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Abstract

Global food demand is rising, driven by a growing world population and dietary changes in developing

countries. This situation encourages farmers to increase crop production which, in turn, increases worldwide

demand for agricultural land and the pressure on tropical forests. Given the probability that growth in

world food demand will continue, this pressure is not likely to abate in coming decades. While the impact

of food demand on deforestation has been in the headlines, rigorous evidence of the relationship between

international crop prices and deforestation using large-N data remains scarce. We attempt to quantify

this link during the twenty-first century using high-resolution annual forest loss data for tropical regions,

combined with information on crop-specific agricultural suitability and annual global commodity prices.

We find that price variation has a sizable impact on deforestation: crop price increases are estimated to

be responsible for a third of the total deforested area in the tropics (approx. 2 million km2) during the

period 2001-2018. We also find that the degree of openness to international trade and level of economic

development are first-order local characteristics affecting the magnitude of the impact of crop prices on

deforestation.
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1 Introduction

Tropical deforestation is one of the main causes of global environmental changes. Recent estimates

indicate that food systems are responsible for a third of global anthropogenic GHG emissions (Crippa

et al., 2021) and that 17% of tropical moist forests have disappeared since 1990, with a remaining area of

about one billion hectares as of 2019, of which 10% are degraded (Vancutsem et al., 2021). Deforestation

threatens crucial ecosystem services, such as biodiversity richness, climate regulation, carbon storage and

water supplies, and encourages the spread of infectious diseases.1 Curbing deforestation not only provides

private goods such as forest timber and non-timber products, local public goods in terms of watersheds,

erosion control, nutrient recycling and local climate effects, but also global public goods such as carbon

storage and biodiversity (e.g. Sandler 1993). The main market failure comes from the global public goods

and the positive externalities that preservation efforts of one country provides to the other countries.

These externalities are hardly valued by market forces which are among the most prominent determinants

of tropical deforestation (Geist and Lambin, 2002; Curtis et al., 2018; Balboni et al., 2022), since they are

largely responsible for driving agricultural expansion (Angelsen, 1999; Pendrill et al., 2019). Forecasts

point to a sharp increase in food demand in coming decades, with projected growth of at least 50% by

2050 (Fukase and Martin, 2020; FAO, 2017). This will clearly drive crop prices up and also likely leading

to a strong increase in the demand for land, which in turn will increase the private value of agricultural

land (Souza-Rodrigues, 2019).

In this paper, we estimate the effect of changes in crop prices on deforestation in the tropics. We

combine various datasets for the tropical regions at the spatial resolution of 0.5 degree latitude and

longitude grid cells (approximately 55 × 55 kilometers at the equator) for the period 2001-2018. First, we

make use of fine-grained estimates of yearly deforestation at the level of 1 arc-second pixels (approximately

30 meters × 30 meters at the equator) (Hansen et al., 2013). For each cell, we compute the total number

of pixels that are deforested in each year. Second, we gather cell-specific information on the agronomic

suitability of 15 crops in order to proxy the potential crop specialization at the cell level (Global Agro-

Ecological Zones, GAEZ hereafter, Fischer et al., 2012). We combine these data with the international

prices of crops traded on international markets in order to construct a cell-specific, time-varying crop

price index. This index is computed as the weighted sum of the international crop prices in a given year,

weighted by the relative agronomic suitability of each crop in the cell (Methods in Section 3.1 and Online

Appendix, hereafter OA, – Section OA1.1 and OA1.2). Our final sample includes around 12,000 cells of

0.5 × 0.5 degree, over the period 2001-2018.

Our identification strategy exploits within-cell variation in the crop price index and deforestation over

time. We control for a large array of unobserved factors, namely all time-invariant cell characteristics,

national time-varying shocks that might correlate with both deforestation and international crop prices,

and local shocks such as weather fluctuations. We find that changes in crop prices significantly affect

deforestation in the tropics and that the effect is sizable: our baseline estimates imply that increase in
1See Foley et al. (2005); Turner et al. (2007); Le Quéré et al. (2016); Alkama and Cescatti (2016); Song et al. (2018); Chaves

et al. (2020); Tollefson (2020).
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our price index observed explains around a third of the total deforestation observed in the tropics over

the period (i.e. approx. 2 million km2). The effect of international price variations on deforestation

significantly increase with initial forest cover, and it depends on cell-specific characteristics. The estimates

are magnified in cells more opened to international trade (proxied by the distance to seaports), in poorer

areas (proxied by nighttime luminosity in 2000) and, to a lesser extent, in areas with weaker state capacity

(proxied by the distance to the capital city). Our results are robust to a variety of sensitivity tests,

including the use of different estimators, standard errors adjustments, various definitions of the canopy

threshold, inclusion of additional controls which may affect both deforestation and prices, or the exclusion

of large traders which could influence world commodity prices. While our results could be driven only by

a direct effect-international prices directly affecting actors such as multinationals, states, or local land

managers, we provide suggestive evidence that they are also driven by an indirect effect-international

prices affecting deforestation through their effect on local prices. Using data on a sub-sample of countries

and crops, we find that local crop prices indeed correlate substantially with international prices. We

interpret our results as demand-driven, as we perform a number of robustness checks that suggest that

supply conditions in large producers do not affect the estimates. We further strengthen this interpretation

by showing that our results are qualitatively similar when using, instead of our international prices index,

a measure of foreign demand based on changes in foreign imports. Hence, our results suggest that changes

in global demand, and modifications of individual preferences may have strong impact on deforestation

levels.

