling. We also consider a quadratic relationship between C/P and y. 

 
12 Namely, Impact Population Affluence Technology. 
13 This form is sometimes called metabolic rate.  
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Put another way, similarly to Ausubel and Waggoner (2008), we try to identify through income 

elasticity whether raw materials are luxury goods, staples or inferior goods. Indeed, the 

compatibility of GDP growth with finite resources demands that raw materials fall into the class 

of inferior goods (β1 <0) in the long term. The other control factors are included and described 

in the next section. 

4. Data  

4.1 Variables  

Using a panel of country data, we examine how material footprint changes as GDP per capita 

increases.  

 

Dependent variable – Material footprint 

There are two different ways to impute domestic extraction of natural resources at the global 

scale: domestic material consumption (DMC) and material footprint 14 (MF). According to 

Schaffartzik, et al. (2015),  

The DMC indicator reflects so-called apparent consumption and allocates materials used 

in the production of traded goods and services to the country where production occurs. 

Exported goods are accounted for in the material use of the importing country with their 

mass upon crossing the administrative boundary.  

Therefore, the DMC is a production-based indicator of material use.  

The second measure, MF, uses the global multi-region input-output database EORA and 

domestic extraction in order to get the Leontief inverse of each sector (raw material quantity 

required to serve one dollar of final demand for the output of the sector). Multiplying these 

figures by the final demand results in the material footprint (see Pothen and Welsch, 2019). 

Alternatively, material footprint equals domestic extraction plus the raw material equivalents 

of imports minus exports (direct trade flows + upstream material use). Material footprint only 

accounts for extraction materials in use (with an economic value) and does not include hidden 

flows associated with extraction (i.e. ecological rucksacks like mining waste, overburden or 

soil erosion)15. This indicator thus relies on a consumption-based approach. 

 
14 The term Raw Material Consumption (RMC) is sometime used as a synonym.  
15 For more information about indicators including these hidden flows, see the studies of Bringezu, et al. (2004) 
and Krausmann, et al. (2017). 
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For instance, consider the consumption of copper ore to produce copper wire in China for 

European country foreign final demand. With one approach (DMC), the copper is attached to 

China, while in the other approach (MF), the copper will be attributed to the European country. 

 
Therefore, the dependent variable we have chosen is the material footprint of nations taken 

from the UNEP database (2016), which extends the work of Wiedmann, et al. (2015). Schandl, 

et al. (2018) provide the general evolutions of these data over time (descriptive statistics). 

Information is available on the MF for biomass (MFbiomass), metal ores (MFmetal), non-

metallic minerals (MFminerals) and fossil fuels (MFfuels).  

 

Explanatory variables 

All explanatory variables are taken from the World Bank database. GDP per capita is expressed 

in purchasing power parity for the year 2011 (GDP PPP$2011). 

Data on GDP, gross capital formation as share of GDP (GCF) and value-added share of 

agriculture (AGRI), services (SERVICES), and industry (INDUSTRY)16 sectors come from 

World Bank World Development Indicators (WDI). For comparison across countries and over 

time, GDP per capita is expressed in PPP-based constant 2011 prices (GDP/CAP). WDI can 

also provide the share of imports (IMPORT) and exports (EXPORT) in the analysis.  

 

We also control for other country characteristics, including population density (POPDENSITY) 

and age structure of the population (POP14, POP15-64 and POP65). All these factors may lead 

countries to converge to different steady-state levels of material footprint. Data on these 

variables are also obtained from WDI, as is the classification of countries into income groups. 

Indeed, some studies have demonstrated the role of structural factors such as country size, 

population structure and population density in demonstrating the use of materials (Giljum, et 

al., 2014; Steinberger, et al., 2010; Gan et al., 2013). 

Finally, we have an unbalanced panel of 164 countries from 1990 to 2015, and a balanced panel 

of 122 countries over the same period for only MF and GDP/CAP. 

 

 
16 "The total value added of gross domestic product (GDP) for a country is made up of agriculture, industry, and 
services excluding financial intermediary services indirectly measured (FISIM). For countries which report value 
added at basic prices, net indirect taxes are reported as separate line item. Manufacturing value added is a subset 
of industry. The value-added shares presented in the World Development Indicators for agriculture, industry, and 
services may not always add up to a hundred percent due to FISIM and net indirect taxes.  Note that GDP in the 
database is measured at purchaser prices. Information about a country's method of price valuation is available in 
DataBank." 
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4.2 Descriptive statistics  

At first glance at Figure 1, we notice an increase in material footprint, especially for high-

income groups, with a relative stabilization since 2010. We also notice an increase to the upper 

middle-income group.  

Figure 1 Material footprint per capita average over time by level of economic development.  

 
Note: The peak in 1991 corresponds to the Gulf War and is an anomaly mainly attributed to Middle Eastern and 

African countries (see UNEP report p.68). 

 

The scatterplots provided in Figure 2 indicate that the relationship between log GDP per capita 

and log energy intensity seems linear and positively correlated. Seen descriptively, there does 

not seem to be a nonlinear relationship between GDP and material footprint: The relationship 

seems linear whatever the level of development. For instance, if we compute a static income 

elasticity of material footprint over the period 1990-2015, only 25 of the 122 countries 

experience absolute decoupling. This share decreases with increasing income quartile (see 

Table 2). The main descriptive statistics of the variables used in the empirical strategy are 

presented in Table 3. 

Table 2 Number of countries experiencing absolute decoupling between 1990 and 2015.  

Sample 
Absolute 

decoupling 

No 
absolute 

decoupling N 
All 25 97 122 
y<Q1 12 19 31 
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Q1<y<Q2 6 24 30 
Q2<y<Q3 4 26 30 
y>Q3 3 28 31 

Note: y: average GDP per capita over the period, Q: quartile, Q1 = 3683$; Q2=8684$; Q3=24682$. 

Figure 2 Relationship between material footprint per capita and GDP per capita. 

  

Note: Levels of development are represented by colours (blue: high income, red: upper middle income, yellow: 
lower middle income, green: low income). Circles with thick borders are the means for each group over time.  
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Table 3 Descriptive statistics of variables 

 MFtotal GDPcap GCF Services Industry Agriculture ImportGDP ExportGDP Popdensity Age14 Age1564 Age65 

Mean  12.325 15175.170 23.438 54.963 30.160 14.877 44.052 39.086 157.006 31.546 61.554 7.158 
std. Deviation  15.373 18229.830 8.136 14.635 13.343 15.525 24.507 25.895 507.582 10.845 7.766 4.956 
Min 0.026 246.671 -2.424 4.141 1.882 -173.510 0.016 0.005 1.406 12.991 45.633 0.750 
Max 261.845 135321.700 67.911 104.347 213.690 93.977 236.392 231.195 7806.773 51.886 100 26.015 
N 4269 4218 3945 3872 3872 3872 4133 4132 4442 4468 4498 4468 
No. countries 168 168 165 168 168 168 169 169 172 172 173 172 

