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Abstract

We represent a social system as a network of agents and model the
process of technology diffusion as a contagion propagating in such a net-
work. By setting the necessary conditions for an agent to switch (ie. to
adopt the technology), we address the question of how to maximize the
contagion of a technology subject to a Moore’s law (eg. solar modules)
in a network of agents. We focus the analysis on the effects of the net-
work structure and technological learning on diffusion. To this end, we
study three classes of networks, namely lattice, small-world and ran-
dom networks. Our numerical results show that both the lattice and the
small-world networks facilitate the contagion. These networks exhibit
high levels of clustering, and additional contacts increase the proba-
bility of contagion through social reinforcement. Conversely, networks
exhibiting short path length and a low level of clustering (ie. random
networks) guarantee an equivalent speed of diffusion with smaller ranges
(ie. variance) in terms of aggregate adoption. Whatever the structure,
learning effects are critical for contagion to spread in agents networks.
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1 Introduction

Research on diffusion in social and economic networks has focused on a wide range

of topics such as diseases (Klovdhal, 1985), rumors (Moreno, 2004), systemic risks of

bank failures (Elliott et al., 2014; Eboli, 2019), platform adoption (David, 1985) and

patenting (Aghion, 2015). These phenomena are, at least temporarily, irreversible

and share common features. First, diffusion is a social process and an individual’s

adoption behavior is highly correlated with the behavior of her contacts (ie. net-

work externalities). Second, the structure of the network plays a critical role in the

propagation dynamics. While some processes remain contained in isolated clusters,

others spread to the whole network. Overall, these phenomena are path-dependent

: their irreversibility means that early history matters for the final outcome (Lim

et al., 2016).

With respect to dynamics of propagation in networks, two main diffusion processes

are frequently identified : "simple contagions" and "complex contagions" dynamics

(Centola and Macy, 2007). If the former requires only one contact for transmission

(eg. information, disease), the latter calls for multiple sources of reinforcement to

induce adoption (eg. behavior, technology). On this issue, Centola and Macy (2007)

demonstrated that the impact of the underlying network structure changes accord-

ing to the diffusion process operating. While direct connections between agents

(ie. a short path) allows for simple contagion phenomena to spread faster, cluster-

ing (ie. the tendency for nodes to form small groups) is a determinant of diffusion

under complex contagion scenarios (Beaman et al., 2018; Centola, 2018). Then,

whether the goal is to reduce contagion risk or to maximize the adoption of a tech-

nology, understanding how network structure affects diffusion cascades is important

for effective policy design.

A relevant issue to explore for network studies is the case of technology diffu-

sion (Halleck Vega et al., 2018). Particularly, technologies subject to a Moore’s law
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(i.e. costs tend to drop exponentially, at different rates that depend on the tech-

nology)1 are of great interest as they are operating in different sectors (Farmer and

Lafond, 2016). For instance, this is the case for renewables (eg. solar modules, wind

turbines, see IRENA, 2016) that must be deployed at a large scale to limit global

warming "well-below" 2◦C by the end of the 21st century (OECD, 2016). If the

existing literature on technology diffusion is large, little attention has been paid to

network perspectives (Halleck-Vega and Mandel, 2018). In particular, questions re-

lated to the spreading of a costly technology in networks and the associated impacts

of networks’ structure on diffusion remain unstudied. For the case of technologies

subject to a Moore’s law, these aspects are critical as for some of them public poli-

cies support the diffusion using economic instruments (eg. clean technologies, see

Blazquez, 2018). Understanding how these costly technologies spread in networks

could bring new insights for designing efficient and cost saving policies. From an-

other perspective, addressing these issues is particularly relevant to achieve a faster

deployment of environmental-friendly technologies. In the context of climate change,

increasing this body of knowledge is of great importance too. The present paper

adds up to the literature on technology diffusion in these respects.

In order to evaluate technological cascades in networks, we build upon the

Linear Threshold Model (LTM) exposed by Granovetter (1978). Our main theoret-

ical innovation is the introduction of a technology cost function subject to learning

effects. The latter matches the generalized version of the Moore’s law we implement

here (see Farmer and Lafond, 2016) and gives to our approach a large scope of

applications (eg. renewables, hardware technologies). In our agent based model, we

call "a switch" an irreversible transition to new state, such as adoption of the tech-

nology (Jackson, 2008). All agents in the network are initially switched off. Then,

some agents are randomly switched, i.e., seeded. Every heterogeneous agent in the
1Here, we refer to a generalized version of the Moore’s law as exposed by Farmer and Lafond

(2016).