Our paper contributes to the literature in different dimensions. First, this paper is the first attempt to

estimate the effect of crop prices on deforestation at the local level on a global scale. While the idea that

international crop prices, driven by expanding global demand, are contributing to tropical deforestation is

not new (Angelsen, 1999; Angelsen and Kaimowitz, 1999; Angelsen, 2010; Rudel et al., 2009; Busch and

Ferretti-Gallon, 2017), the empirical evidence to date has a number of drawbacks. Either it is based largely

on cross-national comparisons; it focuses on a single country or region; considering only a limited number

of commodities, or focusing on a short period of time (Pendrill et al., 2022).2 The usual approaches in the

studies carried out on a global scale include spatial attribution, input-output, and trade and land-balance

modeling.3 These approaches typically use supply-side models at the national level and downscale national

trade or production data to the local level. Second, by using worldwide information on agricultural

suitability based on resource limitations (plant eco-physiological characteristics, climatic and edaphic

requirements of crops), our approach is more tractable and aims to overcome the absence of fine-grained

information in many poor countries.4 Third, our methodology is agnostic in terms of scale of agricultural
2For papers related to cross-national comparisons, see Angelsen and Kaimowitz (1999); Rudel et al. (2009); DeFries et al.

(2010); Hosonuma et al. (2012); Ordway et al. (2017); Leblois et al. (2017); related to a single country or region Barbier and
Burgess (1996); Gaveau et al. (2009); Wheeler et al. (2013); Hargrave and Kis-Katos (2013); Assunção et al. (2015); Faria and
Almeida (2016); Doggart et al. (2020); Harding et al. (2021); Fehlenberg et al. (2017); Ordway et al. (2017); Lundberg and
Abman (2021); related to a limited number of commodities, see Goldman et al. (2020).

3For papers related to spatial attribution, see Goldman et al. (2020); Curtis et al. (2018); Austin et al. (2019); related to
input-output, see Godar et al. (2015); Green et al. (2019); Hoang and Kanemoto (2021); related to trade and land-balance
modeling, see Pendrill et al. (2019); Henders et al. (2015); Pendrill et al. (2019).

4National data have well-known limitations. They are subject to omission bias stemming from undeclared activities, such
as home-based and locally-consumed agricultural production. A large share of small-holder production is consumed locally
and not traded on international markets, such as oil in Sub-Saharan Africa (Ordway et al., 2019). Trade flow analyses and
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production, in contrast to studies based on spatial attribution or classifications methods, which attribute

large-scale commodity-driven deforestation to shifting agriculture (Curtis et al., 2018; Austin et al., 2019).5

Fourth, it makes use of a sample of areas that were forested at the beginning of the sample period, rather

than areas that are deforested at the end of the period, thus facilitating causal interpretation. Fifth, our

empirical approach that combines exogenous local crop suitability with global crop prices allows us to

control for a wide range of potential confounding factors not accounted for in previous studies. Finally, we

highlight a number of policy-relevant local factors affecting the way in which fluctuations in crop prices

trigger deforestation.

The remainder of the paper is organized as follows. Section 2 discusses the potential mechanisms, while

Section 3 describes the data and the empirical strategy. Section 4 presents the results. Section 5 displays

the main sensitivity analysis and discuss in length the interpretation of our results. Finally, Section 6

concludes.

2 International prices and local deforestation - mechanisms

Average effect. Our objective is to estimate how international crop prices affect local deforestation. Our

claim is that land managers are heterogeneously exposed to crop price movements, depending on how

suitable local land is for producing these commodities. In other words, fluctuations in the international

price of, say, rice, primarily affect areas suitable for growing rice and the decision of land managers to cut

the forest in this place. Differences across locations in the intensity of exposure to specific commodity

price movements may generate different deforestation patterns. International crop prices may affect local

deforestation through several channels. First, world prices may affect land use decisions of local producers

through local markets and local prices. This mechanism is likely to be prevalent if farmers sell their

crops locally, and if local and international markets are sufficiently integrated. The local presence of

multinational companies, for whom international prices matter most and that may buy a significant part

of the production may also represent an important driver of the transmission of the international prices

to local prices. However, trade barriers (trade costs, tariffs...), supply chain frictions, and high shares of

local demand may translate into a weak correlation between the international and local prices. We discuss

this point in Section 5.2, where we use a sub-sample of locations to study the correlation between local

and international crop prices. Second, a surge in the international price may push multinational firms to

invest massively in crop production leading to deforestation, especially in food crops. Third, increases

in international prices may push countries to relax the constraints (e.g. legal and tax systems) to ease

deforestation. Alternatively, countries may decide to subsidize the agricultural sector to promote land

changes toward crop production. In all cases, international price surge act as push factor of deforestation

and not only through local prices.

trade accounting methods are also limited by their lack of spatial explicitness, leading to imprecise links between consumption
patterns and socio-environmental impacts in production regions (Godar et al., 2015).