Correlation 

MFtotal 1.000            

GDPcap 0.613 1.000           

GCF 0.083 0.050 1.000          

Services 0.394 0.367 -0.057 1.000         

Industry 0.004 0.344 0.254 -0.381 1.000        

Agriculture -0.370 -0.638 -0.168 -0.599 -0.512 1.000       

ImportGDP 0.370 0.131 0.208 0.130 -0.081 -0.051 1.000      

ExportGDP 0.510 0.433 0.134 0.116 0.215 -0.294 0.815 1.000     

Popdensity 0.259 0.230 0.054 0.149 -0.024 -0.118 0.454 0.520 1.000    

Age14 -0.496 -0.625 -0.125 -0.575 -0.123 0.642 -0.118 -0.288 -0.153 1.000   

Age15-64 0.463 0.625 0.218 0.441 0.279 -0.652 0.159 0.353 0.198 -0.924 1.000  

Age65 0.420 0.472 -0.030 0.615 -0.117 -0.470 0.035 0.131 0.055 -0.857 0.594 1.000 
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5. Empirical strategy 

 

5.1 General strategy 

We begin with an unbalanced dataset in order to avoid hasty conclusions. It can also be difficult 

to tell whether a change over time indicates a real development or just a change in the 

composition of the sample. Moreover, eliminating countries with missing data could cause 

sample selection bias if the countries with missing data are systematically different from those 

that have complete observations over the study period.  

We use four strategies to identify the nature of this relationship. First, we demonstrate that a 

linear relationship between material footprint and GDP per capita is the most likely assumption, 

especially in comparison to the quadratic assumptions (see Figure 3 below, method 1). Second, 

elasticities between sub-periods (method 2, Figure 3) are compared as well as elasticities 

between income groups (method 3, Figure 3). Finally, we examine the short- and long-term 

elasticity of material footprint per capita to GDP per capita (method 4, Figure 3).  

Then, to check for robustness and in order to confirm our results with a different methodology, 

we also estimate the models using the balanced panel. The conclusions of the paper are robust 

to these alternative methodologies and data sources. 

In order to avoid misspecification, we compare our results using static and dynamic modelling 

with unbalanced and balanced models and considering several methodological issues: the 

presence of heteroskedasticity, non-stationarity, serial correlation, reverse causality between 

material footprint and GDP as well as cross-sectional correlation.  
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Figure 3 Empirical strategy to identify nonlinearity (or decoupling). 

 

Note: top left: method 1, presence of a quadratic relationship; top right: method 2, existence of a high positive 

linearity in the first period and a lower one in the second period; bottom left: method 3, a higher elasticity for low-

income groups compared to high income, which should be negative; bottom right: different elasticities in the short 

term (ST) and long term (LT), with a higher value in the short term than in the long term.  

 

5.2 Static model and treatment of endogeneity 

A starting point in panel data analysis is to compare the two common models: the fixed-effects 

(FE) and the random-effects model (RE). In an RE model, the time-invariant variable α0 is 

assumed to be uncorrelated with the other explanatory variables compared to the FE model. A 

Hausman test should be conducted to choose between the FE and RE models. The calculated 

test statistic was 68.86 (Table B1 in Appendix B), rejecting the null hypothesis that individual 

effects are uncorrelated with the other explanatory variables at the 1% significance level. 

Hence, the fixed-effects model is compatible with our study. We thus have:  

 !"#$%& = () + (% + α& + βln /%& + 01%&
2 + 3%& (5) 
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where MF is the per capita material footprint for country i in year t, Yit is income per capita for 

country i in year t, α0 is the country-fixed effect (to control for unobserved time-invariant 

heterogeneity resulting from factors such as geographical differences), αi is a constant and α& 

the year-fixed effect. We therefore introduce, on the right-hand-side of equation (1), X’it , which 

is a vector of control variables for material footprint, namely INDUSTRY, AGRICULTURE, 

AGE14, AGE65, GCF, IMPORTS, EXPORTS and POPDENSITY. εit is the stochastic error 

term.  

Then, in order to test for nonlinearity in the model, we introduce the square of GDP per capita 

into the previous equation. We now have:  

 #$%& = () + (% + α& + 45 /%& + 46/%&
6 	 + 01%&

2 + 3%& (6) 

All estimations are corrected for a potential heteroskedasticity problem. But an endogeneity 

problem may arise, indicating that the independent variable may be correlated with the error 

term. The problem of endogeneity would lead to biased estimates of the coefficient under an 

OLS approach. Generally, in the empirical literature, the endogeneity issue in energy 

consumption (emission or material footprint) is often excluded from the analysis of the EKC, 

except in the recent paper by Pothen and Welsch (2019). In this paper, we consider that this 

issue can arise, leading to a biased standard deviation and coefficient. In a context where the 

purpose is to estimate elasticities for GDP/CAP parameters and the existence of nonlinearities, 

endogeneity can become very problematic if it is not treated.    

To determine whether the underlying endogeneity problem affects the results, we estimate the 

model using the instrumental variable (IV) method using the first, second and third lag of 

income per capita as the instrumental variables for income17 (/%,&95 + /%,&96 + /%,&9:).	 The 

choice of instruments differs from those used in Pothen and Welsch (2019), where the authors 

use infant mortality as an instrument. Indeed, after conducting tests, their instrument explains 

GDP statistically, but it is correlated with the error term and incorrectly excluded from the 

estimated equation. In our case, the lags of GDP are both strong and valid instruments. Proofs 

are provided in Appendix B.2.3. We thus have: 

 !"#$%& = () + (% + α& + 4: /=%& + 01%&
2 + 3%& (7) 

 
17 We use the first, second and third lag of log per squared capita income as the instrumental variables for 

squared income per capita in the case where we estimate a nonlinear relationship, see Equation 2. 
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and  

 />,&? = () + (% + α& + 4@ /%,&95 + 4A /%,&96 + 4B /%,&9: + 01%&
2 + C%,& (8) 

where />,&?  is the predicted value of Yi,t. Results for the quality of our instruments are presented 

in Appendix B.2.  

Finally, to consider potential nonlinearity, we also estimate IV models by subgroups (income 

groups) and sub-period. Results are presented in Table 2, section 6. However, several 

econometric problems may still arise from estimating previous equations. Autocorrelation is 

common in panel data, and OLS estimation will determine statistically inefficient coefficient 

estimates in the presence of autocorrelation. Hence, any inferences that we make could be 

misleading. To determine whether the data are autocorrelated, we employ the Modified Wald 

and Wooldridge tests. The statistic for the modified Wald test is 88.551, and the statistic for the 

Wooldridge test for autocorrelation in the panel is 33.8. Both tests reject the null hypothesis 

and indicate the presence of autocorrelation at the one-percent level. Finally, we should 

consider that the panel dataset has a short time dimension (T =25) and a larger country 

dimension (N =173). 