3



network is endowed with two individual thresholds. We assume that agents’ thresh-

olds are randomly and independently drawn from a uniform distribution at the start

of the cascade (Kempe et al., 2003). In the following periods, if the proportion of

neighbors that switches exceeds his first threshold and if the cost of the technol-

ogy falls below his second threshold, the agent also switches (Granovetter, 1978;

Schelling, 1978). This process propagates through the network. Once an agent has

switched, he remains switched forever. This assumption matches clean technologies

investments (eg. solar modules) for which buyers cannot easily step away.

More generally, our model assumes that agents react to stimuli both from the local

and global environments (ie. neighborhood and cost dynamics). If the social thresh-

old is widely documented in the literature on complex contagion and threshold mod-

els (Granovetter, 1978; Watts, 2002; Dodds and Watts, 2004), we assume agents’

ability to afford the technology to differ. To capture this feature, we introduce a

cost threshold as a proxy measure. Therefrom, our model allows us to investigate

the diffusion of a costly product in networks of heterogeneous agents. This setting

is particularly relevant as recent studies shed lights on the contagious feature of

renewable technologies adoption (see Baranzini et al., 2017). Overall, we implement

a singular approach to technology diffusion by considering the associated spreading

as an epidemic dynamics processing among agents. Our framework is intertwined

with the "complex contagion" modelling approach as the distribution of neighbor-

hood thresholds will require, in most cases, multiple neighbors having switched to

make the considered agent switch.

We apply this model to lattice, small-world and random networks as con-

structed by Watts and Strogatz (1998).2 Our objective is to investigate at a macro-

scopic level how diffusion spreads according to network’s clustering, path length

and effects of learning. If the notion of path length is obvious (distance between two
2Remember that lattice networks exhibit high levels of clustering and average path length;

small-world structures demonstrate high level of clustering but with lower average path length;
random networks are subject to low clustering and low average path length (cf. Watts and Stro-
gatz, 1998).
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agents in the network), clustering refers to what extent agents tend to create tightly

knit groups (Acemoglu et al., 2011). In the literature on diffusion in networks, clus-

tering has been extensively considered to capture the impact of network structures

on diffusion (Centola and Macy, 2007; Centola, 2010; Acemoglu, 2011; Beaman

et al., 2018). For our purpose, this approach is relevant as social networks tend

to exhibit high levels of clustering (Watts and Strogatz, 1998; Levine, 2006). Our

comparative approach allows us to evaluate aggregate levels of diffusion, associated

cascades’ lengths and adoption speed of convergence from low to highly clustered

networks.

Regarding our main results, aggregate diffusion reaches higher levels in lattice

and small-world networks compared to random networks. The latter confirms the

critical role of clustering in favouring propagation in networks. Interestingly, we also

find that adoption cascades in clustered networks are subject to greater variability

(variance) with respect to final outcomes (ie. adopters). For those interested in

maximising diffusion, the latter suggests a tension between maximising spreading

and uncertainty in results. In random networks, although propagation reaches lower

levels, it processes at an equivalent speed as in clustered networks with a lower

variability in final outcomes. Whatever the underlying structure, higher learning

rates lead to larger technology adoption.

With respect to previous researches, the theoretical literature on cascades and

diffusion in networks is vast. Irreversibility of our cascade dynamics (ie. diffusion)

sets the present paper apart as a considerable part of researches supposes that agents

can switch multiple times (Blume, 1993; Ellison, 1993; Blume, 1995; Young, 2006;

Montanari and Saberi, 2010; Adam et al., 2012). Moreover, the double diffusion-

reinforcing feedback that we introduce has, to our knowledge, never been imple-

mented so far. Indeed, diffusion itself makes it easier for others to adopt because

of the social threshold, and learning makes it easier to adopt because of the cost

threshold. In contrast to some of the previous work (Acemoglu et al., 2011; Yildiz
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et al., 2011; Singh et al., 2013), we do not look at a particular instance of a dis-

tribution of thresholds. Instead, we assume that agents’ thresholds are randomly

and independently drawn from uniform probability distributions at the start of the

cascade (Kempe et al., 2003). This is a reasonable assumption if the social planner

has no reason to believe that some thresholds are more likely than others (Lim

et al., 2016). Moreover, papers mentioned earlier (eg. Blume, 1993; Ellison, 1993;

Blume, 1995; Young, 2006; Montanari and Saberi, 2010; Adam et al., 2012) usually

assume that agents play a coordination game with their neighbors and analyze the

dynamics using tools from evolutionary game theory. For certain problems, such

as the possibility of contagion, the models are essentially equivalent (Morris, 2000;

Watts, 2002; Lelarge, 2012; Adam et al., 2012).