5Because they rely on the recognition of spatial patterns, these methods cannot be used to link production of – or demand for
– commodities to small-scale deforestation that may also be, directly or indirectly, related to demand in international markets.
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Local factors. Though our methodology primarily relates local crop-specific agronomic suitability

to deforestation, other local factors may play a role. First, and as suggested in the literature (Ferreira,

2004; Souza-Rodrigues, 2019; Abman and Lundberg, 2020), we expect openness to international trade to

exacerbate the role played by crop prices. In areas naturally more open to trade – e.g. those closer to

seaports –, land managers should respond more to variations in international commodity prices. Second,

local institutional quality and the capacity of states to enforce property rights may also affect the sensitivity

of deforestation to crop prices (Angelsen, 1999). Indeed, under open access regimes, for instance, rational

farmers should theoretically rush to exploit land and cut forest more quickly (Chichilnisky, 1994; Ferreira,

2004). The impact of the formalization of land rights and land tenure on forest loss has been demonstrated

in the case of a land registration program in Benin (Wren-Lewis et al., 2020), in the case of a land titling

program in the Brazilian Amazon (Probst et al., 2020) and with respect to the effect of customary tenure

systems on deforestation which has been shown in the case of Cameroon (Ordway et al., 2017). Using

local-level proxies of trade openness and state capacity, we study how these characteristics affect the link

between international crop prices and deforestation in Section 4.2.

3 Data and Empirical Strategy

3.1 Data

We consider a full set of grid cells for the tropics, i.e. the area between the Tropic of Cancer at 23◦26’ N

and the Tropic of Capricorn at 23◦26’ S, divided in sub-national units of 0.5 × 0.5 degrees latitude and

longitude (approximately 55 × 55 kilometers at the equator). The unit of observation in our dataset is a

cell-year; that is, we estimate how increases in crop prices affect deforestation in a given cell during a

given year, over the 2001-2018 period.

Deforestation. We use the tree cover loss data from Hansen et al. (2013), which is based on Landsat

data. They define tree cover loss as a stand-replacement disturbance or the complete removal of tree cover

canopy at the pixel scale.6 The original data contain an estimation of the annual tree cover loss for the

period 2001-2018 (Online Appendix, hereafter OA, Section OA1.1), relative to the 2000 forest cover, for

pixels at a spatial resolution of 1 arc-second (around 30 meters). For the baseline estimates, we consider a

1 arc-second pixel as being a forest when the forest cover in year 2000 is greater than 25%, as in other

global studies using the same data (Heino et al., 2015; Potapov et al., 2008; Hansen et al., 2010). In the

sensitivity analysis, we use a 50% canopy threshold (Section OA2.6). For each of these thresholds, we count

the number of pixels defined as deforested within each 0.5 × 0.5 degrees cell-year. For our baseline measure

of deforestation, we consider only cells with more than 5000 pixels of cover in 2000 (i.e. more than 0.125%

of the cell’s area). Figure OA.1 shows the accumulated deforestation for each pixel during the sample period.

6Note that our data methodology does not, however, capture forest degradation, which has been shown to be surpassing
deforestation in the Brazilian Amazon (Matricardi et al., 2020), and affects 10% of tropical moist forests (Vancutsem et al.,
2021).
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Crop Price Index. We make use of information on global crop prices and agronomic suitability

to construct our price index. The index is based on information for 15 crops that traded on international

marketplaces and for which data on both annual global prices and agronomic suitability are available:

banana, barley, cocoa, coconut, coffee, cotton, maize, palm oil, rice, sorghum, soybean, sugar, tea, tobacco

and wheat. Global crop prices (base 100 in 2000) are obtained from the World Bank Commodity Dataset

(World Bank Group, 2020). Data on time-invariant agronomic suitability are obtained from the Global

Agro-Ecological Zones (FAO, Fischer et al. (2012)).7 Agronomic suitability is defined as the percentage

of the maximum yield that can be attained in each grid cell. For each cell, we compute the cell-specific

relative suitability of the crop (αi
c) by dividing the suitability of the crop (Si

c) by the sum of the suitability

of all the crops as follows:

αi
c = Si

c∑15
j=1 S

j
c

, (1)

Then, for each cell c and year t, we compute our price index of crops based on the cell-specific relative

suitability of each crop i.

Pricec,t =
15∑

i=1
αi

c × P i
t , (2)

where P i
t is the average worldwide price of crop i in year t.

Figure OA.4 and OA.5 and Table OA.2 uncover different summary statistics and detail the different

sources of our identifying variations in our price index. First, there are striking cross-cell differences in

the average price index variation over the 2001-2018 period (Figure OA.4). Second, for all crops, there

is a substantial variation of prices over time – e.g., the two recent spikes related to the 2007-2008 and

2011-2012 world food price crises (Figure OA.5). Third, while positive overall, price correlations between

crops are highly heterogeneous: from 4.3% between sugar and oilpalm to 96% between sorghum and maize

(Table OA.2). Fourth, the share of the total variance of suitability coming from within country variation

for each crop is substantial (Table OA.1). It ranges from 50% for tobacco to 74% for coconut. Altogether,

variations in Pricec,t are substantial even after conditioning on country and year fixed effects, as we shall

do in our baseline methodology.

Final Sample. Our final sample covers the period 2001-2018 and is composed of 12,288 cells for which

agronomic suitability data is available and forest cover in 2000 was strictly positive, i.e. at least 1

arc-second pixel is forest when the canopy threshold is larger than 25% of the cover. Our dataset is

therefore a balanced panel of 221,184 observations. Tables OA.3 reports summary statistics about the

main variables used in our study, including initial forest cover, deforestation and the price index Pricec,t.