5.3 Unit root test, cointegration and ECM model 

Unit root test, stationarity and cointegration 

With a long series in panel data (long T), the issue of non-stationarity becomes a concern. This 

is why we perform a different unit root test from the first generation, which assumes cross-

section independence between series. The test of Levin, et al. (2002) assumes that all series 

contains a unit root as the null hypothesis against an alternative hypothesis that all panels are 

stationary. Conversely, Im, et al. (2003) as well as the Maddala and Wu (1999) Fisher-type test 

assume as alternative assumptions that at least one series is stationary, and some panels are 

stationary, respectively. Finally, the test of Hadri (2000) assumes that all panels are stationary 

as a null assumption against the alternative that some panels contain unit roots. Unfortunately, 

these tests also assume cross-section independence, which is unlikely to hold in most 

macroeconomic data. We thus also perform the Pesaran (2007) CADF test, which allows for 

cross-section dependence.  
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We also perform several tests of cointegration, among them Kao (1999), Pedroni (2004) and 

Westerlund (2007). All tests lead to the alternative assumption of cointegration. 

 
Error correction model 
 

Our procedure is based on a simple fixed-effects estimation approach, the Mean Group 

estimator provided by Pesaran and Smith (1995) and the Pooled Group estimator model 

introduced by Pesaran, et al. (1997) and Pesaran, et al. (1999). These models are implemented 

through an error correction model as described in Blackburne and Frank (2007). More formally, 

we use this error correction form: 

 

∆#$ =EF%G

H95

GI5

∆#$%,&9G +EJ%G

H

GI)

∆/%,&9G + K%(#$%&95 − 4%/%&) + N% + O%& (9) 

where	K% is the error correction term for the speed of adjustment. It should be negative and 

significant to allow for the use of the error correction model and demonstrate a return to long-

term equilibrium.  4% is the long-term elasticity of material footprint to GDP per capita, while 

J%G is short-term elasticity. The Dynamic Fixed Effects (DFE) models assume the homogeneity 

of all parameters across countries except for intercepts. The Pooled Group Model (PGM) allows 

heterogeneity for not only the correction speed adjustment term but also for slope and intercept 

in the short run while homogeneity holds for the long-term coefficient. The Mean Group 

estimator (MG) assumes heterogeneity across all parameters. Finally, because these models do 

not deal with cross-sectional dependence, we manually introduce cross-section averages for 

material footprint per capita and GDP per capita in order to mitigate the impact of this issue 

(CPMG model, see Binder and Offermanns, 2007). The estimation of these models requires 

balanced panel data. Our main results are presented in Table 4, section 6, and more detailed 

results are presented in Appendix B.3.  

 

5.4 Dynamic model with cross-sectional dependence 

As mentioned previously, using a CD-test for cross-sectional dependence (Chudik and Pesaran, 

2015; Pesaran, 2004), we reject the null hypothesis of cross-section independence. Moreover, 

the GDP variables in GDPit are assumed to be endogenous. Because causality may run in both 

directions – from GDP to material footprint and vice versa – these regressors may be correlated 

with the error term. In addition, time-invariant country characteristics (fixed effects), such as 

geography and time-invariant, may be correlated with the explanatory variables. The fixed 

effects are contained in the error term in equation 10, which consists of the unobserved country-
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specific effects, vi and observation-specific errors eit: uit =vi +eit. Finally, the presence of the 

lagged dependent variable MFit-1 gives rise to autocorrelation.  

Taking into consideration this last assumption, we consider cross-section dependence and 

estimate a dynamic panel-data model with heterogeneous coefficients. This model fits a 

heterogeneous coefficient model in a dynamic panel with dependence between cross-sectional 

units. The model tests for cross-sectional dependence (CD) and also supports instrumental-

variable estimations. Assuming a dynamic panel-data model with heterogeneous coefficients, 

we have:  

 #$%,& = (% + 40% + 41%#$%,&95 + 42%/%,& + 43%1%,& + N%,& (10) 

 N%& = T%U& + 3%& (11) 

where (% is individual fixed effects, ft is an unobserved common factor, gi is heterogeneous 

factor loading, 1%,& is a (1 x K) vector, 42%	is the coefficient of GDP per capita and 43% is the 

coefficient vector. The error 3%,&  is independent and identically distributed, and the 

heterogeneous coefficients are randomly distributed around a common mean. It is assumed that 

1%,&, our vector of control variables for material footprint, is strictly exogenous. In the case when 

static panel model 41% = 0, Pesaran (2006) shows that the mean of the coefficients 41 can be 

consistently estimated by adding cross-sectional means of the dependent and all independent 

variables. The cross-sectional means approximate the unobserved factors. In a dynamic panel-

data model, T1/3 lags of the cross-sectional means are added to achieve consistency (Chudik and 

Pesaran, 2015). In our case, we consider 2 lags.  

The empirical model is estimated using the dynamic common-correlated effects estimator 

(DCCE) proposed by Chudik and Pesaran, 2015:  

 #$%,& = (% + 40% + 41%#$%,&95 + 42%/%,& + 43%1%,& +E(V%W%,X) + N%,& (12) 

where W%,X	is a (1 x K+1) vector including the cross-sectional means at time s and the sum is 

over s=t...t-T1/3. When we introduce the lag of the dependent variable, endogeneity occurs, so 

adding solely contemporaneous cross-sectional averages is no longer sufficient to achieve 

consistency. However, Chudik and Pesaran (2015) show that consistency is gained if lags of 

the cross-sectional averages are added.  

Finally, considering endogeneity of GDP/CAP, we have: 
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 #$%,& = (% + 40% + 41%#$%,&95 + 42%/=%,& + 43%1%,& +E(V%W%,X) + N%,& (13) 

with  

 />,&? = () + (% + 4@ /%,&95 + 4A /%,&96 + 4B /%,&9: + 01%&
2 + C%,& (14) 

                       

                       

6. Results: Relationship between material footprint and economic development 

The main results we obtained with our empirical strategy are summarized below in Table 4. We 

focus on the relationship between material footprint per capita and GDP per capita. Detailed 

results about each step are provided in Appendices B.1, B.2, B.3 and B.4.  
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Table 4 Main results of material footprint per capita elasticity to GDP per capita  

Model Coeff. (std. 
errors) 

Correction of…  Introduction of…  

  Heteroskedasticity Serial 
correlation 

Cross-
sectional 
correlation 

Non-stationarity Instruments Controls Time fixed-
effects 

Obs. 

Linear 
Static FE 0.647 ***(0.051) Yes No No No No No No 4,042 
Static FE 0.742*** (0.084) Yes No No No No Yes Yes 3,377 
Static IV 0.739***(0.091) Yes No No No Yes Yes Yes 3,066 
DCCE 0.888*** (0.077) Yes  Yes Yes No No No No 3,550 
DCCE IV 0.544*** (0.114) Yes Yes Yes No Yes No No 3,211 

Polynomial (Method 1) 
Static FE 
Y 
Y2 

 
0.166 (0.568) 
0.035 (0.034) 

Yes No No No No Yes Yes 3,377 

Static IV 
Y 
Y2 

 
0.923 (0.689) 
-0.011 (0.041) 

Yes No No No Yes Yes Yes 3,066 

DCCE 
Y 
Y2 

 
5.668 (10.953) 
-0.228 (0.585) 

Yes Yes Yes No No No No 3,550 

Sub-periods (Method 2) 
Static 
1990-2003 
2004-2015 

 
0.893***(0.118) 
0.756*** (0.110) 

Yes No No No No Yes Yes 
 
1,660 
1,717 

Static IV 
1990-2003 
2004-2015 

 
1.031*** (0.155) 
0.800*** (0.117) 