On the issue of technology diffusion, a recent survey on the diffusion of green technol-

ogy pointed out the fundamental role of networks (Allan et al., 2014). In some of the

previous works mentioned, models of innovation and technology diffusion (e.g. Cen-

tola et al., 2007; Montanari and Saberi, 2010; Acemoglu et al., 2011) provide insights

on the influence of the network topology on propagation dynamics. These models

consider a wide range of diffusion processes ranging from epidemic-like contagion

to strategic adoption and linear threshold models. Though conclusions on what

facilitates diffusion are not clear-cut, the literature suggests that, under complex

contagion, innovations spread further across networks with a higher degree of clus-

tering. In principle, clusters can promote diffusion where a seed node exists inside

them, but are more difficult to permeate when not targeted during the initial seed-

ing phase (Halleck-Vega and Mandel, 2018).

By implementing the LTM and introducing a technological cost function, we comple-

ment the literature and contribute to a better understanding of technology diffusion

dynamics. We are dealing with large complex networks of agents interacting and

switching over time (Centola et al., 2007; Centola, 2010; Acemoglu et al., 2011). As

carried out in the literature, we implement our agent based model and provide
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numerical analysis to apprehend cascades’ features and build our comparative eval-

uation.

We proceed as follows. Section 2 describes the linear threshold model and

the dynamics of the cascade under a two thresholds setting. Section 3 shows and

analyses numerical outcomes in terms of average aggregate adoption, speed of dif-

fusion and time of convergence for classes of networks considered. Therefrom, the

relevant government seeding strategy with respect to the amount of initial seeds is

presented. Section 4 discusses the main findings and lays out some directions for

future research.

2 Model of cascades in Networks

2.1 Preliminaries3

Let G(V,E) be a simple (unweighted and undirected), connected graph with a set

of n agents V :={1,...,n} and a set of m links E. We denote the neighbors of i ∈ V

as Ni(G):={j|(j, i) ∈ E} and the degree of i as di := |Ni(G)|. A first threshold for

agent i is a random variable µi drawn independently from a probability distribution

with support [0, 1]. The associated multivariate probability density function for

all the nodes in the graph is f1(µ). Each agent i ∈ V is assigned a threshold

µi. Let’s define the threshold profile of agents as µ := (µi)i∈V. A second threshold for

agent i is a random variable θi drawn independently from a probability distribution

with support [0, 1]. The associated multivariate probability density function for all

the nodes in the graph is f2(θ). Each agent i ∈ V is assigned a threshold θi. As

mentioned, we assume that agents’ thresholds are randomly and independently

drawn from uniform probability distributions as the social planner has no reason to

believe that some thresholds are more likely than others (Kempe et al., 2003; Lim et

al., 2016). Let’s define the threshold profile of agents as θ := (θi)i∈V. A network Gµ,θ

3For this section, we base our approach on Lim et al., (2016).
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is a graph endowed with the two thresholds profiles. Let Ct be the cost function of

the technology at time t, bounded between [0, 1]. This property ensures the matching

between the cost function and corresponding agents’ thresholds µi. To introduce the

generalized Moore’s law characteristics, we assume α to be a technological learning

effect on the cost function. We then evaluate the effect of learning on diffusion by

discretizing α over different constant rates (ie. [0.1; 0.3; 0.5; 0.7]).4 This allows us to

capture the relationship between technological learning and diffusion. In our setting,

α is bounded between [0, 1] - meaning the cost of the technology decreases from 1

to 0 with respect to the number of adopters S. That is :

Ct = C0 × (|U t−1
τ=0Sτ |)−α

2.2 Cascade dynamics

Let us consider dynamics of a deterministic cascade on a given network Gµ,θ. The

binary state of agent i at time t is denoted xi(t) = {0, 1}, corresponding to “off”

and “switched”. Denote by St(Gµ,θ) the set of additional switches in network G

at time t. At time t = 0, the government seeds a random set of agents with the

technology. We assume this subset of agents to be S0 ⊆ V, at t0. Hence, at t = 1,

any i ∈ V \ S0(Gµ,θ) will switch, i.e., i ∈ S1(Gµ,θ) if

|Ct(S0(Gµ,θ))| ≤ µi, and
|S0(Gµ,θ) ∩Ni(Gµ,θ)|

|Ni(Gµ,θ)|
≥ θi.

This means that at t = 1, agents switch only if the cost of the technology is lower

than their respective threshold µi and if the proportion of their neighbors having

adopted exceeds their threshold θi. This hypothesis matches the literature on inno-

vation diffusion and complex contagion in networks (Delre et al., 2007; Beaman et

al., 2018).
4We relegate extreme scenarios α={0;1} to the Appendix, Section 2.1.
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Then, for a given period t ≥ 0, node i ∈ V \ U t−1
τ=0 Sτ will switch at t, i.e., i ∈

St(Gµ,θ) if

(1) |Ct(∪t−1τ=0Sτ (Gµ,θ))| ≤ µi, and (2)
|{∪t−1τ=0Sτ (Gµ,θ)} ∩Ni(Gµ,θ)|

|Ni(Gµ,θ)|
≥ θi.

