
  

 

Pollution and infectious diseases 

 
Stefano Bosi - David Desmarchelier 

 WP 2016.22 

  

 
 
 

Suggested citation: 
 
S. Bosi , D. Desmarchelier (2016). Pollution and infectious diseases. 
FAERE Working Paper, 2016.22. 
 

 
 

  
ISSN number: 2274-5556 

 
www.faere.fr 

 

http://www.faere.fr/


Pollution and infectious diseases∗

Stefano BOSI† David DESMARCHELIER‡

May 16, 2016

Abstract

Recent empirical contributions highlight the negative impact of pollu-
tion on labor supply. This relationship is explained by two mechanisms:
(1) pollution modifies agents’ work-leisure trade-off as it deteriorates their
working conditions (incentive effect); (2) a polluted environment is likely
to generate more frequent epidemic outbreaks and to affect agents’ im-
mune systems (health effect). Bosi et al. (2015) explore the aggregate
consequences of the incentive effect and show that it can generate en-
dogenous fluctuations of the economic activity. The present paper rather
focuses on the health effect as we study a Ramsey model augmented with
the spread of infectious disease. We find that industrial pollution may
generate limit cycles around an endemic steady state. More precisely, the
economic system may undergo a transcritical bifurcation followed by two
Hopf bifurcations near this steady state.
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1 Introduction

Recent empirical contributions highlight the negative effect of pollution on la-
bor supply (Graff Zivin and Neidell (2014), Carson et al. (2011), Hanna and
Oliva (2014)). By studying a database on industrial activities in Mexico City,
Hanna and Oliva (2014) find that a one-percent increase in air pollution re-
duces the number of worked hours by 0.61 percent. On a theoretical ground,
two mechanisms contribute to explain this negative impact: (1) an incentive
effect through which pollution affects people’s work-leisure trade-off by deteri-
orating their working conditions (Bosi et al. (2015)), and (2) a health effect,
through which pollution weakens agents’ immune systems and increases the like-
lihood of epidemic outbreaks (Caren (1981)). Consequences of the health effect
on economic activities are potentially important, as illness is recognized as one
of the main causes of work absenteeism (Akazawa et al. (2003)).

In their study of the incentive effect, Bosi et al. (2015) use a discrete time
Ramsey model in which pollution and labor are non-separable variables of the
utility function. In this model, periodic cycles may arise around the steady state
through a flip bifurcation when pollution increases labor disutility. Departing
from this result, we propose to address the issue of endogenous cycles when the
aforementioned health effect operates. Intuition indeed suggests that if pollution
affects agents’ immune systems, then labor supply should decrease, which, in
turn, should lead to a smaller production and so on. This potential rationale
for macroeconomic volatility is grounded on a solid body of medical evidence
on the effect of pollution immune systems (Caren (1981), Bauer et al. (2012)).

In mathematical epidemiology, disease spreading is usually represented by a
dynamic system describing the evolution of healthy and unhealthy populations
(Hethcote (2009)). The most fundamental of these models is the SIS model
(Susceptible-Infected-Susceptible). It explains the spread of an endemic disease
for which recovery does not confer immunity: individuals move from the suscep-
tible class (S) to the infective one (I), and then go back to the susceptible class
(S). SIS dynamics notably succeed in describing the spread of gonorrhea, cha-
gas disease or Rocky Mountain spotted fever (Hethcote and Van den Driessche
(2000)).

Inter-disciplinary contributions, mixing models of disease spreading with
microeconomic foundations often held interesting and counter-intuitive results.
For instance, a conventional view in mathematical epidemiology suggests that a
higher ratio of HIV infected individuals implies more new infections in following
periods, while Geoffard and Philipson (1996), by allowing agents to perform mi-
croeconomic trade-offs, rather argue that this larger ratio could in fact generate
a drop in new infections, as it provides strong incentive for condom adoption.
Delfino and Simmons (2000) study the evolution of infected and healthy indi-
viduals in a Lotka-Volterra system, augmented with parameters functions of
economic variables. They show that, in these conditions, multiple steady state
arise. Gersovitz and Hammer (2004) focuses on a dynamic cost-benefit analysis
between public prevention and therapeutic efforts, and they compare the cen-
tralized and the decentralized solution. They recommend government to levy
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taxes for maximizing social welfare.
One of the first attempts to introduce infectious diseases in capital accumu-

lation models is provided by Goenka and Liu (2012). They embed a SIS model
in a discrete-time Ramsey economy with endogenous labor supply. While labor
force is exclusively composed by healthy individuals, these latter tune their la-
bor supply via a consumption-leisure arbitrage. When studying the aggregate
dynamics of the model, they find that periodic cycles and chaotic dynamics arise
for highly infectious diseases. Goenka et al. (2014) develops a continuous-time
version of this model, augmented to take in account optimal health expendi-
tures. In this version of the model, labor supply is inelastic, and therefore, the
aggregate labor supply inherits the dynamics of the susceptible class. Goenka
et al. (2014) assume that spending on public health affects the parameters of
infection, namely the probability being infected and the time of recovery. The
study also focuses only on the social planner solution. Through a local analysis,
Goenka et al. (2014) exclude the possibility of endogenous cycles.

We challenge this latter conclusion by considering an economy in which
pollution deteriorates the household’s immune system. Our model is similar to
the one used by Goenka et al. (2014) in the sense that it is a continuous-time
Ramsey economy where only healthy individuals work. However, we focus on
a competitive economy rather than on a planned one. In our model, pollution
is an externality generated by production. It increases both the probability of
being sick and the time of recovery. The economy exhibits one or two steady
states: a disease free and an endemic one. When studying the local dynamics
around these steady states, we find two limit cycles (stable and unstable) near
the endemic steady state when pollution becomes excessive. Thus, contrary to
Goenka et al. (2014), we find similarities between the health effect and the
incentive effect (Bosi et al. (2015)), as both situations generate endogenous
macroeconomic cycles around the steady state.

The rest of the paper is organized as follows. We introduce the model and
we derive the dynamic system in Sections 2 and 3. In Section 4, we compute
the steady state and we formulate the conditions for its existence and unique-
ness. Section 5 provides general conditions for local bifurcations and indetermi-
nacy of a three-dimensional system. We also consider the dynamics around the
disease-free and around the endemic steady states. We then propose a numerical
illustration in Section 6. Section 7 concludes.

2 Fundamentals

We consider a continuous-time Ramsey economy with an endemic disease. As
in Goenka et al. (2014), the labor supply consists only of healthy people but a
pollution externality, coming from production, impairs the household’s immune
system.