Yes No No No Yes Yes Yes 
 
1,350 
1,716 

Static FD  Yes No No Yes No Yes Yes  
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1990-2003 
2004-2015 

0.882***(0.136) 
0.672***(0.103) 

1,553 
1,715 

DCCEa  
1990-2003 
2004-2015 

 
1.330***(0.397) 
1.256***(0.356) 
 

Yes Yes Yes No No No No 

 
1,595 
1,576 

Subgroups (Method 3) 
Static FE 
Non-OECD  
OECD 
 
LI 
LMI 
UMI 
HI 

 
0.689*** (0.092) 
0.788***(0.158) 
 
0.616***(0.128) 
0.699***(0.202) 
0.608***(0.072) 
1.114***(0.158) 

Yes No No No No Yes Yes 

 
2,586 
791 
 
524 
885 
925 
1,043 

Static IV 
Non-OECD  
OECD 
 
LI 
LMI 
UMI 
HI 

 
0.685***(0.102) 
0.954***(0.179) 
 
0.703***(0.159) 
0.751***(0.240) 
0.608***(0.092) 
1.017***(0.155) 

Yes No No No Yes Yes Yes 

 
2,337 
729 
 
470 
805 
837 
954 

DCCEb 
Non-OECD  
OECD 
 
LI 
LMI 
UMI 
HI 

 
0.651***(0.083) 
0.752***(0.106) 
 
0.512***(0.164) 
0.437***(0.140) 
0.845***(0.118) 
0.748***(0.119) 

Yes Yes Yes No No No No 

 
2,764 
786 
 
537 
968 
930 
1,115 

Short-term and Long-term (Method 4) 
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Notes: *, **, *** denote significant at 10, 5 and 1% respectively. 
LT (Long Term), ST (Short Term), LI (Low Income), LMI (Lower Middle Income), HI (High Income), UMI (Upper Middle Income).    
a: results have not been computed due to the lack of observations with a DCCE IV framework 
b: results confirmed with DCCE IV (Non-OECD, 0.587***(0.198), OECD 0.783***(0.213), LI: 0.285 (0.287), LMI: 0.199 (0.208), UMI: 0.805*** (0149), HI: 0.549***(0.172)

ECM PMG 
LT 
ST 

 
0.520***(0.021) 
0.710***(0.123) 

 
No 

 
Yes 

 
No 

 
Yes 

 
No 

 
No 

 
No 

 
3,050 

ECM MG 
LT 
ST 

 
0.647***(0.119) 
0.486***(0.122) 

 
No 

 
Yes 

 
No 

 
Yes 

 
No 

 
No 

 
No 

 
3,050 

ECM CPMG 
LT 
ST 

 
0.867***(0.035) 
0.608***(0.092) 
 

 
No 

 
Yes 

 
No 

 
Yes 

 
No 

 
No 

 
No 

 
2,928 

ECM CMG 
LT 
ST 

 
1.061***(0.125) 
0.430***(0.089) 

 
No 

 
Yes 

 
No 

 
Yes 

 
No 

 
No 

 
No 

 
2,928 
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First of all, whatever the method used, the results show the significance of the GDP/CAP 

parameter on material footprint. All models seem to indicate a strong and permanent link 

between economic growth and development and raw material consumption. In the static 

approach, the results are quite similar, and the values are between 0.64 and 0.74 regardless of 

the estimate model that we adopted or the assumptions and methodological approaches (see 

linear part of Table 4). Another interesting result is obtained for the elasticity of GDP when the 

dynamics of the material footprint are taken into account: The value of GDP is decreasing. 

Ignoring the persistence of material footprint can lead to underestimating the magnitude of 

GDP. The inclusion of dynamics and correction of different econometric issues do not change 

the outcomes (see DCCE and IV DCCE in Appendix B.4 for details). Therefore, the different 

models indicate, at best, relative decoupling.  

The use of a quadratic polynomial relationship in order to capture a nonlinear effect is fruitless. 

Indeed, the parameter to capture a nonlinear effect of income is not significant whatever the 

econometric models used (see the polynomial section of Table 4). This last result argues in 

favour of the absence of a nonlinear relationship between income and material footprint. 

Using methodology 2 (sub-periods), we observe a small decrease of the income elasticities over 

time (see the sub-period section of Table 4). But in any case, the nature of the results does not 

change: Income elasticities are always above zero. 

We also estimate models by income groups18 (see sub-group part of Table 4). Again, the results 

do not show obvious differences in the elasticities of income parameters. All income elasticities 

are always above zero, and there is no sign of decreasing income elasticities through the level 

of development. The use of World Bank or OECD classification does not change the result. 

Lastly, using cointegration models, we measure the difference between long- and short-term 

income elasticities (see the short-term and long-term part of Table 4). All models except ECM 

PMG show increasing income elasticity when passing from the short to the long term. 

In a nutshell, we have checked and tested the elasticity of natural resource consumption relative 

to GDP per capita for different development stages, for different time periods and with a large 

number of controls (economic structure, effect of international trade, demographic structure, 

GDP content/capital formation, urbanization, population density and temporal technological 

 
18  Our results do not show differences in value of income parameter when using quantile regression models. Quantile 
regression results are also available on request. 
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trend). Using different ways to classify countries19, our results show consistency in magnitude 

for GDP elasticities among country groups. We also ensure that the result is robust when using 

other forms of MKC (country consumption instead of consumption per capita)20. 

Overall, we show that the global economy as well as its subgroups do not spontaneously 

strongly decouple from natural resource consumption. There is neither any sign of strong 

decoupling from economic growth nor saturation of raw material demand observable for richer 

countries in different time periods. Even worse, the income per capita elasticity of material 

footprint is relatively constant across different levels of development. Indeed, out of the four 

methodologies employed in this paper, only one is able to weakly confirm a decrease in income 

elasticity of material footprint per capita. 

Robustness checks 

We also check for the robustness of our results by altering our sample (see Appendices B.5 and 

B.6). We reproduce the estimations for different subsections of natural resource consumption, 

see Appendix B.5 (biomass, metals, construction materials, fossil fuels). We get the same 

results (relative decoupling) although we observe, in line with the literature (Krausmann et al., 

2017, 2009; Pothen and Welsch, 2019b; Wiedmann et al., 2015), that biomass has the lowest 

income elasticity. 

Removing three country outliers (Guyana, Brunei, United Arab Emirates) does not impact our 

results (income elasticity increases moderately at 0.898***). If we remove the year 1991 with 

its very specific context, again the income elasticity increases to 0.935 and moves closer to 

unity. Like Pothen and Welsch (2019), we also assess the impact of temporal trend instead of 

using the time-fixed effect. Again, the results are not impacted, and the time trend is not 

significant. Finally, we use a moving average (in order to smooth out cycles) of order 3 and 

order 7 instead of using GDP/CAP as a dependent variable. The results remain consistent for 

elasticity and decoupling (see Appendix B.6).  