Eq.(1) and Eq.(2) represent the necessary conditions for switching. This means

that any agent who has not switched by some period t, switches in time period t+1

if the cost of the technology falls below its threshold µi and if the proportion of

his neighbors who switched is greater or equal to his threshold θi. In other words,

there is a reinforcing feedback : the more agents adopt, the more the cost decreases

leading to more agents to adopt in the subsequent period. This pattern has been

observed for clean technologies such as solar PV (Farmer et al., 2019). For a given

(Gµ,θ), define the fixed point of the process such that :

S0(X) = S (Gµ,θ, S0) —> S t(Gµ,θ) = ∅ for all t > 0.

2.3 Expected size of cascade

The expected average size of the resulting cascade in a network can be drawn

from f(µ, θ), separable in two independent and non correlated probability density

functions f1(µ), f2(θ). For a given graph G and S0, we can map the realization of

f(µ, θ) to a set of switches S(Gµ,θ, S0). Hence, we can treat S(Gµ,θ, S0) as a random

variable with a probability distribution f(µ, θ), keeping into account the cost rule.

Let us compute the expected probability of any particular agent i switching in

network G, given a seeded subset of agents S0, by taking the expectation with

respect to f(µ, θ) :

Pi(G,S0) =

∫
Rn

∫
Rn

|S(Gµ,θ) ∩ i|f(µ, θ)dµdθ
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Hence, the expected number of switches in graph G when S0 is defined is :

E[S(G,S0)] :=

∫
Rn

∫
Rn

|S(Gµ,θ, S0)|f(µ, θ)dµdθ = Pi(G,S0) =
n∑
1

Pi(Gµ,θ, S0)

3 General results and Analysis

3.1 Preliminaries : Numerical Setting

We consider a population of N=100 agents with n=10 connections per agent. Agents

are placed on three distinctive graphs created according to the Watts Strogatz al-

gorithm (1998).5 The graph is unchanged within a history. Each agents is endowed

with two thresholds profiles µi and θi, drawn independently from a uniform prob-

ability distribution with support [0, 1]. At t0, we set the number of initial seeds

S0 ∈ [0,..., 100], randomly selected, to launch the cascade process. We test this

approach on four learning effects scenarios where α takes the respective values

[0.1; 0.3; 0.5; 0.7].6 In each single history, we randomized the agents in the seed

set and the associated thresholds allocation. Resulting cascades follows the dynam-

ics exposed in section 2. This framework guarantees that the process eventually

stops. To examine the considered graphs, we set for every edge - following the Watts

Strogatz algorithm - the rewiring probability p to [0; 0.1; 1]. For each p value, 1000

different graphs are created and on each graph a single history is run.

We are interested in evaluating how diffusion processes in lattice, small-world and

random networks, where clustering ranges from high to low levels. To this end, we

examine the average number of aggregate adopters, average cascades lengths as well

as speed of adoption convergences. This macroscopic perspective brings insights on

the role of clustering, path length and learning on diffusion.

In the remainder of the paper, the curves provided are averages over 1000
5cf. Appendix, Section 1 for description.
6cf. Appendix, Section 2.1 for α={0;1}.
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replications and presented for each class of networks. We expose the number of ag-

gregate final adopters, associated times of convergence as well as resulting cascades

process per period. With respect to times of convergence and per period cascading

processes, we only show relevant results (S0=[5; 35]) for the clarity of presentation.

3.2 Understanding diffusion (I) : Seed set and Learning ef-

fects

For lattice, small-world and random networks, Fig.1.a. and Fig.1.b. exhibit the

relationship between initial seed set S0 and average aggregate diffusion under four

scenarios of learning (ie. α=[0.1; 0.3; 0.5; 0.7]). Overall, aggregate diffusion is a

non-monotonic function of S0, concave where the function equals zero at extremes

[0; 100] (ie. when S0=[0; 100], the diffusion is either null or completed). A peak in

resulting diffusion (ie. after seeding) is observed when S0 lies somewhere between

24% and 50% (cf. Fig.1.b.).

Fig.1.a. Aggregate diffusion as a function of initial seed sets
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Fig.1.b. Aggregate diffusion as a function of initial seed sets (except seeds)

Precisely, for each network configuration, minimum diffusion peaks occur when

α=0.1 (eg. when S0=50, diffusion reaches 9% of adopters in random networks) while

maximum peaks are observed when α=0.7 (eg. approximately 57% final adopters

for 26% initial agents seeded in lattice and small-world networks). With respect to

clustered structures, results suggest that the more the learning rate increases, the

larger the cascade is, and the lower the amount of the initial seed set needs to be to

reach high levels of spreading. This feature is captured by the following : increasing

the learning effect fosters the impact of one agent adopting on the technology cost

function. In other words, with higher rates of learning, fewer new adopters are

required to reach an equivalent decrease in the cost function. Therefrom, a faster

drop in technology cost leads to a larger scope of agents whose thresholds µi is

crossed (for the same amount of initial seeds). The latter suggests that aggregate

diffusion and learning rates are intertwined with one another.