3



2.1 Disease

Epidemiologists use the SIS model to study the spread of endemic diseases.
Population (N) is divided in two classes: susceptible (S) and infective (I) with
S + I = N . The proportion of susceptible and infective are given by s = S/N
and i = I/N . β > 0 denotes the average number of adequate contacts (sufficient
to transmit the disease) of an infective per unit of time and S/N the probability
to face a susceptible during a contact. Thus, βS/N is the average number of
adequate contacts with susceptibles of one infective per unit of time, while the
number of new infectives per unit of time is given by βIS/N . An infective
is seek during a period of time after which he recovers and becomes a new
susceptible (γ = −İ/I is the recovery rate in absence of new contamination, a
sort of exponential decay rate from infection). Indeed, the SIS model postulates
that the infection does not confer immunity. In the following, for the sake of
simplicity, we will omit the time argument t.

The evolution of S and I over time is simply given by:

Ṡ = −β
I

N
S + γI (1)

İ = β
I

N
S − γI (2)

In an oversimplified world with no births, no deaths, no migrations, the
population remains constant over time. Therefore, N = S + I gives Ṡ + İ = 0
and equation (1) becomes:

ṡ = (1− s) (γ − βs) (3)

As in Goenka et al. (2014), we assume that the labor force (L) consists only
of healthy people: L = S. Since l = L/N ≤ 1, l inherits the dynamics of s:

l̇ = (1− l) (γ − βl) (4)

We can see that (4) exhibits two steady state: l = 1 and l = γ/β with γ < β.
The first one is called disease-free because the disease disappears while the other
is called endemic because the disease persists. As seen above, some medical
evidence highlights the negative effects of pollution (P ) on the immune system
(Caren (1981), Bauer et al. (2012)) and supports the theoretical assumption of
β and γ and as increasing and decreasing functions of P respectively.

Assumption 1 The function β (P ) : R+ → R+, is C2 with β′ (P ) > 0,
limP→0 β (P ) = 0 and limP→+∞ β (P ) = +∞. γ (P ) : R+ → R+ is also C2

with γ′ (P ) < 0, limP→0 γ (P ) = +∞ and limP→+∞ γ (P ) = 0.

Pollution is a negative externality. Theorists are used to introduce external-
ities in the fundamentals (production or utility functions). The impact of pol-
lution on preferences has been largely considered in economic literature (Heal
(1982), Itaya (2008), Fernandez et al. (2012), Bosi et al. (2015) among others).
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The channel we focus on is different: pollution affects the economy by rendering
diseases more infective and reducing labor supply in turn. The drop in labor
supply is not a straight result of the consumption-leisure arbitrage as in Bosi et
al. (2015), but comes from an incapacity to work due to the infectious disease.
We aim at understanding how the sensitivity of the immune system to pollution
(captured by the shapes of β and γ with respect to P ) promotes the occurrence
of economic fluctuations through the channel of labor supply.

2.2 Preferences

The household earns a capital income rh and a labor income ω, where r and
h denote respectively the real interest rate and the individual wealth at time t.
Income is consumed and saved/invested according to the budget constraint:

ḣ ≤ (r − δ)h+ ω − c (5)

In this model, healthy people work while sick people don’t. However, for
simplicity, we assume a perfect social security, that is a full unemployment
insurance in the case of illness. Healthy and sick agents earn the same labor
income ω. L healthy people supply one unit of labor at a wage w. Under
a balanced-budget rule for social security, we obtain ωN = wL. Therefore,
ω = wl.

Gross investments include the capital depreciation at the rate δ. For simplic-
ity, the population of consumers-workers is normalized to unity: N = 1. Such
a normalization implies L = Nl = l, K = Nh = h and h = K/N = kl.

The household’s preferences have standard properties.
Assumption 2 Preferences are rationalized by a C2 felicity function u :

R+ → R+ with u′ (c) > 0, u′′ (c) < 0, limc→0 u′ (c) = +∞ and limc→+∞ u′ (c) =
0.

The illness lowers labor supply and the individual income in turn. The
fundamental link between labor supply and pollution is represented by equation
4 with Assumption 1. The agent maximizes the intertemporal utility function
∫∞

0 e−ρtu (c) dt under the budget constraint (5), where ρ > 0 is the rate of time
preference. Setting the Hamiltonian H = e−ρtu (c) + µ [(r − δ)h+ ω − c] and
deriving the first-order conditions ∂H/∂c = 0, ∂H/∂h = −µ̇ and ∂H/∂µ = ḣ,
we get

ḣ = (r − δ)h+ ω − c (6)

ċ = ε (c) (r − δ − ρ) c (7)

where ε (c) ≡ −u′ (c) / [cu′′ (c)] is the elasticity of intertemporal substitution,
jointly with the transversality condition limt→+∞ µh = limt→+∞ e−ρtu′ (c)h =
0.

By definition, a central planner internalizes the infectious diseases. Con-
versely, in a market economy, households take pollution as given. In mathe-
matical terms, pollution is no longer a maximization argument and the model
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becomes more tractable because the joint concavity of Hamiltonian with respect
to consumption, wealth and pollution is no longer required.1

Equation (7), where pollution plays no role, is the core of any Ramsey model.
On the one hand, pollution does not change the household’s preferences and, on
the other hand, agents do not internalize the externality. However, even if pol-
lution does not affect directly the Euler equation (7), that is the intertemporal
trade-off between consumption and saving, it promotes infectious disease, lowers
labor supply (equation (4)) and income, and, eventually, wealth accumulation
through the budget constraint (6).

2.3 The representative firm

Firms share the same technology and take prices as given. Under constant re-
turns to scale, their program is equivalent to that of an aggregate representative
firm. This firm maximizes the profit F (K,L) − rK − wL taking as given the
real interest rate r and the real wage w, where Y ≡ F (K,L) is the aggregate
production function and K and L are the aggregate demands for capital and
labor at time t.

Assumption 3 The production function F : R2
+ → R+ is C1, constant re-

turns to scale, strictly increasing in both the arguments and concave. Standard
Inada conditions hold.

Profit maximization is correctly defined under Assumption 3 and yields the
first-order conditions:

r = f ′ (k) ≡ r (k) and w = f (k)− kf ′ (k) ≡ w (k)

where k ≡ K/L denotes the capital intensity and f (k) ≡ F (k, 1) the aver-
age productivity. The second-order conditions are also satisfied because of the
concavity.

We introduce the capital share in total income α and the elasticity of capital-
labor substitution σ:

α (k) ≡
kf ′ (k)

f (k)
and σ (k) = α (k)

w (k)

kw′ (k)

In addition, price elasticities depend on them:

kr′ (k)

r (k)
= −

1− α (k)

σ (k)
and

kw′ (k)

w (k)
=
α (k)

σ (k)

2.4 Pollution

The aggregate level of pollution P is a pure externality coming from industrial
activity, namely Y . For simplicity, we assume a linear process P = aY . The

1Goenka et al. (2014) consider the central planner’s solution in a Ramsey model with SIS
and provide necessary and sufficient conditions for utility maximization.
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lack of persistence means that pollution is a flow as in Itaya (2008) or Fernandez
et al. (2012) among others. a > 0 captures the effect of production on the
environment. a is expected to play an important role in the stability properties
of our economy because, for any production level, a larger environmental impact
of industrial activities (a) implies a higher pollution level. From Assumption 1,
this entails more infective diseases, lower labor supply and production in turn
and, at the end, business cycles.