3.2 Empirical strategy

We consider three alternative models. In Model 1, we estimate the impact of the log of the crop

price index (ln Pricec,t) on the inverse hyperbolic sine transformation of the number of deforested pixels

(Deforestc,t)8 in cell c in year t, while controlling for cell and for country × year fixed effects (ηc and
7GAEZ, FAO data, available http://www.fao.org/nr/gaez/about-data-portal/en/
8This transformation is frequently used as it approximates the natural logarithm while allowing for zero-valued observations

in the estimation (Burbidge et al., 1988; MacKinnon and Magee, 1990; Pence, 2006).
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νcountry,t, respectively):

Deforestc,t = β lnPricec,t + ηc + νcountry,t + εc,t, (3)

where εc,t is the error term. Standard errors are clustered by cell in the baseline, and in our sensitivity

analysis we allow for spatially correlated errors within a larger radius. The inclusion of cell fixed effects

control for any time-invariant cell characteristics that may correlate with both the average deforestation

rates and crop prices (such as geography, topography and soil characteristics). The inclusion of country ×

year fixed effects (νcountry,t) accounts for any time-variant country characteristics, such as global trends

in overall crop prices, nationwide shocks or policy changes that may trigger or hamper deforestation.

Since deforestation is bounded by the initial forest cover, we allow the effect of price (lnPricec,t) to

vary across deciles of forest cover throughout the analysis (Model 2). We also allow it to vary across

countries (Model 3) when looking at the effect of cell characteristics. We estimate the models using an

Ordinary Least Square (OLS) estimator in the baseline estimations and a Poisson Pseudo Maximum

Likelihood (PPML) estimator in the sensitivity exercises. Finally, to study the role of local characteristics

we estimate equation (3) augmented with interaction terms between lnPricec,t and cell-specific proxies of

trade openness, development or state capacity (Section 4.2).

Identifying assumptions. In Section 5.1, we explore the sensitivity of our results to our various

methodological choices – estimators, definitions of deforestation, lagged prices – and across sub-samples of

data – regions, outliers, etc. Arguably more importantly, we provide a number of exercises supporting our

causal interpretation of the results.

So far, we have interpreted β as an estimate of the impact of international prices variations on

deforestation. This interpretation would fail if local prices are affected by deforestation and impact

international prices, or if omitted variables which are cell-specific and vary over time affect deforestation

and world prices. We show that our results are unlikely to be driven by reverse causality – local prices

affecting world prices –: removing countries which account for a non-negligible share of world production

leaves our results unchanged (Table OA.11 and OA.12). In addition, in our sensitivity exercises we will

also control for local weather shocks, which may affect deforestation and local prices (Table OA.18).

Our price index is formed by suitability shares and international crop prices and we estimate the effect

of variations of this index on deforestation at the cell-year level. Our empirical strategy can therefore be

described as a shift-share (“Bartik”) reduced-form approach. We have a very large number of cells (12,288)

and a number of price shocks (15 crops x 18 years = 270) in our sample, and we include fixed effects.

Following Goldsmith-Pinkham et al. (2020), the consistency of our estimator relies on the exogeneity of

the suitability shares to changes in deforestation within cells. Though it is not directly testable, we believe

that this is a plausible assumption. Forest cover (which conditions changes in deforestation) may indeed

correlate with absolute suitability (Si
c) – tropical forest grow on fertile soils. Yet, our methodology does

not consider average suitability, but rather relative suitability in specific crops (αi
c), which are arguably

exogenous to deforestation variations. In Section 5.1 we provide series of robustness exercises that also

support our causal interpretation.
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4 Results

4.1 Crop prices and deforestation in the tropics

Our baseline results are represented graphically in Figure 1, and full estimations results are available

in Table OA.4. We find that the cell-specific crop price index is positively and significantly correlated

with deforestation (β̂ = 1.27, se = 0.09). The effect is seizable: a 10% increase in the price index leads

to a 12.7% [±1.7pp] increase in deforestation (Figure 1, Model 1). As the potential for deforestation

mechanically depends on the proportion of forest cover at the beginning of the period (Figure OA.2

presents forest cover in 2000), we allow the effect of crop prices to vary across deciles of cell-specific forest

cover in 2000 (Figure 1, Model 2). For the first decile of cover, the point estimate is not significantly

different from 0; then it triples from the second to tenth decile.9

Figure 1: Baseline effects of crop prices on deforestation

M
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 1

M
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ln Price

ln Price*Cover[D1]

ln Price*Cover[D2]

ln Price*Cover[D3]

ln Price*Cover[D4]

ln Price*Cover[D5]

ln Price*Cover[D6]

ln Price*Cover[D7]

ln Price*Cover[D8]

ln Price*Cover[D9]

ln Price*Cover[D10]

-1 0 1 2 3
Point estimate and 99% CI

Note: Point estimates and confidence intervals for the effect of the crop price index on deforestation. Model 1 is the baseline estimate
of the effect while Model 2 allows the effect of crops on deforestation to differ across deciles of forest cover as of 2000. Horizontal lines
represent 95% confidence intervals. See Section 3 and Section OA2.1 for further details.