From a network approach, the aggregate amount of final adopters differs in

every scenario. Indeed, lattice and small-world networks, both exhibiting high levels
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of clustering, perform better than random networks, whatever the levels of learn-

ing and initial seeds - except extremes (ie. S0=[0; 100]). Moreover, as the learning

parameter grows, the diffusion gap7 between clustered and random networks gets

larger, embodying the strong influence that learning exercises and the critical role

of clustering in diffusion. As an example, for S0=24 and α=0.7, diffusion levels

achieve nearly 81% in clustered networks while in random networks, technology

propagates to less than 54% of agents. This result matches previous researches on

complex contagion diffusion in networks, suggesting that clustering is critical for

innovation spreading (Centola and Macy, 2007). Following the recent work of Cen-

tola on complex contagion (2018), we assume the process of technology diffusion

to starts out locally, then spilling over to nearby neighborhoods, and ultimately

percolating through the population of agents.

Considering small-world networks, technology tends to diffuse a bit lower than in

lattice structures (cf. α=[0.5; 0.7]). Here, one can assume that differences between

small-world and lattice networks explain this observation. Although exhibiting high

level of clustering, small-worlds are less clustered than lattice structures - due to

some short paths crossing the whole network (cf. Appendix, Section 1). Hence,

we can treat small-world as a halfway structure between lattice and random net-

works. In this case, a lower clustering coefficient explains the relative underperfor-

mance of small-worlds compared to lattice networks. Again, note that the largest

diffusion gap between clustered and random networks is observed when the learn-

ing effect is the highest (α=0.7) for an initial seed set fixed at 13%. We conclude

that parameter α drives the diffusion and the associated adoption gaps between

considered networks.

Overall, our results suggest that clustered structures and learning effects

favour the adoption of a technology subject to a Moore’s law. These networks ex-

hibit higher diffusion levels compared to dynamics examined in random networks.
7cf. Appendix, Section 2.1.
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3.3 Understanding diffusion (II) : Cascades’ spreading

We are now interested in evaluating the heterogeneity of aggregate diffusion with

respect to networks. We base our analysis on the variance as it represents a nat-

ural measure of dispersion (Cowan and Jonard, 2004). Remember, our results are

averages over 1000 numerical replications. Moreover, studying how cascades spread

is relevant for questions related to policy design and associated outcomes’ uncer-

tainty. Fig.2. reports the variance of aggregate diffusion as a proxy for heterogene-

ity. Interestingly, heterogeneity and diffusion behave in a similar manner. In every

scenario, two peak curves are obtained for clustered networks, displaying highest

levels of disparity in cascades outcomes. Heterogeneity increases as a function of

learning with larger ranges for clustered networks (eg. for S0=7 and α=0.7, aggre-

gate diffusion variance in lattice, small-world and random equal 567, 522 and 92

respectively). Moreover, in lattice and small-world networks, an increase in learning

leads to fewer initial seeds required to reach highest levels of variance (as observed

for aggregate diffusion).

Fig.2. Diffusion heterogeneity measured by variance
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To gain more qualitative insights on this issue, we map the dynamics of diffusion

and heterogeneity in the case of a one threshold scenario (θi).8 By doing so, we can

precisely estimate the impact of adding an additional threshold (ie. cost) on diffu-

sion features. Then it is clear that, in the absence of a cost threshold, heterogeneity

decreases as a function of initial seeds in clustered networks. In our scenarios, an in-

crease in learning brings levels of variance and diffusion closer to the ones observed

in a one threshold setting (θi). Here, we suggest that a fast decrease in the cost

function (ie. generated with high learning parameters) makes the cost condition to

adopt more easily met (cf. Eq.(1) in Section 2). More generally, adding a second

condition to adoption (ie. cost threshold) leads to a different behavior of hetero-

geneity in clustered networks compared to a one threshold configuration. Indeed, in

a two threshold setting, variance increases to reach highest peaks associated with

highest levels of diffusion while in a one threshold model, variance decreases as a

function of initial seeds. For random networks, diffusion and heterogeneity follow

the same pattern in the two designs.