3 Equilibrium

Labor supply and demand are equal in equilibrium: L = l. Because of the
constant returns to scale (Assumption 3), the pollution process writes

P = alf (k) (8)

Under Assumption 1, equations (4) and (8) yield

l̇ = (1− l) [γ (alf (k))− β (alf (k)) l] (9)

Therefore, dynamics are determined by (6), (7), (9) and the transversality
condition. We observe that h = kl and, therefore, ḣ/h = k̇/k + l̇/l. Re-
placing this equality and noticing that r (k) k + w (k) = f (k), we obtain a
three-dimensional dynamic system

k̇ = f1 (k, l, c) ≡ f (k)− δk − c/l − g (k, l) k

l̇ = f2 (k, l, c) ≡ g (k, l) l (10)

ċ = f3 (k, l, c) ≡ ε (c) [r (k)− δ − ρ] c

where
g (k, l) ≡ [γ (alf (k))− β (alf (k)) l] (1− l) /l (11)

Therefore, the introduction of a disease affecting labor supply adds a third
dimension to the basic Ramsey model. Conversely, system (10) simplifies with-
out the epidemiological block: indeed, l = 1 implies g (k, l) = 0 and l̇ = 0.
Thus, the second equation in (10) becomes superfluous and we recover exactly
a two-dimensional Ramsey model.

Our model is close to Goenka et al. (2014) in terms of fundamentals. How-
ever, they focus on the central planner’s solution and obtain a six-dimensional
dynamic system. The central planner decides not only the allocations, but also
the optimal pollution level. Our approach (market economy) turns out to be
simpler in mathematical terms: pollution is an aggregate externality and, thus,
no longer argument of utility maximization. In our case, dynamics are deter-
mined by a three-dimensional dynamic system (10). Differently from them,
this lower dimensionality allows us to carry out a complete analysis of local
bifurcations.

Under strict concavity, the central planner’s program yields a unique solution
(equilibrium path). Conversely, in a market economy, concavity (Assumption 2
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and 3) ensures the individual maximization to be well-defined without excluding
equilibrium multiplicity. In this respect, in the stability analysis of market
dynamics, it is important to distinguish between backward and forward-looking
variables and check the possibility of (local) equilibrium indeterminacy (arising
when the dimension of the stable manifold exceeds the number of predetermined
variables). System 10, involves two predetermined variables (k and l) and one
jump variable (c). In the sequel, this distinction will allow us to prove the
equilibrium uniqueness in the sense of local determinacy.

4 Steady state

In this section, we study the existence and multiplicity of stationary solutions
of system (10). At the steady state, k̇ = l̇ = ċ = 0, that is:

r (k) = ρ+ δ

g (k, l) = 0 (12)

c = [f (k)− δk] l

The first equation is the standard Modified Golden Rule (MGR). The exis-
tence of a unique solution k > 0 of MGR is ensured by Assumption 3. Replacing
k in the second equation, we get l. Eventually, knowing (k, l), we obtain c from
the third equation. Since k is unique, the existence and uniqueness of a station-
ary solution depends upon the number of pairs (c, l) satisfying the second and
the third equation of (12). More precisely, the following characterization holds.

Proposition 1 Let Assumptions 1,2 and 3 hold. The stationary level of capital
is unique and given by k∗ = r−1 (ρ+ δ). Call l∗ the solution of γ (alf (k∗)) =
β (alf (k∗)) l. This solution exists, is unique and positive.

(1) If 0 < l∗ < 1, there are two steady states:
(k, l, c) = (k∗, 1, f (k∗)− δk∗) (disease-free),
(k, l, c) = (k∗, l∗, [f (k∗)− δk∗] l∗) (endemic).
(2) If l∗ ≥ 1, the steady state is unique (disease-free).

Proof. See the Appendix.
The last proposition shows that system (10) exhibits two steady states: l∗

and l = 1, but, l∗ is admissible from an economic point of view only when γ ≤ β.
To give an intuition for the loss of uniqueness of the disease-free steady state,

we consider an economy with low pollution. In this case, the recovery rate (γ)
is large while the probability to become sick after a physical contact with an
infected individual (β) is low (Assumption 1). By consequence, the number
of agent who recover from the disease is possibly higher than the number of
people becoming ill and the disease will end up being eradicated in the long
run. Formally, γ > β implies l∗ > 1 and, hence, the uniqueness of the disease-
free steady state. Now, assume an increase in the pollution level and, thus, an
increase in the probability to become ill after a infectious contact (β), and a
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decrease in the recovery rate (γ). Since the recovery rate remains higher than
the probability to become ill (γ > β), the disease will vanish in the long run
and the disease-free will remain the only admissible steady state. But, if the
recovery rate becomes lower than the probability to become ill (γ ≤ β), then
the number of new infected individuals exceeds the number of individuals who
recover from the disease. In such a situation, the disease will persist in the long
run and two steady states will coexist: the endemic and the disease-free regime.

The critical pollution level below which the disease-free steady state becomes
unique and above which it coexists with the endemic one, makes the recovery
rate equal to the probability of becoming sick (γ = β), that is the number of
new infected individuals equal to the number of individuals who recover from
the disease. In this critical case, the disease is not eradicated in the long run,
but it does not change the labor supply (l∗ = 1): the endemic and the disease-
free steady state coincide. At this critical level, we expect the occurrence of
a transcritical bifurcation with an exchange of stability properties between the
steady states. This conjecture will be proved in the next section.

Three forces drive this mechanism: (1) the environmental impact of produc-
tion (a) because it raises the pollution level, (2) the sensitivity of the probability
to become ill to pollution (β′ (P )) because it increases the number of new in-
fected individuals and (3) the sensitivity of the recovery rate to pollution (γ′ (P ))
because it augments the number of individuals who recover from the disease.
Since these forces play a role in the multiplicity of steady states, we have to
study their effects on the dynamics around any steady state. The rest of the
paper is devoted to local dynamics.