From 2001 to 2018, on average, the crop price index increased by more than 40% while the prices of

specific leading crops, such as maize, rice, palm oil and soybeans, increased by between 45% and 85%. To

get a sense of the role of the rise in crop prices on deforestation, we use the results presented in Figure 1,

Model 2 to estimate the total contribution of crop price increases to deforestation during this period.10

We find that the rise in crop prices was responsible for 35% of predicted global forest loss. Using the
9This result is not an artifact of the model specification. Though forest loss is bounded above by the decile of forest cover

for each decile bin, in practice these bounds are never reached. To show this, we compute, for each grid cell, the number
of deforested pixels over the total number of forest pixels at the beginning of the period for a canopy threshold of 25%, see
Figure OA.3 in Section OA1.4.

10Our precise methodology is the following. Our aim is to compute the average contribution of crop prices variations over all
the cells. For each cell, we proceed as follows. We first use the estimates from Model 2 (Figure 1) to compute the predicted level
of deforestation, using observed prices (the benchmark). Second, we compute a counterfactual level of deforestation, using the
same estimates but assuming that prices are fixed at their 2001 level. Third, we compute for each cell the contribution of prices
variations as the difference between the benchmark and the counterfactual predictions, divided by the counterfactual.
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PPML estimator rather than OLS leads to similar figures and average (Figure OA.11). As a comparison,

Harding et al. (2021) find that a 56% increase in commodity prices led to a 19% increase in deforestation

in Brazil over the 2004–2013 period.

Figure 2: Contribution of crop prices to deforestation, 2001-2018

(a) Americas (b) Africa

(c) Asia and Oceania

Note: Contribution of crop price increases to deforestation. Quantification based on the estimation results of Model 2 (see Section 3).
We first compute the predicted level of deforestation using observed prices (the benchmark). We then compute a counterfactual level of
deforestation assuming prices are fixed at their 2001 level. Finally, we sum these predictions by cell over the period and compute for each
cell the contribution of prices as the difference between the benchmark and the counterfactual predictions, divided by the counterfactual.

Figure 2 shows the spatial heterogeneity across cells of the contribution of the crop price index variations

to deforestation during the sample period. Differences across space are driven by (i) heterogeneous crop-

specific suitabilities, and hence heterogeneous variations in global crop prices (Figure OA.4); (ii) the cell’s

initial forest cover (Figure OA.2). A visual inspection reveals that the contribution of the increase in

international crop prices on deforestation has been the strongest in the three main tropical moist forest

biomes: the Amazon, Southeast Asia and to a lesser extent West and Central Africa. Interestingly, we find

that all tropical forests are subject to land pressure stemming from shocks to the prices of internationally

traded commodities. Our results validate recent evidence indicating that despite cropland expansion in

sub-Saharan Africa still being dominated by production for domestic markets, there is a growing influence

of global markets on changing land use in the region (Ordway et al., 2017).
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4.2 Trade costs and other local characteristics

As discussed in Section 2, local characteristics may dampen or exacerbate the contribution of crop

price increases to deforestation. We consider two magnifying factors.11 The first is international trade. In

more open areas, land managers should be more impacted by changes in international prices. To measure

the cell-specific exposure to international trade, we use information on the distance of the cell’s centroid to

the closest major seaport, as a proxy for transportation costs (Souza-Rodrigues, 2019). The second factor

we consider is state capacity, or local institutional quality. We expect the effect of international crop prices

on deforestation to be magnified in areas where the capacity of the state to enforce property rights is

weaker. To measure institutional quality at the local level, we use the distance between the cell’s centroid

and the country’s capital (Buhaug, 2010).12 Rule of law, property rights protection and more generally

institutional quality are expected to be weaker in places located far from the capital (Michalopoulos and

Papaioannou, 2014). We also consider a measure of nighttime luminosity in 2000 (i.e. at the beginning of

the sample period, to avoid reverse causality concerns) to proxy local economic development (Henderson

et al., 2012; Bruederle and Hodler, 2018). State capacity and institutional quality are also expected to

be stronger in wealthier locations. All cell-specific variables have been standardized to make coefficients

comparable.

Figure 3: Cell-level characteristics

ln Price x dist. port

ln Price x dist. cap.

ln Price x night lights

-.4 -.2 0 .2
Point estimate and 95% CI

Model 1 Model 2
Model 3

Note: The figure displays the point estimates and confidence interval of the effect of the interaction between cell-specific characteristics
and our price index. The effect of crop price on deforestation is not reported here. Model 1 uses the baseline specification, augmented
with interaction terms between the price index and (standardized) cell-characteristic variables (see Section 3 and Table OA.5). Model 2
allows the effect of crop price on deforestation to vary across the deciles of the initial forest cover distribution. Model 3 controls for a full
set of interaction terms between country dummies and the price index.

11In Section OA2.5, we also consider heterogeneity at the country-level and include national differences in institutional quality,
interacted with our crop price index. The coefficient estimates for these additional variables vary depending on the specification
we consider. We discuss these results in Section OA2.5.