Levels of heterogeneity observed in clustered networks refer to the percolat-

ing process. As exposed, the diffusion starts out locally, then spreads to nearby

neighbors, and ultimately percolates through the network. This process tend to be

subject to a clear "rigidity" in terms of diffusion dynamics. On one hand, if diffu-

sion percolates, it reaches high levels of global spread; on the other hand, if it does

not propagate in the initial clusters (ie. where the initial agents are seeded), the

diffusion is caped to a low number of adopters. In random networks, the process is

smoother as short path lengths do not contain or exacerbate diffusion. These obser-

vations complement researches on seeding strategy and percolation in networks. As

Acemoglu (2011) developed, diffusion in clustered networks requires at least one

initial seed among clustered groups to make percolation in the all neighborhood

possible. Here, heterogeneity of our aggregate diffusion results reinforces this view
8cf. Appendix, Section 2.5.
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- that technology only "diffuses" in random networks while in clustered networks,

diffusion is exacerbated to one extreme or another (ie. low or high level). This

observation suggests a possible trade-off between maximising adoption and hetero-

geneity. Namely, where aggregate diffusion levels are the highest, dispersion is the

largest. If there is a strong connection between diffusion and network structures,

this may indicate a policy tension : targeting diffusion levels with lower expected

variability or favouring maximum adoption with more uncertainty in terms of final

results. Because uncertainty is critical for public policy design, the previous obser-

vation calls for a different policy approach with respect to the objective targeted.

3.4 On Cascades’ lengths and Adoption dynamics

To this point, our evaluation has focused on aggregate diffusion properties. We now

turn to the transitory analysis of the model. The speed at which the technology

diffuses is a major policy concern, especially for technologies aiming at reducing

greenhouse gases emissions (IEA, 2018). Here, we address this question and exam-

ine how spreading dynamics is affected by the network structure. We name "time

of convergence" the number of time periods required for the cascade process (ie. a

simulation) to stop. For easiness of presentation, we only consider lattice and ran-

dom networks as small-world configurations mimic lattice curves. In addition, we

focus on scenarios where S0=[5; 35]9 as they exhibit the main interesting outcomes.

Then, Fig.3.a. and Fig.3.b. show the relationship between the total amount

of simulations (ie. 1000) in percentage and the associated speed of convergence,

reported up to 32 time periods. As a reminder, random networks have little local

structure and short paths connecting agents. In this case, simulations converge faster

after the launch of the process. Precisely, at least 70% of simulations have converged

at t≤4 in most scenarios, reaching relatively low levels of aggregate diffusion.

9cf. Appendix, Section 2.3 for other scenarios.
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Fig.3.a. Rate of Cascades convergences as a function of time, S0=5

Fig.3.b. Rate of Cascades convergences as a function of time, S0=35

For lattice networks, early diffusion tends to spread slower than in random networks

(eg. at t≤4, some scenarios exhibit rates of convergence lower than 5%, cf. α=0.7,
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S0=35). But the process continues longer, and reaches higher levels of aggregate

diffusion.

Again, note that the learning parameter α influences cascades’ lengths. Indeed,

increasing its effect leads to, in most cases, additional periods to converge, what-

ever the level of the initial seed set. When α=0.7, speeds of convergence in lattice

networks are the slowest observed for each period, in every scenario. By matching

this observation with aggregate number of adopters, we suggest that lower times of

convergence stem from a larger scope of agents whose thresholds θi are crossed. The

latter induces a longer and higher adoption dynamics in clustered networks. We also

observe that a larger initial seed set combined with high values of learning leads to

S-shaped curves for cascades’ convergences. In other words, once a period threshold

is crossed, cascades tend to stop processing (cf. α=0.7, S0=35).

In order to strengthen our claim, we map in Fig.4.a.b. the associated times

of convergence10 with respect to aggregate amount of adopters at each period for

S0=[5; 35].

Fig.4.a. Adoption dynamics as a function of time, S0=5

10cf. Appendix, Section 2.4 for other scenarios.
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Fig.4.b. Adoption dynamics as a function of time, S0=35

This approach sheds light on two key aspects. First, diffusion dynamics in lattice

and random networks share common features as regards speed and aggregate diffu-

sion. For S0≤35, in early periods (t≤3), they perform equivalently regarding final

aggregate diffusion. Second, when the process converges in random networks, diffu-

sion in clustered structures propagates to reach higher levels, increasing the length

of the cascade. This observation confirms our previous expectations.

Overall, if our results suggest that high diffusion is coupled with clustering,

we found out more heterogeneity (ie. variance) in cascades processes in these net-

works. Following our findings on cascades lengths, it might not be relevant for policy

makers to favour clustered structures if the amount of diffusion targeted is low. The

latter confirms previous researches suggesting that for low levels of seeds and small

values of t, networks exhibiting a low degree of clustering might diffuse the inno-

vation further (Acemoglu et al., 2011). However, when it comes to large spread of

technologies subject to a Moore’s law, clustering performs better. Adding up to

these results, the next section evaluates the relevant government strategy in terms

of initial seeds to efficiently maximize diffusion in networks examined.
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3.5 Efficient Strategy : Tipping Points in Seeding