5 Bifurcations

Let the elasticity of intertemporal substitution be constant: ε (c) = ε. In order
to study the local dynamics, we linearize the three-dimensional dynamic system
(10) around the steady state and we obtain a Jacobian matrix:

J =

⎡

⎣

∂f1
∂k

∂f1
∂l

∂f1
∂c

∂f2
∂k

∂f2
∂l

∂f2
∂c

∂f3
∂k

∂f3
∂l

∂f3
∂c

⎤

⎦ =

⎡

⎣

ρ− k∗gk
c
l∗2

− k∗gl − 1
l∗

l∗gk l∗gl 0
−ε (δ + ρ) 1−α

σ
c∗

k∗
0 0

⎤

⎦ (13)

where α = α (k∗), σ = σ (k∗) and

gk ≡
∂g

∂k
(k∗, l∗) = a (ρ+ δ) (1− l∗) (γ′ − β′l∗) ≤ 0

gl ≡
∂g

∂l
(k∗, l∗) = [(γ′ − β′l∗) af − β]

1− l∗

l∗
−

1

l∗
g

1− l∗

because β′ > 0 and γ′ < 0 (see Assumption 1).
The full characterization of local bifurcations of a three-dimensional system

is complicated. A convenient methodology focuses on the characteristic poly-
nomial whose coefficients depend on the determinant (D), the sum of minors of
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order two (S) and the trace (T ) of matrix (13):

D = − (1− α) (ρ+ δ) l∗gl
ε

σ

c∗

k∗l∗
(14)

S = ρl∗gl −
[

k∗gk + (1− α) (ρ+ δ)
ε

σ

] c∗

k∗l∗
(15)

T = ρ− k∗gk + l∗gl (16)

where
c∗

k∗l∗
=
ρ+ δ

α
− δ

In continuous time, a local bifurcation generically arises when the real part
of an eigenvalue λ (p) of the Jacobian matrix crosses zero in response to a change
of parameter p. Denoting by p∗ the critical parameter value of bifurcation, we
get generically two cases.

(1) When a real eigenvalue crosses zero: λ (p∗) = 0, the system undergoes a
saddle-node bifurcation (either an elementary saddle-node or a transcritical or a
pitchfork bifurcation) depending upon the number of steady states. According
to Proposition (1), system (10) always exhibits two steady states, meaning that
λ (p∗) = 0 entails the occurrence of a transcritical bifurcation.

(2) When the real part of two complex and conjugate eigenvalues λ (p) =
q (p)± ih (p) crosses zero, the system undergoes a Hopf bifurcation. More pre-
cisely, in this case, we require q (p∗) = 0 and h (p) ̸= 0 in a neighborhood of p∗

(see Bosi and Ragot (2011, p. 76)).
System (10) is three-dimensional with two predetermined variables (k and

l) and one jump variable (c). Thus, multiple equilibria (local indeterminacy)
arise when the three eigenvalues of the Jacobian matrix (13) evaluated at the
steady state have negative real parts: either λ1,λ2,λ3 < 0 or Reλ1,Reλ2 < 0
and λ3 < 0.

The methodology to analyze local bifurcation in the case of three-dimensional
dynamic system is difficult and quite specific. It deserves a short presentation
(next three subsections).

5.1 Transcritical bifurcation

A transcritical bifurcation is typically associated to an interchange of stability
properties between two steady states and occurs when a real eigenvalue crosses
zero, say λ3 = 0.

Focus on the Jacobian matrix J and consider the determinant, the sum of
minors of order two and the trace:

D = λ1λ2λ3

S = λ1λ2 + λ1λ3 + λ2λ3

T = λ1 + λ2 + λ3
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Proposition 2 (transcritical characterization) In our model, a transcritical bi-
furcation generically arises if and only if D = 0. In the transcritical bifurcation
value p∗ = pS, we have

λ1 (pS) =
T (pS)

2
−

√

[

T (pS)

2

]2

− S (pS) (17)

λ2 (pS) =
T (pS)

2
+

√

[

T (pS)

2

]2

− S (pS) (18)

These eigenvalues are nonreal if and only if T (pS)
2 < 4S (pS).

Proof. See the Appendix.
We observe that conditions (17) and (18) refer in general to a saddle-node bi-

furcation (either elementary saddle-node or transcritical or pitchfork). However,
in our context, because of the two coalescing steady states, we have, generically,
a transcritical bifurcation.

5.2 Hopf bifurcation

A Hopf bifurcation occurs when the real part of two complex and conjugate
eigenvalues λ (p) = q (p)±ih (p) crosses zero. More precisely, we require q (0) = 0
and h (p) ̸= 0 in a neighborhood of p = 0, where p = 0 is the normalized
bifurcation value of parameter (see Bosi and Ragot (2011)).

Proposition 3 (Hopf characterization) In the case of a three-dimensional sys-
tem, a Hopf bifurcation generically arises if and only if D = ST and S > 0.

Proof. See the Appendix.

5.3 Local indeterminacy

In our economy, there are two predetermined variables (k and l) and a jump
variable (c). As seen above, indeterminacy requires the three eigenvalues with
negative real parts: either λ1,λ2,λ3 < 0 or Reλ1,Reλ2 < 0 and λ3 < 0.

Proposition 4 (local indeterminacy) In the case of system (10), if all the
eigenvalues are real, the equilibrium is locally indeterminate if and only if D,T <
0 and S > 0.

Proof. See the Appendix.
Focus first on Proposition 2 and notice that λ1 (pS) and λ2 (pS) may be real

or nonreal. If they are real Reλ1 (pS) = λ1 (pS) and Reλ2 (pS) = λ2 (pS).

Proposition 5 (local indeterminacy through a transcritical bifurcation) Let pS
be the transcritical bifurcation value of a parameter p such that D (pS) = 0. The
equilibrium is generically locally indeterminate in a (left or right) neighborhood
of pS if and only if Reλ1 (pS) ,Reλ2 (pS) < 0, where λ1 (pS) and λ2 (pS) are
given by (17) and (18).
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Proof. See the Appendix.

Corollary 6 In our model, local indeterminacy generically occurs through a
transcritical bifurcation at p = pS if and only if D (pS) = 0, S (pS) > 0 and
T (pS) < 0.

Proof. See the Appendix.
Focus now on the possibility of local indeterminacy through a Hopf bifurca-

tion.
Notice that, unfortunately, Proposition 4 is of little use because it is difficult

to know whether the eigenvalues are real. In the nonreal case, the necessary
condition of Proposition 4 still holds. Indeed, indeterminacy (Reλ1 = Reλ2 < 0
and λ3 < 0) implies

D = λ1λ2λ3 =
[

(Reλ1)
2 + (Imλ1)

2
]

λ3 < 0

S = λ1λ2 + (λ1 + λ2)λ3 = (Reλ1)
2 + (Imλ1)

2 + 2Reλ1λ3 > 0

T = λ1 + λ2 + λ3 = 2Reλ1 + λ3 < 0

However, the sufficient condition fails: even if

D = λ1λ2λ3 =
[

(Reλ1)
2 + (Imλ1)

2
]

λ3 < 0

still implies λ3 < 0, conditionsD,T < 0 and S > 0 don’t rule out the unpleasant
case Reλ1 = Reλ2 > 0.

We provide instead another sufficient condition for local indeterminacy, that
is more restrictive.

Proposition 7 (local indeterminacy through a Hopf bifurcation) Let pH the
Hopf bifurcation value of a parameter p such that D (pH) = S (pH)T (pH) and
S (pH) > 0. If D (pH) < 0, the equilibrium is locally indeterminate for some
value of p around pH .

Proof. See the Appendix.
Since system (10) has two steady states, we will address the stability issue

separately for each one in the next two sections.

5.4 Dynamics around the disease-free steady state

Let us apply the general methodology presented above to the disease-free steady
state. The disease-free steady state is characterized by l = 1. In addition,
η = η (P ) ≡ β (P )− γ (P ) may be positive or negative.