Impact of other variables on material footprint 

 
19 Indeed, income groups are based on the World Bank definition and the countries stay in one group only over the period. 
Using the quantile of GDP allows us to see the evolution of one country over the period, but it does not change our conclusions. 
20 Results can be provided on request. 
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The observation of the impact of other controls on material footprint is also informative. In 

contrast to other works based on DMC, structural effect (share of services and industry) seems 

to change the value of material footprint very slightly (elasticity below 0.01). As expected, due 

to the way material footprint is constructed, the higher the share of export in GDP, the lower 

the material footprint is. The reverse is also true when using imports as share of GDP. Again, 

the magnitude of these elasticities is very low. The impact of population density is larger and 

negative (-0.14 and -0.46). We observe no systematic (same sign) or significant impact for the 

other variables. 

7. Discussion 

7.1 Main limitations of the study  

Since our results are based on an aggregated weight indicator, heavy and large flow materials 

dominate the evolution of material footprint. In addition, the results could change through the 

use of other units like volume (see Rogich (1996) for alternative indicators). Other scholars 

argue that economies consume material functionality, which is not a function of the weight or 

volume of raw materials (Cleveland and Ruth, 1998). While we agree with this critique of the 

aggregative weight indicator, we also note that perpetually rising natural resource consumption 

(in weight) is not sustainable, and yet an increasing GDP per capita correlates (at least 

relatively) to increasing material consumption. Moreover, several recent studies show that a 

large portion of energy use and GHG emissions are associated with the extraction of primary 

natural resources (Krausmann, et al., 2017; Smil, 2013; UNEP, 2019); consequently, more GDP 

per capita means more natural resource extraction and thus more energy use and GHG 

emissions (at least in the short term). Some other scholars like Ashby (2013) and Cleveland and 

Ruth (1998) have even shown that lower natural resource consumption does not necessarily 

lead to less pollution when lightweight but energy-consuming materials are substituted for 

heavy materials that use less energy. For instance, in the construction sector, the substitution of 

traditional materials (stone, timber) with alloys and composites often reduces natural resource 

consumption in terms of weight, but the energy and environmental impact of these new 

materials is higher by three to four orders of magnitude (Gutowski, et al., 2017). 

In parallel to this debate on the relationship between primary natural resource consumption 

flow and GDP per capita, another part of the literature using material flow analysis (MFA) pays 
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more attention to the stock in use rather than the flow of raw materials (Müller, et al., 2011) . 

At the same time, this literature tends to corroborate the assumption of saturation of stock in 

use as a function of GDP per capita (logistic growth curve function) although it does not 

statistically show that this evidence outweighs other possibilities (Krausmann, et al., 2017). 

Moreover, the timing of the inverted U relationship in reaching the peak of global raw material 

demand (if possible) is incompatible with the factor 4 claims made as part of the fight against 

global warming (Gutowski, et al., 2017; Krausmann, et al., 2017). One can draw the same 

conclusion for the environmental degradation that would carry on through an increasing flow 

of raw material consumption (even at a decreasing rate). The rare recent studies that have found 

confirmation for the MKC curve have demonstrated that the inflection point21 would be well 

ahead of the current GDP per capita of most countries. For instance, Pothen and Welsch (2019) 

provide a figure of $125,959 per capita for a potential inflection point, which is higher than the 

maximum income of their sample. Even if we suppose that this is true, at the current rate of 

progress of global GDP per capita (2% per year), it would take more than a century to reach 

this level. Unfortunately this timing is inadequate for the most pressing environmental and 

resource issues (Steffen, et al., 2015). 

We confirm here the results of Wiedmann, et al. (2015) indicating that conversely to the DMC 

indicator, material footprint does not confirm the MKC hypothesis through the impact of 

development (previously due to the effect of development on structural country production 

composition). However, we should be cautious about these first results because we are not able 

to control for the precise nature of GDP consumption (composition of goods and services in 

final demand). Nevertheless, we think that the potential bias resulting from this omission should 

not be so decisive. First, reversing the results obtained here would require that higher income 

countries experience a smaller increase in the services/goods ratio of their final demand 

consumption. Second, according to two different arguments put forward by Simpson, et al. 

(2005) and Kander (2005), it is unlikely that increasing the share of services over goods in final 

demand consumption naturally leads to less demand for materials. To begin with, if we follow 

the Baumol disease argument, we can scarcely grasp whether or not our economies are 

gradually switching to services because service sectors have seen lower productivity gains than 

have industrial sectors. The increasing share of services in GDP (in terms of added value) or 

the surge of the share of labour working in this area thus does not mean that we consume more 

 
21 The inflection point corresponds to the level of GDP per capita from which the material consumption starts to 
decline (income elasticity <0). 



 
 

29 

services and fewer goods. Furthermore, lifecycle analysis is now increasingly showing that 

most services have a substantial material and energy base. The high energy and raw material 

requirements for internet infrastructure and data centres are good examples.  

7.2 Future studies and other issues to consider 

With regard to the role of public policies, as promoted and conceptualized by international 

organizations and several scholars, decoupling economic growth from material footprint is a 

widespread attempt to decarbonize economic activities and ensure well-being; however, there 

is no empirical evidence of this phenomenon. It is also true that there is no proof that strong 

decoupling is definitively out of reach because the incentives for decoupling are fairly weak 

(due to low commodity prices). The UNEP has laid out the challenges and opportunities for 

decoupling if the appropriate policies are considered. This require reducing pressures on limited 

resources, climate and the environment in general through technological innovation, 

infrastructure conducive to resource-efficient and low material intensity manufacturing and 

living, and appropriate attitudes and consumption patterns (UNEP, 2011; UNEP, 2014). For 

instance, the technical potential to reduce demand for energy through energy efficiency appears 

to be on the order of 50-80 per cent (factor two-five) for most technical systems (Smith, et al., 

2007). Yet institutional, behavioural, organizational and technological barriers to decoupling 

still exist. Facilitating decoupling will thus require removing these barriers and overcoming the 

“lock-in”.  

With regard to the role of technical change, several international organizations and scholars are 

also calling for an increasing role for R&D investments in material efficiency in order to 

decouple GDP per capita (and economic growth) from natural resource consumption. In this 

context, many specialized studies and books have shown that great efficiency gains are always 

possible (UNEP, 2011). Unfortunately, again, strong decoupling is hindered by material 

rebound effects in many sectors (Cleveland and Ruth, 1998). For instance, according to 

different scholars (Gutowski, et al., 2017; Smil, 2013), despite an unprecedented pre-emptive 

technical change (silicon material efficiency per unit of computation has been multiplied by 10 

million between 1970 and 201022), the silicone consumption of the informatics sector has 

increased by a factor of 60 in the same period. The inability of material efficiency to compensate 

for economic growth in material consumption is also pointed to by Dahmus (2014) at the 

 
22 Thanks to Moore's law. 
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sectorial scale. In particular, this study shows that the reach of absolute decoupling is more 

likely associated with a low growth in sales than with fast growth in material efficiency. 

We also need to go beyond pro-growth or de-growth concerns. Simon Kuznets, considered the 

father of the modern concept of GDP, warned the US Congress in 1934, "The welfare of a 

nation can scarcely be inferred from a measurement of national income." We can directly 

deduce from this quote that it is high time to explore the relationship between raw material 

consumption and welfare rather than the link between economic growth and natural resources. 