From a government perspective, maximizing or limiting the spread of diffusion

comes with a cost of action (eg. number of seeds in our case). These issues have been

largely documented in the literature (Kempe et al., 2003; Akbarpour et al., 2018). In

the context of climate change, deploying environmental-friendly technologies at least

cost is a key objective for governments - already subject to public debt. In our

framework, a cost efficient strategy for a public intervention would be to set the

level of initial seeds (ie. cost) such that it maximizes final aggregate adoption. In

other words, maximizing the ratio between aggregate diffusion and initial seed set,

in which seeding one supplementary agent leads to a larger effect on aggregate

diffusion. As previously observed, an increase in the learning parameter leads to

larger diffusion and to lower associated amounts of seeds required (ie. in clustered

networks). From a government perspective, this suggests that it could be inefficient

to target high amounts of initial seeds to reach high levels of adoption. If this result

is critical, it fails to precisely evaluate the impact of seeding one supplementary

agent (ie. cost) on aggregate diffusion.

To address this question, we map in Fig.5. the variation of the ratio of ag-

gregate diffusion and initial seeds in lattice and random networks (ie. high and low

clustered structures). If the corresponding value is positive, seeding the associated

amount of agents is beneficial for diffusion. On the contrary, a negative value sug-

gests that the size of the seed set outweighs the final diffusion benefits (ie. adopters).

From Fig.5. we note that the learning parameter has two main effects : first, mov-

ing from low to high levels of learning decreases the angular pattern of variation

observed. Second, higher learning parameters lead to a smaller amount of initial

seeds subject to positive ratio values.11

11Note : here we report associated seeds above which we observe no more positive values :
when α = 0.1, negative values arise when S0=25 (lattice), S0=29 (random); when α=0.3, negative
values appear when S0=14 (lattice) , S0=25 (random); when α=0.5, negative values arise when
S0=10 (lattice), S0=15 (random); when α=0.7, negative values arise when S0=7 (lattice), S0=14
(random).
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Overall, the level of initial seeds having positive values is always lower in clustered

networks compared to random networks which makes a government intervention

(ie. seeding) less costly in these configurations. The latter matches previous obser-

vations on the impact of the learning parameter on diffusion in clustered networks -

namely, higher learning effects lead to larger diffusion with lower amount of initial

seeds required to reach maximums.

Fig.5. Variation of aggregate diffusion with respect to initial seed sets

4 Discussion and Conclusions

For some types of technologies, the cost of a unit decreases exponentially over time

(Moore’s law). As for hardware technologies, green technologies like solar modules

follow this trend (Farmer and Lafond, 2016). We have shown that under a complex

contagion approach, the spreading of these technologies is clearly affected by the

structure of the network over which it takes place. In the context of global warming,

these findings are critical as public policies aim at maximising their deployments by

implementing economic incentives (eg. subsidies). In this paper, we provide clear

evidences that under a complex contagion process, clustered organizations are crit-
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ical to spread a technology. By adding a cost dimension, we innovate with respect

to previous researches on epidemic diffusion in networks and gives practical insights

for policy makers. Among those, targeting clustered organisations (eg. favouring

cooperatives of farmers in agriculture (Viardot, 2013)) comes at a cost : greater

uncertainty in global adoption outcomes. This is the very old efficiency versus un-

certainty trade-off. When network structures result in a high average aggregate

diffusion level, they also generate a high heterogeneity in aggregate adoption. That

is, the distribution of cascade results is relatively variable. To the extent that ef-

ficiency in policy implementation remains a governmental concern and if diffusion

of technologies is considered as a key input to develop regions - and ease global

warming-, policies aimed at inducing efficient diffusion will have to address the con-

sequent uncertainty in results. But whether or not this concern is real depends on

the measure used — if variance is the appropriate measure of distribution, there is

a real problem. As exposed, the impact of learning rates - on associated cost func-

tion - remains critical for spreading. In this context, the choice of the technology

to promote is of great importance for the design of effective policies (eg. case of

renewables).

With respect to our model, it could be extended in several obvious ways. We

have taken the network structure as given, and have examined its effect on the

diffusion process. Apart from paving the way to applications in the field of technol-

ogy adoption an diffusion, our model could be extended by investigating relevant

economic questions. Indeed, we exposed the impact of learning on diffusion and

the associated cost function but we did not investigate the optimal decreasing path

of the cost function with respect to threshold distribution. This approach would

bring insights on how should a cost decrease behave. In the wake of network sci-

ence analysis, some studies would be valuable to apprehend the impact of degree

distribution on general diffusion under a two thresholds approach. The latter would

fill the gap in the literature and would allow some comparisons with other complex
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contagion problems. In terms of modelling, other models of diffusion could also be

implemented such as the Independent Cascade model. This could bring some rele-

vant comparisons in terms of outcomes. Finally, in the model in this paper, there

is no innovation, only diffusion after a government random seeding action (which is

proven to not be the most effective (Singh et al., 2013)). Questions related to the

centrality of agents in networks and their potential cascading powers are relevant to

explore, especially if some are to be characterized as innovators. Overall, our model

could be implemented to real cases of technology diffusion (eg. hardware, chemical

and energy - technologies subject to a Moore’s law).
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Appendix