12While there is evidence, especially for African countries, that the power of the State diminishes outside the capital
(Michalopoulos and Papaioannou, 2014), measuring local state capacity is still challenging. Among the different proxies (e.g.
mountainous terrain (Hendrix, 2011), road density (Buhaug, 2006)), distance to the capital (Buhaug, 2010) is the most suitable
for our purposes since it is the most exogenous and less related to international trade.
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We consider each of the these potential mitigating factors by interacting the cell-specific characteristics

with our price index in the baseline models. The standardized estimates of the interaction terms are

plotted in Figure 3 (the full estimates are available in Table OA.5). Figure 3 considers three models:

Models 1 and 2, as in Figure 1; and Model 3, which allows for heterogeneous effects of the price index

across countries. In the latter model, we purge the estimates of the interaction terms of their country-

wide component (e.g., differences in country size), focusing solely on within-country variation in cell

characteristics.

First, we find that the positive effect of crop price increases on deforestation is significantly stronger in

cells that are close to a seaport, suggesting that openness to international trade exacerbates the effect of

crop price increases on deforestation. Second, and even though the significance of the estimates varies, the

results point to larger commodity-driven deforestation in cells that are more distant from the capital city

– i.e. locations with weaker state capacity. Finally, the effect of crop prices on deforestation is smaller

in locations that are more economically developed. On average across specifications, distance to a port

has the strongest effect. This provides support for the key role of access and exposure to international

trade. The effect of trade costs and economic development remained virtually unaffected in our sensitivity

checks, while the effect of local state capacity, measured by distance to the capital city, is less robust (see

Section OA2.6).

Figure 4: Focus on the Congo Basin

(a) Baseline quantification (b) Additional contribution of cell-level characteristics

Note: Figure (a) shows the contribution of crop price increases to forest loss, with the sample restricted to the Congo Basin. Quantification
is based on the estimation results of Model 2 (see Section 3). We first compute the predicted level of deforestation using observed prices
(the benchmark). We then compute a counterfactual level of deforestation assuming fixed prices at their 2001 level. Finally, we sum
these predictions by cell over the period and compute for each cell the contribution of prices as the difference between the benchmark and
the counterfactual prediction, divided by the counterfactual. Figure (b) shows the difference in p.p. between Figure (a) and the sample
quantification based on a specification where interaction terms between prices and cell characteristics are included (dist. port, dist cap.
and light lights in 2000). For readability in brown and white, Figure b is reproduced with grey scale in Appendix Figure OA.6.

To illustrate these results, we focus on the Congo Basin, a major tropical moist forest biome spanning

several countries. We first repeat the quantification exercise presented in Figure 2, restricting the sample

to the countries of the Congo Basin. The results are shown in Figure 4.a, which displays for each cell

the contribution of crop price increases to predicted deforestation during the sample period, as well as

the location of major seaports and capital cities in each country. Second, we repeat this quantification

exercise but use the specification that includes interactions with cell characteristics (Model 2 of Figure 3).
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Figure 4.b plots the difference in percentage points between the two quantification exercises. Clearly,

being close to a port has the strongest effect on commodity-driven deforestation. However, regions that

are remote from the capital city also display significant differences, even though they are less exposed to

international trade (e.g. the border between Cameroon and Central African Republic). A visual inspection

of the same exercise for the full set of regions in the tropics delivers the same striking spatial patterns

(Figure OA.7).

5 Robustness and Interpretation

5.1 Endogeneity concerns and sensitivity analysis

In Section 3.2, we mentionned the two main threats to our identification strategy. First, international

prices may be affected by local prices, themselves impacted by deforestation or omitted local weather

shocks. In other words, variations in our crop price index may be supply driven instead demand driven,

and supply may correlate with deforestation. Second, the validity of our shift-share approach relies on the

exogeneity of the suitability shares to changes in deforestation within cells. In this section, we discuss a

number of tests which support a causal interpretation of our results.

Market power. We first show that reverse causality is unlikely to drive our results, i.e. that they

are not reflecting the local conditions of countries with enough market power to influence international

prices. Indeed, despite the fine-grained level of our analysis and the fact that we are using potential rather

than actual agricultural production, we cannot completely rule out the possibility that deforestation and

international commodity prices are simultaneously driven by supply-side shocks in major producing coun-

tries. For each country and crop, we compute the average market share of world trade during the sample

period, and drop sequentially from the estimations countries belonging to the top 10%, 25% and 50% of our

sample in terms of global market share. Our results remain largely unchanged when focusing only on small

producers, which tends to confirm our demand-side interpretation of the results (Tables OA.11 and OA.12).

Confounding factors. Local weather shocks may affect both crop prices (through their effect on

agricultural productivity) and deforestation (e.g. because wildfires are more likely in dry years). We

add to our baseline specification the average cell-specific yearly temperature and the yearly total amount

of precipitation. The results are largely similar to our baseline (Figure OA.18). Second, we control for

the absolute level of agronomic suitability of the cell, which may affect both forest cover (hence the

likelihood of deforestation) and crop prices (if cells with a higher absolute suitability are also more suitable

for specific crops). If the land unsuitable for most crops in the sample is suitable for a crop that has

relatively less positive price shocks (e.g., coffee) and also lacks forest cover, this may generate a spurious

positive relationship between the price index and deforestation since increases in deforestation would

necessarily occur where the crop price index has (relatively) large positive price shocks. Though such a

correlation would be purely accidental, we can remove the concern by explicitly controlling for the average
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cell suitability ( 1
15

∑15
j=1 S

j
c ) interacted with year dummies (controlling common price changes). This has

little impact on our estimates - if anything, our baseline coefficient becomes slightly larger (Figure OA.12).