Economists often point out that economic growth is not an indicator (not even a proxy) of a 

country’s welfare. But we observe that the existing literature is heavily focused on the GDP 

indicator rather than welfare indicators (exceptions are Mayer, et al. (2017); Steinberger and 

Roberts (2010); Steinberger, et al. (2012)). If governments follow the growth of national 

welfare rather than the increase of economic activity, they urgently need detailed economic 

studies on how to measure welfare and decouple it, if possible, from raw material consumption. 

8. Conclusion  

In this study, thanks to a new index of raw material consumption (material footprint), we 

analyse the relationship between material footprint per capita and GDP per capita for 164 

countries over the 1990-2015 period. Using this large panel dataset and four different 

methodologies, we test whether economic development leads spontaneously to absolute 

decoupling of raw materials. This assumption is often known as the intensity of use hypothesis 

or the Material Kuznets Curve. Applying a wide range of econometric models to the largest 

material footprint database, we observe signs neither of absolute decoupling nor of the 

possibility of an inflection point (decreasing raw material income elasticity). Our results also 

underline the need for new studies on the possibility of decoupling welfare from economic 

growth and raw material consumption.
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Appendix 

Appendix A– demonstration of the relationship between the bell-shaped intensity of use 

hypothesis and the Material Kuznets Curve 

 
As indicated in the introduction, two independent corpora on the relationship between material 
consumption and income propose to demonstrate a nonlinear relationship. We can link the two 
streams of literature by slightly adapting some of the methods of Steinberger and Krausmann 
(2011). 
The first one – the bell-shaped intensity of use hypothesis - explores the relationship between 
natural resource intensity of income and income: 

!
" = $(&) ↔

!
)
"
)
= $(&) ↔ *

& = $(&) 

where C is total material consumption, Y the GDP, P the population, c material consumption 
per capita and y GDP per capita. 
The second one, Material Kuznet Curve (MKC), posits a relationship between material 
consumption per capita (metabolic rate) and GDP per capita: 

* = $(&) 
Most of the studies in this second corpus have found that the following log-log relationship 
exists:  

c = exp(a) ∗ y2 ↔ log(*) = 	7 + 9 ∗ log	(&) 
 
If we substitute the description of c in the previous equation into the definition of resource 
intensity, we have: 

:;<=;>?<& = *
& =

exp(7) ∗ &@
&  

which we reformulate as: 
 
 

:;<=;>?<& = exp(7) ∗ &@AB 
 
Thanks to this last equation, we see that the income elasticity of intensity (d=b-1) and the 
income elasticity of material consumption per capita (b) have a similar form. 
 
Now suppose that there is a nonlinear inverted-U relationship between c and y. This means that 
the income elasticity of c (b) will be sizable for low-income countries, then lower for medium-
income countries and even lower for high-income countries. We can even imagine that b 
becomes negative and a decrease in consumption (MKC) appears after a certain income 
threshold. In this context, the MKC will translate mechanically to a bell-shaped intensity of use, 
confirming that the two literatures examine the same question (see application in the figure 
below). 
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B. Empirical results 

B. 1 Detailed results for RE, FE, FGLS and IV methods 

Table B.1 presents all of the results presented above using RE, FE, FGLS and IV methods.  

Table B.1: RE, FE and IV methods.
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Notes: Robust bootstrapped (5000 replications) standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1. NL (Nonlinear).  The second, third and fourth lag of income 
log and square of income log are used as instruments in IV estimations for income log and square of income log. For more details about the quality of instruments, see 
Appendix B.2.  

VARIABLES 

FE W/o Year 
Fixed effects – 

No control 

FE W/o Year 
Fixed effects 

FE RE FE NL IV IV NL 

        
GDP/CAP (log) 0.632*** 0.796*** 0.742*** 0.756*** 0.166 0.739*** 0.923 
 (0.0220) (0.0331) (0.0330) (0.0263) (0.203) (0.0914) (0.689) 
GDP2/CAP (log)     0.0345***  -0.0108 
     (0.0121)  (0.0405) 
Gross Capital Formation  0.000505 0.000658 0.000393 0.000869 0.00223 0.00216 
  (0.00111) (0.00105) (0.00101) (0.00102) (0.00180) (0.00183) 
SERV %  -0.00100 -0.00205 -0.00366*** -0.00281** -0.00243 -0.00219 
  (0.00142) (0.00137) (0.00134) (0.00134) (0.00353) (0.00323) 
INDUS %  -0.00351** -0.00427*** -0.00525*** -0.00453*** -0.00540 -0.00531* 
  (0.00145) (0.00131) (0.00131) (0.00128) (0.00339) (0.00320) 
IMPORT % GDP  0.00357*** 0.00300*** 0.00321*** 0.00293*** -0.503** -0.528* 
  (0.000917) (0.000862) (0.000825) (0.000867) (0.245) (0.296) 
EXPORT % GDP  -0.00350*** -0.00274*** -0.00269*** -0.00271*** -0.00549 -0.00563 
  (0.000906) (0.000831) (0.000788) (0.000848) (0.00810) (0.00841) 
POPDENSITY (log)  -0.460*** -0.462*** -0.141*** -0.382*** -0.0356 -0.0351 
  (0.0485) (0.0847) (0.0211) (0.0990) (0.0251) (0.0239) 
Age<14  -0.00200 -0.00241 -0.00235 -0.00196 0.00254* 0.00257* 
  (0.00299) (0.00272) (0.00260) (0.00276) (0.00138) (0.00140) 
Age>65  -0.0143** -0.0208** 0.00350 -0.0229** -0.00224 -0.00226 
  (0.00658) (0.00950) (0.00554) (0.00934) (0.00152) (0.00152) 
Constant   0.281*** 0.273*** 0.281*** -2.019 -2.678 
   (0.0515) (0.0520) (0.0504) (1.742) (2.307) 
Year fixed effects No No Yes Yes Yes Yes Yes 
Observations 4,042 3,377 3,377 3,377 3,377 3,066 3,066 
R-squared 0.276 0.377 0.428 0.4206 0.430 0.4555 0.4554 
Number of countries 163 154 154 154 154 154 154 
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B.2 IV estimates – Tests 

B2.1 GDP/CAP only 

B2.1.1 Lagged variables as instruments 

To consider the potential endogeneity of the GDP per capita variable, we use an instrumental 
variable with fixed effects. We rely on the two-stage least-squares within estimator (Baltagi, 
2008). As instruments, we use the lags of GDP per capita (lag 1, lag 2 and lag 3). According to 
Robert (2015), lagged variables can be suitable instruments.  

We can test for both under-identification and weak identification. The under-identification test 
is an LM test of whether the equation is identified, i.e. that the excluded instruments are 
relevant, meaning that they are correlated with the endogenous regressors. Weak identification 
arises when the excluded instruments are only weakly correlated with the endogenous 
regressors (Stock and Yogo, 2005).  

We explore the degree of correlation between the instruments and the endogenous regressor. 
Our exogenous variable can be considered a valid instrument if it is correlated with the included 
endogenous regressors but uncorrelated with the error term.  