1. Watts Strogatz algorithm

In this section, we based our approach on Cowan and Jonard (2004). Let I =
{
1,...,N

}
denote a finite set of 100 agents. For any i, j ∈ I, we set the binary variable χ(i, j)

to take the value χ(i, j)=1 if a connection exists between i and j, and χ(i, j)=0,

otherwise. The network G =
{
χ(i, j); i, j ∈ I

}
is the list of all pairwise relationships

between agents. The neighborhood of i is the set Γi =
{
j ∈ I : χ(i, j)=1

}
. A path in

G connecting i and j is a set of pairwise relationships
{
(i, i1),...,(ik, j)

}
such that

27



χ(i, i1) = · · · = χ(ik, j)=1. Finally, the distance d(i, j) between i and j is defined

be the length of the shortest path between them. The following algorithm (Watts

and Strogatz, 1998) allows us to construct a family of constant networks density

graphs which lie between a nearest-neighbor graph on a periodic lattice (also named

regular graph), and at the other extreme a random graph with uniform degree.

Create the regular periodic lattice with n nearest neighbors (n even). Sequentially,

consider each edge of the graph; with probability p disconnect one of its vertices,

and connect it to a vertex chosen uniformly at random. Check both that vertices do

not get self-connected (loop), and that no two nodes are connected more than once.

For large graphs, this procedure ensures that G is connected. By setting p, we vary

the graph structure from completely regular (p=0), through intermediate states,

(0<p<1), to completely disordered (p=1). This creates variation in the number of

edges per agent, but maintains an average of n connections per agent and a total

of Nn/2 edges, ∀p. Define G(n;p) to be the graph produced by this algorithm. Fig.

1 depicts three illustrative configurations with increasing disorder as p is increased,

for N=100 and n=10.
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Watts and Strogatz (1998) point out that the structural properties of G(n;p)-

graphs are intuitively captured by the concepts of average path length and average

clustering. Define the clustering of a set S ⊆ I to be the proportion of pairwise

relationships in S over the total possible number of relationships, that is

cl(S) =

∑
i,j∈S χ(i, j)

#S(#S − 1)/2

In network science, it is the share of friends of on individual who are also friends

of each other. Clustering or cliquishness can be used to measure local coherence

or redundancy by taking S to be the neighborhood of an agent. Then the local

coherence in the network is measured by the average neighborhood cliquishness

C(p) =
∑

i∈I cl(Γi)/N . Average path length is L(p) =
∑

i,j∈I d(i, j)/(N(N − 1)/2),

the average number of steps separating two randomly chosen agents. Though a nat-

ural conjecture is that cliquishness and path length are strongly correlated, there

is a non-negligible interval for p over which L(p)'L(1) yet C(p)�C(1). This in-

terval constitutes the small-world region. It arises because when the number of

long distance links is small, their marginal effect on average path length is large:

introducing a long-range edge provides a shortcut not only between the two nodes

that this link connects, but also for their immediate neighbors, the neighbors of

those neighbors and so on. By contrast removing one local link affects the cliquish-

ness of only a small number of neighborhoods and therefore has little effect on the

population average. The evolution of path length and clique size with p is shown in

Fig. 2, extracted from Cowan and Jonard (2004), for a graph of N=100 nodes, each

vertex having on average n=10 nearest neighbors. For the sake of clarity, we plot

the averaged normalized values L(p)=L(0) and C(p)=C(0) over a sample of 500

different graphs. Normalized average cliquishness remains almost constant when p

is reasonably small and falls slowly for large values of p. By contrast, average path
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length falls quickly for very small p values and then attens out. Hence, for p ∈

[0.01,0.1], cliquishness and path length diverge, creating a small world region in the

space of network structures.
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2.1 Aggregate diffusion and variance, α=[0;1]

1) For α=0, the cost function is :

Ct = C0 × (|U t−1
τ=0Sτ |)−0 = 1

whatever the initial seed set. Then, we observe no diffusion in networks at all as

the cost remains too high.

2) For α=1, we have (for steps of 5 seeds):
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2.2 Diffusion gaps

Diffusion gaps, baseline lattice
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2.3 Cascades convergences

Cascades convergences, S0=[5; 15; 25; 35]
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2.4 Adoption convergence

Adoption dynamics with respect to time, S0=[5; 15; 25; 35]
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2.5 One threshold scenario θi

Aggregate diffusion (except initial seeds) and heterogeneity in a one threshold

scenario
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