Finally, in our baseline estimations we focus on agricultural crops and do not include meat in our price

index. This may be a concern as studies have linked beef markets to Brazilian forest loss (Bowman, 2016)

and land suitable for beef may also be suitable for crop production. To take beef production into account,

we use GAEZ suitability data on alfalfa, pasture and grass together with data on the world price of beef

from the World Bank. The methodology and the results are described in Section OA2.6.9 (Figures OA.14

and OA.15 and Tables OA.19 and OA.20). Our results are close to our baseline estimate.

Additional sensitivity analysis. All Tables and Figures related to the sensitivity analysis are relegated

in Section OA2.6. First, using the number of deforested pixels as the dependent variable, we estimate our

models using a Poisson Pseudo-Maximum Likelihood (PPML) estimator (columns 3 and 4 in Tables OA.7

and OA.8).13 Second, we consider a different – more conservative – canopy threshold (50% instead of 25%)

to ensure that 30m pixels contain enough tree cover in 2000 to be considered a forest biome (columns

1 and 2 in Tables OA.7 and OA.8). Third, we use the share of deforested pixels over forest cover at

the beginning of the period as a dependent variable.14 Our main result is qualitatively similar (Figure

OA.13). Fourth, we ensure that our results are not driven by a small number of extreme observations by

excluding observations that are 1, 2 and 3 standard deviations away from the residual mean (Tables OA.9

and OA.10). Fifth, we allow for both spatial and serial correlation, as the processes of deforestation

and land conversion make it likely that the error term exhibits both spatial and serial correlation. We

perform a non-parametric standard errors estimation (Conley, 1999; Hsiang et al., 2011), allowing for

both cross-sectional location-specific serial correlation, as well as spatial correlation within a 500 or 1000

km radius (Tables OA.13 and OA.14). Sixth, we relax the assumption that price changes only have a

contemporaneous effect on deforestation, by allowing the impact to be lagged (up to t -2) (Tables OA.15

and OA.16). Finally, we estimate the effect separately for South America, Africa and Asia and it again

yields qualitatively similar results. In the case of South America, prices exhibit a stronger average impact

on deforestation, but this is largely due to the fact that forest cover is higher on average in this case; for

high levels of forest cover, the effect, though still larger in South America, becomes more uniform across

regions (Table OA.17).

5.2 Mechanisms and interpretation

International prices and local prices. As mentioned in Section 2, several mechanisms can be at play

to explain our results. In particular, while the effect of international crop prices on deforestation can be

explained by local land managers (and countries) responding directly to changes in international prices, we

believe that another mechanism -the transmission of international prices to local prices- is also at play and

consistent with our results. Indeed, using household-level data, the literature has documented that price
13Since the left hand side variable of the deforestation equation is a transformed variable (inverse hyperbolic sine), quantification

of deforested areas include an error term that is not white noise. For this reason, we replicate our maps using the PPML model
(Section OA2.4).

14Note that this strategy has the drawback to attribute a lot of weight to cells with very small forest cover.
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indexes similar to the one we use, e.g based on local crop-specific suitability and world prices, correlate

positively and significantly with farmers’ income. For instance, McGuirk and Burke (2020) find a negative

correlation between a similar price index and farmer’s poverty indexes computed from Afrobarometer

data. Berman et al. (2021) provide evidence that variations in the international market prices of nutrients

or fertilizers are indeed transmitted to local markets in Sub-Saharan Africa. Berman et al. (2020) show a

positive correlation with various measures of income from three different datasets: Demographic Health

Survey, Afrobarometer and Worldbank Living Standard Measurement Study surveys.

Alternatively, we make use of the data from Porteous (2019), containing information on local prices

for 230 markets across 42 countries and four different crops (maize, rice, sorghum and wheat). Our

estimates show that the average local prices of crops are clearly correlated with international prices (the

unconditional coefficient of correlation ranges from 0.82 to 0.98). Regressing local prices on world prices,

controlling for market and crop fixed effects, we find that a one-percent increase in world price is associated

with a 0.66 percent increase in local price (Figure OA.16 and Table OA.21). The magnitude of the effect

is similar across crops, except for wheat which coefficient is close to 1. Though the data only cover a small

part of our tropical sample, this suggests that our main result is indeed partly driven by the response of

land managers to local prices.

International demand and trade. Throughout the paper we have interpreted changes in inter-

national commodity prices as being demand-driven. The fact that price changes are demand driven

alleviates endogeneity problems associated with supply effects, and also has more general implications:

this means that influencing demand, including changing individual preferences and consumption behavior,

can have a direct impact on deforestation. This interpretation of our results in favor of demand effects is

reinforced by the fact that we obtain qualitatively similar results when we consider commodity imports

instead of agricultural prices. To do this, we use changes in the aggregate import demand of trading

partners as identification variations.