We observe that g (k∗, 1) = gk (k∗, 1) = 0 and gl (k∗, 1) = β − γ. The
determinant (14), the sum of minors of order two (15) and the trace (16) become

D = −η (1− α) (δ + ρ)
ε

σ

c∗

k∗
(19)

S = ρη − (1− α) (δ + ρ)
ε

σ

c∗

k∗
(20)

T = η + ρ (21)
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where α = α (k∗), σ = σ (k∗) and

c∗

k∗
=
ρ+ δ

α
− δ

In Section 4, three aspects were pointed out as the driving forces for dynam-
ics: (1) the environmental impact of production (a), (2) the sensitivity of the
probability to become sick to pollution (β′ (P )) and (3) the sensitivity of recov-
ery rate to pollution (γ′ (P )). In terms of economic meaning and mathematical
tractability, a seems the more convenient parameter to study the bifurcations.

5.4.1 Transcritical bifurcation

Proposition 8 In our model, a transcritical bifurcation generically occurs when
η = 0. All the eigenvalues are real with

λ1 (pS) =
ρ

2
−

√

ρ2

4
+ (1− α) (δ + ρ)

ε

σ

c∗

k∗
< 0 (22)

λ2 (pS) =
ρ

2
+

√

ρ2

4
+ (1− α) (δ + ρ)

ε

σ

c∗

k∗
>
ρ

2
> 0 (23)

when λ3 crosses zero.

Proof. We apply Proposition 2. A transcritical bifurcation generically arises if
and only if D = 0, that is η = 0. In addition, S = − (1− α) (δ + ρ) εc∗/ (σk∗)
and T = ρ. Eigenvalues (17) and (18) become real and equal to (22) and (23).

When the transcritical bifurcation occurs λ1 < 0 < λ2 and λ3 = 0. More-
over, λ3 < 0 (because D > 0) if and only if η < 0. Therefore, the disease-free
steady state from stable saddle point (with a two-dimensional stable manifold)
becomes an unstable saddle point (with a two-dimensional unstable manifold)
when η goes through zero from below.

We observe that η is endogenous. However, under Assumption 1, equation
(8) implies the existence of a critical parameter value aT , a bifurcation point in
terms of a fundamental parameter.

Corollary 9 There exists a unique transcritical bifurcation point a = aT > 0
such that η = 0.

The occurrence of a transcritical bifurcation is not surprising. According to
Section 4, η = 0 implies that the number of new infected individuals is just
equal to the number of individuals that recover from the disease. That is, even
if the disease persists, it is not enough infective to modify the level of labor
supply (l∗ = 1), that is, when a = aT , the disease-free and the endemic steady
state coalesce and exchange their stability properties.
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5.4.2 Hopf bifurcation

In the case of disease-free steady state, the Hopf bifurcation makes no sense
from an economic point of view because a limit cycle around l = 1 implies
meaningless values l > 1. In addition, Proposition 3 rules out any limit cycle
also from a mathematical point of view even if the restriction l > 1 is not taken
into account.

Proposition 10 There is no room for limit cycles.

Proof. Assume that a Hopf bifurcation occurs. Proposition 3 implies S > 0,
that is η > 0, which implies in turn T > 0 (see 21) and D < 0 (see 19), that is
D ̸= ST , a contradiction.

5.4.3 Local determinacy

Proposition 11 There is no room for local indeterminacy.

Proof. When a transcritical bifurcation occurs η = 0, D = 0, S < 0 and T > 0.
Corollary 6 applies.

Noticing that two variables are predetermined and one eigenvalue is always
negative (Proposition 8), we reach the same conclusion.

5.5 Dynamics around the endemic steady state

Let us analyze the dynamics around the endemic steady state using the general
methodology presented above (subsections 5.1 to 5.3). The following lemma
allows us to carry out the bifurcation analysis.

Lemma 12 The determinant, the sum of minors of order two and the trace of
matrix (13) around the endemic steady state become:

D = η (1 + θ) (1− α) (ρ+ δ)
ε

σ

c∗

k∗l∗
> 0 (24)

S = −ρη (1 + θ) +
[

αηθ − (1− α) (ρ+ δ)
ε

σ

] c∗

k∗l∗
(25)

T = ρ− η − ηθ (1− α) (26)

where c∗/ (k∗l∗) = (ρ+ δ) /α− δ.

Proof. Consider (14), (15) and (16). Endemic means l∗ ∈ (0, 1) and, then,
l∗ = γ/β. Thus, k∗gk = −αηθ < 0 and l∗gl = −η (1 + θ) < 0, where η =
η (P ) ≡ β (P )− γ (P ) > 0 and

θ = θ (P ) ≡
Pβ′ (P )

β (P )
−

Pγ′ (P )

γ (P )
> 0

because β − γ = β (1− l∗) > 0, β′ > 0 and γ′ < 0.
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5.5.1 Transcritical bifurcation

Corollary 13 A transcritical bifurcation occurs at η = 0

Proof. Simply apply Proposition 2.
Both the steady states (endemic and disease-free) are concerned by this

bifurcation. Indeed, they coalesce at η = 0 and the eigenvalues become the
same for both.

5.5.2 Hopf bifurcation

Proposition 14 Let l∗ (a) be solution of equation

γ (al∗f (k∗)) = β (al∗f (k∗)) l∗ (27)

The Hopf bifurcation value aH is solution of equation

η (al∗ (a) f (k∗)) =
2mρ

1−mαθ ±
√

(1 +mαθ)2 − 4m (1 + θ)
(28)

where

m ≡

ε
σ

1−α
α

ρ+δ
ρ

θ − ρ(1+θ)
ρ+(1−α)δ

(29)

with
1−mαθ > 0 and (1 +mαθ)2 − 4m (1 + θ) > 0 (30)

Proof. See the Appendix.
The reader may question whether the set of values of fundamental parame-

ters compatible with this bifurcation is nonempty. We observe that inequalities
(30) are satisfied by values ofm in a neighborhood of 0. In terms of fundamentals
parameters, this happens, for instance, when the income effects are dominant (ε
is sufficiently low) or input are substitutable (σ is sufficiently high). Of course,
these conditions are sufficient and don’t preclude other parameter configurations
compatible with the occurrence of Hopf bifurcations.

We will introduce isoelastic fundamentals (technology and preferences with
constant elasticities) to provide numerical simulations. We will fix a sufficiently
low elasticity of intertemporal substitution to capture the case of dominant
income effects.

Let us interpret the emergence of a limit cycle through a Hopf bifurcation
around the endemic steady state. Consider the economy in this steady state at
time t and an exogenous increase in the pollution stock. Assumption 1 entails
a lower recovery rate (γ) and a higher probability to become ill after a physical
contact with an infected individual (β). Eventually, the higher pollution level
results in lower labor supply and household’s income. According to 7, under
a large income effect (keep ε close to 0), the household reduces her saving to
smooth consumption over time. Capital accumulation slows down and the lower
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capital level at t+1 results in a lower production pollution level at t+1. Thus,
a drop follows the rise in pollution and an endogenous fluctuation takes place.