We can gauge the validity of the instruments. The null hypothesis of each test is that the set of 
instruments is weak. To perform the Wald tests, we choose a relative rejection rate of 5%. If 
the test statistic exceeds the critical value, we can conclude that our instruments are not weak. 
In our model, the Cragg-Donald Wald F statistic is 2621.218 and largely exceeds the critical 
value (10%, 22.30; 15%,12.83; 20%, 9.54; 10%, 7.80). Our instruments are not weak. These 
results are corroborated with the Anderson-Rubin test and the Stock-Wright LM statistic, where 
the respective F statistic is equal to 38.70 and chi-square (3) equals 117.26.   

In an instrumental variables (IV) estimation, it is also important to test whether the excluded 
instruments are valid IVs or not, i.e., whether they are uncorrelated with the error term and 
correctly excluded from the estimated equation. We perform the Sargan test of the null 
hypothesis that the excluded instruments are valid instruments. The p-value of χ2 is equal to 
0.169 for a Sargan statistic equal to 3.551. The instruments are therefore valid, and the GDP/cap 
is endogenous to the material footprint per capita. Finally, we apply a bootstrap correction on 
the variance covariance matrix to avoid bias in the interpretation of the coefficient’s 
significance level. The results are presented in Table B.2.1 below. The results show that we 
need to introduce the three lags of GDP/cap to avoid endogeneity.  

Table B.2.1: Summary results for first-stage regressions 

 

GDP/CAP (log) Coef. Std. Err. 
    
GCF 0.0010 0.0004 ** 
Agriculture -0.0005 0.0003 NS 
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Industry 0.0003 0.0004 NS 
ImportGDP -0.0001 0.0003 NS 
ExportGDP 0.0003 0.0003 NS 
Popdensity -0.0183 0.0197 NS 
Age14 -0.0026 0.0008 *** 
Age65 -0.0021 0.0016 NS 
Lag 1 GDP/CAP (log) 1.1556 0.0510 *** 
Lag 2 GDP/CAP (log) -0.1413 0.0552 ** 
Lag 3 GDP/CAP (log) -0.1025 0.0283 *** 
  
F( 3, 153) = 1835.59   
R2 0.99         

*, **, *** denotes significance at 10, 5 and 1% respectively. Test without time-series operator. 
 

The same tests are then performed with more lags (lag 2, lag 3 and lag 4; and lag 3, lag 4 and 
lag 5). The results are the same. The instruments are only slightly exogenous (the p-value of 
the Sargan test equals 0.19 and 0.33 respectively). However, considering the loss of 
observations, we prefer the regression with the first three lags.  

B.2.2 GDP/CAP and square of GDP/CAP 

In this step, we proceed in the same way as previously except we consider two endogenous 
variables, the GDP/CAP and the square of GDP/CAP. As instruments, we use the lags of GDP 
per capita (lag 1, lag 2 and lag 3) and the lags of GDP squared per capita (lag 1, lag 2 and lag 
3) respectively. 

In our model, the Cragg-Donald Wald F statistic is 1491.5 and largely exceeds the critical value 
(10%, 21.68; 15%,12.33; 20%, 9.10; 10%, 7.42). Our instruments are not weak. These results 
are corroborated with the Anderson-Rubin test and the Stock-Wright LM statistic, where the 
respective F statistic is equal to 20.27 and chi-square (3) equals 122.92.   

We perform the Sargan test of the null hypothesis that the excluded instruments are valid. The 
p-value of χ2 is equal to 0.131 for a Sargan statistic equal to 7.077. 

 

B.2.3 Infant mortality variables as instruments 

There are theoretical issues related to the exogeneity to material footprint of the instrument used 
in Pothen and Welsch (2019) to perform their IV regression. It is true that we need huge 
quantities of raw materials in order to ensure an adequate and effective health system. Thus, it 
is very likely that there is a relationship between the infant mortality rate and material footprint. 
We are, however, sceptical about the use of the infant mortality rate (and the lag of this same 
variable) as an instrument of GDP/CAP in an instrumental regression of material footprint. We 
also question the econometric validity of this instrument as demonstrated below. 
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In our model, the Cragg-Donald Wald F statistic is 20.165 and exceeds the critical value (10%, 
19.93; 15%,11.59; 20%, 8.75; 10%, 7.25). This instrument is not weak. These results are 
corroborated with the Anderson Rubin test and the Stock-Wright LM statistic, where the 
respective F statistic is equal to 9.03 and chi-square (3) equals 16.49   

In an instrumental variables (IV) estimation, it also is important to conduct a test on whether 
the excluded instruments are valid IVs or not, i.e., whether they are uncorrelated with the error 
term and correctly excluded from the estimated equation. We perform the Sargan test of the 
null hypothesis that the excluded instruments are valid. The p-value of χ2 is equal to 0.0390 
The instrument is therefore not valid and the lagged for GDP/cap variables are more suitable.  

B.3 Unit root test, cointegration and VCE model 

Unit Root test and Cointegration  

At the end of the process, the different results do not converge. Indeed, the Hadri test assumes 
that material footprint per capita and GDP per capita are I(1), opening the possibility to check 
for cointegration behaviour. Maddala and Wu (Maddala and Wu, 1999), LLC and IPS tests find 
that material footprint per capita is I(0) while GDP per capita is I(1), thus forcing us to analyse 
the relation in difference where the two series are I(0). Finally, Pesaran CADF tests point to 
two stationary variables in level (I(0)). To ensure the robustness of our results, we check 
successively the relationship in level only, in difference and through an error correction model. 
All other control variables follow an I(0) process according to the Maddala and Wu test. 
  

Test MF cap 
MF cap 
(diff) GDP cap GDP cap (diff) 

IPS (lags = AIC) 
-

10.0469*** -64.68*** 7.22 -31.87*** 
Levin-Lin-Chu* (Lags = 
AIC) -8.7873*** -55.05*** 0.33 -27.49*** 
Hadri* 91.23*** -4.32 154.95*** 6.83*** 
Maddala and Wu (lags 
=1) 885.7*** 6791.89*** 276.4 2152.66*** 
CIPS (lags =0) -6.888*** -38.904*** -1.599* -25.523*** 
CIPS (lags =1) -12.887*** -24.988*** -4.216*** -15.597*** 

Note: When possible, we use the AIC to select the number of lags for each country. The tests indicated an optimal 
average number of lags of 0.99. *For Hadri and LLC tests, we need balanced data (this reduces the number of 
countries from 168 to 122). *, **, *** denote significance at 10, 5 and 1% respectively.  
 

Controls Maddala and Wu (lags =1) 
Industry share 457.53*** 
Agriculture 
share 898.37*** 
GCF 655.88*** 
AGE14- 1201.75*** 
AGE65+ 438.94*** 
Popdensity 2861.74*** 
Export GDP 
share 613.68*** 
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Import GDP 
share 593,37*** 

*, **, *** denote significance at 10, 5 and 1% respectively.  
 

For our data, all the tests in their different configurations converge toward the alternative 
assumption of cointegration. We favour the Westerlund test, which is robust to cross-section 
dependence with the use of bootstrap replications in order to obtain robust critical values (see 
Persyn and Westerlund, 2008). 