The main rationale for business cycles rests on the negative effect of pollution
on labor supply. In a recent contribution, Bosi et al. (2015) have also pointed
out the negative relation between pollution and labor supply as a source of cy-
cles, but the mechanism at work looks very different. Indeed, in their model,
pollution affects labor supply through the incentive channel: more precisely,
pollution raises the marginal disutility of labor supply by worsening working
conditions and induces agents to substitute working time with leisure. Con-
versely, in our paper, pollution has no direct effect on households’ preferences
(Assumption 2), but drops labor supply through its health effects (Assumption
1). According to medical evidences (Caren (1981), Bauer et al. (2012)), pollu-
tion raises the infectivity of an endemic disease by reducing the recovery rate
and augmenting the probability of becoming sick after a physical contact with
an infected individual (Assumption 1). Since an infected individual is less able
or unable to work, a higher pollution level results in a lower labor supply. We
call this mechanism the health channel. Proposition 14 enriches the existing
literature on environmental business cycles by proposing a new mechanism, the
health channel, as a possible rationale for endogenous cycles.

5.5.3 Local determinacy

Corollary 15 One eigenvalue is positive and the endemic steady state is locally
determinate.

Proof. We observe that D > 0. This implies that there exists one positive real
eigenvalue. Indeed, if all the eigenvalues are real and negative, D = λ1λ2λ3 < 0,
a contradiction. If one eigenvalue is real and negative, and the other two are

nonreal, we obtainD = λ1λ2λ3 =
[

(Reλ1)
2 + (Imλ1)

2
]

λ3 < 0, a contradiction.

Locally indeterminacy requires that all the eigenvalues have negative real parts.

Corollary 16 The endemic steady state is saddle-path stable if S > 0 and
T < 0, that is if

η

(

αθ − ρ (1 + θ)
k∗l∗

c∗

)

> (1− α) (ρ+ δ)
ε

σ

η [1 + (1− α) θ] > ρ

where
c∗

k∗l∗
=
ρ+ δ

α
− δ

Proof. Because one eigenvalue (say λ3) is positive and two variables are pre-
determined (k and l), saddle-path stability holds if and only if the other two
eigenvalues have negative real parts, that is λ1λ2 > 0 and λ1 + λ2 < 0. A
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sufficient condition (but not necessary) is

S = λ1λ2 + (λ1 + λ2)λ3 > 0

T = λ1 + λ2 + λ3 < 0

We observe that, in the case of a Hopf bifurcation, the steady state is char-
acterized by λ3 > 0 and a change of sign of Reλ1 = Reλ2. In the case of a
supercritical Hopf, the steady state from a saddle point (with unstable manifold
of dimension one and central manifold of dimension two) becomes a source and
a stable limit cycle arises around. In this case, the equilibrium is locally unique
and converges to this stable limit cycle.

6 Simulations

Proposition 14 provides a critical value for the occurrence of limit cycles. The
present section illustrates this proposition through a graphical example of limit
cycle based on a calibrated simulation.2

Notice that α = α (k∗), σ = σ (k∗), ε = ε (c), η = η (P ), θ = θ (P ). This
means that α and σ depend on each other. Fortunately, the Cobb-Douglas case
makes them independent and computation feasible. To simplify, we assume
σ = 1 (Cobb-Douglas) and constant elasticities for u, β and γ:

ε, εβ ≡
Pβ′ (P )

β (P )
> 0 and εγ ≡ −

Pγ′ (P )

γ (P )
> 0

which implies in turn a constant θ = εβ + εγ > 0. However, η remains endoge-
nous and depends on P .

β (P ) ≡ BP εβ and γ (P ) ≡ GP−εγ

η (P ) = BP εβ −GP−εγ

Let us solve equation (27)

G [al∗f (k∗)]−εγ = B [al∗f (k∗)]εβ l∗

to obtain

l∗ (a) =

(

G

B

)
1

1+θ

[af (k∗)]−
θ

1+θ

where k∗ = r−1 (ρ+ δ).
The transcritical critical value corresponds to η (P ) = 0, that is to BP εβ =

GP−εγ . Let, for simplicity, B = G. We get P = 1. Since P = alf (k), the
transcritical critical value solves al∗f (k∗) = 1, that is

a [af (k∗)]−
θ

1+θ f (k∗) = 1 (31)

2The numerical exercise is done by using the MATCONT package (version 5p4) for MAT-
LAB.
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The solution of equation

z (a) ≡
(

[af (k∗)]
1

1+θ

)εβ
−
(

[af (k∗)]
1

1+θ

)−εγ

=
2mρ

1−mαθ ±
√

(1 +mαθ)2 − 4m (1 + θ)
> 0 (32)

gives us the Hopf bifurcation value aH .
Notice that the RHS does not depends on a and that z (0) = −∞, z (+∞) =

+∞ and z′ (a) > 0. Thus, z crosses the RHS for a positive value aH .
Let f (k) = Akα. We find explicitly

k∗ =

(

αA

ρ+ δ

)
1

1−α

and f (k∗) = A

(

αA

ρ+ δ

)
α

1−α

Equation (32) writes now

⎛

⎝

[

aA

(

αA

ρ+ δ

)
α

1−α

]
1

1+θ

⎞

⎠

εβ

−

⎛

⎝

[

aA

(

αA

ρ+ δ

)
α

1−α

]
1

1+θ

⎞

⎠

−εγ

(33)

=
2mρ

1−mαθ ±
√

(1 +mαθ)2 − 4m (1 + θ)

under two restrictions:

(1 +mαθ)2 − 4m (1 + θ) > 0

1−mαθ > 0

Consider the following calibration:

Parameters A α δ ρ ε εβ εγ
Value 1 0.33 0.025 0.01 0.01 1 1

(34)

α, δ and ρ take quarterly values. Parameters ε, εβ and εγ fit the restrictions
in Proposition 14.

Solving (31), we get the transcritical critical value:

aT = 0.331 17

According to (32), Hopf bifurcations occur at

a+ ≈ 0.331 78 (35)

a− ≈ 0.332 57 (36)

MATCONT can detect a local bifurcation when the bifurcation parameter
varies in a convenient range. In our case, we consider an interval around the criti-
cal values and we verify that MATCONT finds in this range the same bifurcation
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values we have obtained with (32).3 Figure 1 is generated by MATCONT and
shows all the pollution steady state values (P ) in the interval (0.331, 0.333) ∋ a.

0.331 0.3312 0.3314 0.3316 0.3318 0.332 0.3322 0.3324 0.3326 0.3328 0.333

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

a

l

BP

H 

H 

Figure 1: P when a ∈ (0.331, 0.333).

In Figure 1, BP and H denote respectively the occurrence of a transcritical
bifurcation (branch point) and a Hopf bifurcation. The following table summa-
rizes the results obtained with MATCONT:

Bifurcation type value of a First Lyapunov coeff. Steady state Eigenvalues

Transcritical (BP ) 0.33117
k∗ = 28.470616

l∗ = 1
c∗ = 2.307845

λ1 = −0.00163391
λ2 = 0

λ3 = 0.0116339

Hopf (H) 0.33178 1.453221 ∗ 10−3
k∗ = 28.470616
l∗ = 0.998775
c∗ = 2.305017

λ1 = 0.00713083
λ2 = −0.00313139i
λ3 = 0.00313139i

Hopf (H) 0.33257 −6.234565 ∗ 10−3
k∗ = 28.470616
l∗ = 0.997185
c∗ = 2.301348

λ1 = 0.00340303
λ2 = −0.00687335i
λ3 = 0.00687335i

We observe that the two Hopf boundaries evaluated by MATCONT are very
close to ours (see (35) and (36)). We know that s ≡ S/N = L/N ≡ l (Section
2.1). Focus on the first Hopf bifurcation in the above table: healthy people
represent around 99.88% of the whole population. This share slightly lowers to
99.72% in the case of the second Hopf bifurcation. In epidemiological literature,
gonorrhea is a typical infectious disease correctly represented through a SIS

3MATCONT uses the original nonlinear system (10) instead of the Jacobian matrix.
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dynamics (Hethcote and Van den Driessche (2000)). Interestingly, the share of
infected individuals at the first Hopf bifurcation point (that is 0.12%) is close to
what is empirically observed. For instance, in the U.S., the Centers for Disease
Control and Prevention (U.S. Department of Health and Human Services) report
in their 2015 survey that the national gonorrhea rate is about 0.11% in 2014.

The first Lyapunov coefficient associated with the Hopf boundary provides
informations about the stability of the associated limit cycle. In particular, the
first Hopf bifurcation (a = 0.331778) is subcritical and gives rise to an unstable
limit cycle (see Figure 2) while the second Hopf bifurcation (a = 0.332572) is
supercritical and generates a stable limit cycle (see Figure 3).

28.469
28.4695

28.47
28.4705

28.471
28.4715

28.472
28.4725

2.305

2.305

2.305

2.305

2.305

2.305
0.9988

0.9988

0.9988

0.9988

0.9988

0.9988

kc

l

Figure 2: The unstable limite cycle.
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Figure 3: The stable limit cycle

The issue of equilibrium uniqueness (determinacy) in the case of a three-
dimensional system with two predetermined variables deserves some additional
comment.

Focus first on the transcritical bifurcation, characterized by the exchange
of stability of two steady states. Assume, without loss of generality, a bifurca-
tion such that the endemic saddle point becomes a source, while the disease-
free steady state experiences the converse. More precisely, the stable manifold
around the endemic (disease-free) steady state looses (gains) a dimension pass-
ing from two to one (from one to two).

In a three-dimensional space, two predetermined variables (k and l) fix a line.
The intersection of this line with a two-dimensional stable manifold is generically
unique and identifies a unique starting point, that is a unique equilibrium path
converging to the steady state and lying on the two-dimensional stable manifold
around.

Before (after) the transcritical bifurcation, the unique equilibrium lies on
the two-dimensional stable manifold converging to the endemic (disease-free)
steady state. In both the cases, the equilibrium remains unique.

Consider now the Hopf bifurcations around the endemic steady state.
The first one is subcritical. Assume that, without loss of generality, this bi-

furcation generates a limit cycle on the two-dimensional center manifold around
the endemic steady state. If k and l are in a neighborhood of the endemic steady
state, they fix a line in a neighborhood of the limit cycle and a unique intersec-
tion of this line with the center manifold. This intersection determines a unique
starting point and a unique equilibrium trajectory. If the intersection is inside
the limit cycle, the equilibrium path converges to the endemic steady state fol-
lowing a spiral. If it is outside, the trajectory diverges from the limit cycle and
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the equilibrium may fail to exist (because of the transversality condition or the
non-negativity constraints) or converge to the disease-free steady state. In the
last case, the equilibrium exists, but it remains unique because of the unique
starting point and there is no room for global indeterminacy. However, the local
analysis does not allow us to conclude about equilibrium existence outside the
limit cycle.

The second Hopf bifurcation is supercritical. Applying the same arguments,
we find that a starting point inside (outside) the limit cycle determines an
equilibrium trajectory converging to the cycle following an internal (external)
spiral. In both the cases, the equilibrium exists and it is unique because the
starting point is unique, that is the intersection of the line determined by k and
l, and the center manifold in a neighborhood of the limit cycle.

7 Conclusion

In this paper, we addressed convergence issues for an economy in which pollution
lowers the labor supply through a so-called health effect. In this purpose, we
considered an augmented Ramsey model with the spread of an infectious disease.
This spreading mechanism takes the form of a SIS model in which pollution
increases both the probability of being infected and the time of recovery.

We provide general conditions under which the disease-free steady state is
either the only admissible regime or coexists with an endemic one. We then
demonstrate that the economic system may undergo a transcritical bifurcation
followed by two Hopf bifurcations (unstable and stable limit cycles) near the
endemic steady state. Such a situation emerges when the industrial pollution
becomes excessive. It follows that, the health channel by which pollution reduces
labor supply, an empirically grounded impact, is likely to generate endogenous
cycles of economic activities. In this respect, the health channel represents an
alternative rationale for cycles to the incentive channel considered by Bosi et al.
(2015).

8 Appendix

Proof of Proposition 1

Define g (l) ≡ γ (alf (k∗)) and b (l) ≡ β (alf (k∗)) l. Under Assumption 3,
g (0) = +∞, g (+∞) = 0, g′ (l) < 0, b (0) = 0, b (+∞) = +∞, b′ (l) > 0.
Continuity and strict monotonicity on R+, and the limit conditions imply that
the intersection of the graphs of g and b exists and is unique. In addition, the
corresponding abscissa l∗ is positive.

Proof of Proposition 2

Generically, λ3 = 0 if and only if D = 0. In this case, S = λ1λ2 and
T = λ1 + λ2. Solving this system of two equations for λ1 and λ2, we get (17)
and (18).

Proof of Proposition 3
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Necessity In a three-dimensional dynamic system, we require at the bifurca-
tion value: λ1 = iψ = −λ2 with no generic restriction on λ3 (see Bosi and Ragot
(2011) or Kuznetsov (1998) among others). The characteristic polynomial of J
is given by: P (λ) = (λ− λ1) (λ− λ2) (λ− λ3) = λ3 − Tλ2 + Sλ − D. Using
λ1 = iψ = −λ2, we find D = ψ2λ3, S = ψ2, T = λ3. Thus, D = ST and S > 0.

Sufficiency In the case of a three-dimensional system, one eigenvalue is al-
ways real, the others two are either real or nonreal and conjugated. Let us show
that, if D = ST and S > 0, these eigenvalues are nonreal with zero real part
and, hence, a Hopf bifurcation generically occurs.