Statistic Value Z-value P-value Robust P-value 
     Gt        -2.780     -12.325      0.000          0.000      
     Ga        -8.445      -2.644      0.004          0.020      
     Pt       -36.764     -20.896      0.000          0.000      
     Pa        -8.929     -11.690      0.000          0.000      

Table Results from Westerlund cointegration test with 100 bootstrap replications 
 

Table B.3 Results for ECM model 

 d.lMFtotalhab DFE MG PMG C-PGM C-MG 
Long run      

GDP/CAP 
0.6016574***  
(.0371275) 

.6466052*** 
(.1189762) 

0.5203143*** 
(.0206745) 

0.8665027*** 
(.0352299) 

1.0613*** 
(.1252769) 

      
Short run      

Ect 
-.3364829*** 
(0.01312) 

-.4957123*** 
(0.0268271) 

-.3477536*** 
(0.0225852) 

-.5589647*** 
(0.0298074) 

-.7110084*** 
(0.0275359) 

d.GDP cap 
.3504556*** 
(0.0538777) 

.4862356*** 
(0.1219066) 

.7104061*** 
(0.1233366) 

.6081304 *** 
(0.0924806) 

.4297495*** 
(0.0890504) 

Intercept 
-1.147546*** 
(0.1204579) 

-1.393537*** 
(0.3560395) 

-.9273284*** 
(0.0611587) 

.3454524*** 
(0.4393837) 

.4807935 
(0.7274385) 

      

      
Av. Cross-section NO NO NO YES YES 
Av. Cross-section lags 1 NO NO NO YES YES 
Av. Cross-section lags 2 NO NO NO YES YES 
CD test   70.87*** 80.75***  -1.17 4.60*** 

Note: according to Hausman tests, c-mg estimators are not different from c-pmg estimators. H=1.92 (p=0.15). *, 
**, *** denote significance at 10, 5 and 1% respectively.  
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B.4 Results for dynamic common-correlated effects estimator (DCCE)   

 Linear IV 
VARIABLES DCCE  DCCE  Non-OECD OECD LI  LMI  UMI  HI  

         
GDP/CAP  0.888*** 0.544*** 0.587*** 0.783*** 0.284 0.199 0.804*** 0.549*** 

 (0.0766) (0.114) (0.197) (0.213) (0.287) (0.209) (0.149) (0.172) 
MF/CAP (lag) 0.191*** 0.243*** 0.170*** 0.256*** 0.179** 0.258*** 0.192*** 0.377*** 

 (0.0237) (0.030) (0.035) (0.055) (0.077) (0.051) (0.042) (0.047) 
Observations 3550 3211 2499 712 489 872 840 1010 
No. countries 160 157 122 35 24 42 41 50 
R-squared 0.47 0.40 0.16 0.62 0.34 0.22 0.47 0.54 
Notes: *, **, *** denote significance at 10, 5 and 1% respectively. 
LI (Low Income), LMI (Lower Middle Income), HI (High Income), UMI (Upper Middle Income).    
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B.5 Regression by subcomponent of material footprint 

 

Notes: *, **, *** denotes significance at 10, 5 and 1% respectively. 
LI (Low Income), LMI (Lower Middle Income), HI (High Income), UMI (Upper Middle Income).    

 

 

 

B.6 Robustness checks 

VARIABLES Non-OECD OECD LI LMI UMI HI 
  Metal 
GDP/CAP (log) 0.818*** 0.663*** 0.505*** 0.752 0.648* 0.497*** 0.668*** 
 (0.201) (0.214) (0.151) (0.598) (0.350) (0.181) (0.161) 
MF metal/CAP (lag) 0.338*** 0.348*** 0.488*** 0.389*** 0.385*** 0.377*** 0.424*** 
 (0.0241) (0.0274) (0.0422) (0.0720) (0.0469) (0.0452) (0.0411) 
Observations 3,406 2,643 763 508 922 909 1,067 
R-squared 0.485 0.481 0.346 0.444 0.390 0.420 0.432 
  Mineral 
GDP/CAP (log) 0.471*** 0.412*** 0.485 0.0495 0.223 0.594*** 0.714*** 
 (0.133) (0.129) (0.336) (0.270) (0.296) (0.189) (0.274) 
MF 
minerals/CAP(lag)  0.263*** 0.265*** 0.411*** 0.164*** 0.358*** 0.252*** 0.388*** 

 (0.0257) (0.0279) (0.0483) (0.0569) (0.0491) (0.0510) (0.0401) 
Observations 3,406 2,643 763 508 922 909 1,067 
R-squared 0.531 0.595 0.386 0.758 0.487 0.544 0.440 
  Biomass 
GDP/CAP (log) 0.293*** 0.236*** 0.0854 0.397** -0.0762 0.0408 0.440*** 
 (0.0806) (0.0898) (0.146) (0.171) (0.193) (0.132) (0.143) 
MF 
biomass/CAP(lag)  0.204*** 0.199*** 0.392*** 0.203*** 0.176*** 0.291*** 0.409*** 

 (0.0254) (0.0327) (0.0527) (0.0576) (0.0607) (0.0574) (0.0442) 
Observations 3,406 2,643 763 508 922 909 1,067 
R-squared 0.629 0.678 0.533 0.708 0.541 0.618 0.407 
  Fossil fuels 
GDP/CAP (log) 0.598*** 0.0513 0.462*** 0.224** 0.749*** 0.518*** 0.584 
 (0.145) (0.130) (0.121) (0.104) (0.163) (0.196) (0.453) 
MF 
biomass/CAP(lag)  0.284*** 0.526*** 0.270*** 0.515*** 0.247*** 0.333*** 0.287*** 
 (0.0256) (0.0466) (0.0301) (0.0400) (0.0466) (0.0513) (0.0673) 
Observations 3,406 763 2,643 1,067 909 922 508 
R-squared 154 0.393 0.399 0.359 0.580 0.535 0.219 
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VARIABLES 
without 
1991 

without 
outliers 

Moving average (MA) order 3 Moving average (MA) order 7 

 
   

Non-OECD OECD 
 

Non-OECD OECD 
GDP/CAP  0.935*** 0.898*** 

      

 (0.0799) (0.0780) 
      

MF/CAP(lag) 0.152*** 0.190*** 0.128*** 0.155*** 0.315*** 0.209*** 0.146*** 0.253*** 

 (0.0230) (0.0240) (0.0262) (0.0299) (0.0570) (0.0304) (0.0343) (0.0650) 
MA order 3 

  
1.064*** 0.762*** 0.832*** 

   

 
  

(0.106) (0.118) (0.147) 
   

MA order 7 
     

0.586*** 0.730** 0.840*** 

 
   

2,63 746 (0.210) (0.323) (0.243) 
 

   
0.589 0.347 

   

Observations 3,417 3,481 3,376 2,133 607 2,740 2,133 607 
R-squared 0.514 0.452 0.513 0.589 0.347 0.576 0.648 0.320 
No. of 
countries 

160 157 160 125 35 157 122 35 

Notes: *, **, *** denote significance at 10, 5 and 1% respectively. 
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