We observe that D = ST implies

λ1λ2λ3 = (λ1λ2 + λ1λ3 + λ2λ3) (λ1 + λ2 + λ3)

or, equivalently,

(λ1 + λ2)
[

λ23 + (λ1 + λ2)λ3 + λ1λ2
]

= 0 (37)

This equation holds if and only if λ1 + λ2 = 0 or λ23 + (λ1 + λ2)λ3 + λ1λ2 = 0.
Solving this second-degree equation for λ3, we find λ3 = −λ1 or −λ2. Thus,
(37) holds if and only if λ1+λ2 = 0 or λ1+λ3 = 0 or λ2+λ3 = 0. Without loss
of generality, let λ1 + λ2 = 0 with, generically, λ3 ̸= 0 a real eigenvalue. Since
S > 0, we have also λ1 = −λ2 ̸= 0. We obtain T = λ3 ̸= 0 and S = D/T = λ1
λ2 = −λ21 > 0. This is possible only if λ1 is nonreal. If λ1 is nonreal, λ2 is
conjugated, and, since λ1 = −λ2, they have a zero real part.

Proof of Proposition 4

Necessity In the real case, we obtain D = λ1λ2λ3 < 0, S = λ1λ2 + λ1λ3 +
λ2λ3 > 0 and T = λ1 + λ2 + λ3 < 0.

Sufficiency We want to prove that, if D,T < 0 and S > 0, then λ1,λ2,λ3 <
0. Notice that D < 0 implies λ1,λ2,λ3 ̸= 0.

D < 0 implies that at least one eigenvalue is negative. Let, without loss of
generality, λ3 < 0. Since λ3 < 0 and D = λ1λ2λ3 < 0, we have λ1λ2 > 0. Thus,
there are two subcases: (1) λ1,λ2 < 0, (2) λ1,λ2 > 0. If λ1,λ2 > 0, T < 0
implies λ3 < − (λ1 + λ2) and, hence,

S = λ1λ2 + (λ1 + λ2) λ3 < λ1λ2 − (λ1 + λ2)
2 = −λ21 − λ22 − λ1λ2 < 0

a contradiction. Then, λ1,λ2 < 0.
Proof of Proposition 5
D (pS) = 0 if and only if λ3 (pS) = 0 without loss of generality.
Necessity If the equilibrium is locally indeterminate in a (left or right) neigh-

borhood of pS, then there exists ε > 0 such that Reλ1 (p) ,Reλ2 (p) ,λ3 (pS) < 0
for any p ∈ (pS − ε, pS) or for any p ∈ (pS , pS + ε), and, hence, generically,
Reλ1 (pS) ,Reλ2 (pS) < 0 and λ3 (pS) = 0.

Sufficiency If Reλ1 (pS) ,Reλ2 (pS) < 0 and λ3 (pS) = 0, then there exists
ε > 0 such that Reλ1 (p) ,Reλ2 (p) ,λ3 (pS) < 0 (local indeterminacy) for any
p ∈ (pS − ε, pS) or for any p ∈ (pS , pS + ε).

Proof of Corollary 6

23



Necessity If local indeterminacy occurs through a saddle-node bifurcation
at p = pS , that is Reλ1 (pS) ,Reλ2 (pS) < 0 and λ3 (pS) = 0 (Proposition
5), then, in the real case, D (pS) = λ1 (pS)λ2 (pS)λ3 (pS) = 0, S (pS) =
λ1 (pS) λ2 (pS) > 0 and T (pS) = λ1 (pS)+λ2 (pS) < 0, and, in the nonreal case,
D (pS) = λ1 (pS)λ2 (pS)λ3 (pS) = 0, S (pS) = λ1 (pS)λ2 (pS) = [Reλ1 (pS)]

2 +
[Imλ1 (pS)]

2 > 0 and T (pS) = λ1 (pS) + λ2 (pS) = 2Reλ1 (pS) < 0.
Sufficiency Conversely, if D (pS) = 0, S (pS) > 0 and T (pS) < 0, then

D (pS) = λ1 (pS) λ2 (pS)λ3 (pS) = 0 implies without loss of generality λ3 (pS) =
0, S (pS) = λ1 (pS)λ2 (pS) and T (pS) = λ1 (pS) + λ2 (pS). If λ1 (pS) and
λ2 (pS) are real, S (pS) > 0 and T (pS) < 0 implies λ1 (pS) ,λ2 (pS) < 0,
while, if λ1 (pS) and λ2 (pS) are nonreal T (pS) = 2Reλ1 (pS) < 0, so that
Reλ1 (pS) = Reλ2 (pS) < 0. Thus, in both the cases, Reλ1 (pS) ,Reλ2 (pS) < 0
and λ3 (pS) = 0, and Proposition 5 implies local indeterminacy through a saddle-
node bifurcation at p = pS.

Proof of Proposition 7

From Proposition 3, we have Reλ1 (pH) = Reλ2 (pH) = 0. Therefore,
D (pH) = [Imλ1 (pH)]2 λ3 (pH) < 0 and λ3 (pH) < 0. Thus, there exists ε > 0
such that, generically, we have Reλ1 (p) ,Reλ2 (p) ,λ3 (p) < 0 (local indeter-
minacy) for any p ∈ (pH − ε, pH) or, alternatively, for any p ∈ (pH , pH + ε).

Proof of Proposition 14

A Hopf bifurcation generically arises if and only if D = ST and S > 0
(Proposition 3). Replacing (24), (25) and (26) in D = ST , we find

ρ+ αηθ − η (1 + θ)

ρ+ αηθ
=

(1− α) (ρ+ δ) ε
σ

η
[

αθ − ρ (1 + θ) k∗l∗

c∗

] (38)

while S > 0 is equivalent to η/ρ > m > 0.
Let x ≡ ρ/η. Equation (38) writes:

x− 1− (1− α) θ

x+ αθ
= mx

that is mx2 − (1−mαθ) x+ 1 + (1− α) θ = 0.
Since we are interested in positive solutions x > 0, we require 1−mαθ > 0.

x± =
1−mαθ ±

√

(1−mαθ)2 − 4m [1 + (1− α) θ]

2m

or, equivalently,

x± =
1−mαθ ±

√

(1 +mαθ)2 − 4m (1 + θ)

2m

The solutions are real if and only if (1 +mαθ)2 − 4m (1 + θ) > 0. In this
case, we have 0 < x− < x+. Solving for η, we get

η± =
ρ

x±

=
2mρ

1−mαθ ±
√

(1 +mαθ)2 − 4m (1 + θ)

24



The Hopf bifurcation value aH is obtained solving the equation (28) with
inequality η (aH l∗ (aH) f (k∗)) > mρ > 0 (equivalent to S > 0).

Since 0 < x− < x+, we have also η− > η+ > 0. It is easy to check that
η+ > mρ, then η− > η+ > mρ > 0.
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