More specifically, we consider a cell c, producing a set of crops k exported by its country i to a set of

trading partners j. First, we characterize the importance for country i of export of good k to country j

over the period 1990-2000: define γijk = Xijk

Xik
as the share of total exports of country i in good k shipped

to country j over the total export of country i in good k. Second, compute the importance of good k

for country j: define Mjkt as the value of total imports of country j in good k during year t. Finally,

define αk
c as the relative suitability of crop k in cell c. With these three components, we can compute our

demand index:

Mc,t =
∑

k

∑
j

αk
cγijkMjkt (4)

Variations in Mc,t over time are driven by changes in the total imports of the trading partners of the

country in the crops that the cell is suitable at producing. The data to compute trade shares is taken from

FAO-Stats. Though this variable is less straightforward to interpret than prices, it is also more directly

demand-driven, as its variations solely depends on trade partners’ imports of agricultural commodities.

14



Table 1: Alternative shock: imports in trading partners

(1) (2) (3) (4)
Model 1 Model 2 Model 1 Model 2

Estimator OLS

ln Mc,t 0.703a 0.678a

(0.059) (0.058)

× Cover[D1] -0.208a -0.230a

(0.071) (0.071)

× Cover[D2] 0.250a 0.230a

(0.069) (0.069)

× Cover[D3] 0.377a 0.359a

(0.068) (0.069)

× Cover[D4] 0.425a 0.413a

(0.068) (0.068)

× Cover[D5] 0.596a 0.594a

(0.065) (0.065)

× Cover[D6] 0.621a 0.614a

(0.064) (0.065)

× Cover[D7] 0.704a 0.700a

(0.064) (0.064)

× Cover[D8] 0.823a 0.848a

(0.061) (0.062)

× Cover[D9] 1.008a 1.038a

(0.061) (0.062)

× Cover[D10] 1.209a 1.240a

(0.063) (0.064)

ln Mc,t × dist. port. -0.046a -0.159a

(0.017) (0.016)

ln Mc,t × dist. cap. 0.155a 0.053a

(0.013) (0.014)

ln Mc,t × night lights in 2000 -0.051a -0.030a

(0.010) (0.009)

Cell FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Observations 166392 166392 166392 166392

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered by cell in parenthesis.
The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. Cover[x] are bins for deciles of forest
cover in 2000. ln dist. port is the log of distance from the closest seaport. ln dist. cap. is the log of the distance from the country’s capital
city at the beginning of the period. night lights is the average amount of nighttime lights emitted in the cell in 2000.

Our results are qualitatively similar to those obtained with commodity prices (Table 1). Though the

effect of price changes and variations in foreign imports cannot be directly compared, we find that the

impact of an increase in the trade index on deforestation is substantial: a 10% increase in foreign demand

generates a 7% increase in deforestation.

15



6 Concluding Remarks

Changes in crop prices are found to significantly affect deforestation in the tropics at the local level,

thus confirming the key role of market forces (Pendrill et al., 2019). We bring robust statistical evidence

that the many agricultural commodities and products traded daily on international markets are responsible

for a large share of global deforestation. As the demand for these products increases, new arable land

is required. Therefore, the natural solution to arresting deforestation originates on the demand side: if

consumers reduce their demand for agricultural products, crop prices will stabilize and deforestation will

likely slow. However, forecasts of demand in the coming decades suggest that this is unlikely (Fukase and

Martin, 2020). Policies targeting consumers’ preferences and behavior should therefore be combined with

measures aiming at directly slowing deforestation. Such measures involve multiple actors – corporations,

NGOs and governments. Corporations can implement strategies such as supply chain initiatives that

promote greater transparency, or they can adopt unilateral or multilateral commitments. However, the

complexity of the supply chains, the possibility of leakage, low and selective adoption, and the risk of

marginalization of smallholders make the impact of these actions uncertain (Lambin et al., 2018). This

was seen, for example, in the case of palm oil supply chains (Lyons-White and Knight, 2018). On the

other hand, national and local governments, with the help of NGOs, can implement various policies

to reduce deforestation. These include encouraging dietary change, mandating transparency in supply

chains, incentivizing companies to adopt effective anti-deforestation strategies, penalizing companies

responsible for significant deforestation, and programs to reduce the sensitivity of community incomes

to global crop prices. The development of monitoring tools, such as the Transparency for Sustainable

Economies initiative15 and more generally the development of real-time information on areas at risk of

deforestation, can facilitate the implementation of anti-deforestation policies (Slough et al., 2021; Moffette

et al., 2021b,a).
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Online Appendix – Not for publication

OA1 Data and descriptive statistics

OA1.1 Tree cover and deforestation

Information on tree cover for the year 2000 is available at a resolution of 1 arc-second (around

30m×30m). The tree cover is defined by Hansen et al. (2013) as canopy closure for all vegetation taller

than 5m in height. We consider two thresholds to consider a pixel as a forest: a canopy cover threshold of

25 and 50% of a pixel in year 2000. The main results define forest pixel as having at least 25% of forest

cover, while robustness checks were run for a threshold of 50% (Section OA2.6). Hansen et al. (2013)

estimate tree cover loss annually over the 2001-2018 period (version 1.6), defined as a stand-replacement

disturbance, or a change from a forest to non-forest state. The data provides a year of tree cover loss

for every pixel with more than 1% of forest cover (vegetation taller than 5m height) in 2000 that is

estimated to endure a loss of more than 50% of the 2000 forest cover between 2001 and 2018. We consider

that the whole pixel (30x30m) tree cover was reduced to zero when losses occur. Forest degradation, for

example selective removals from within forested stands that do not lead to a non-forest state, was not

included in the change characterization. Moreover, the data does not allow to distinguish quality of the

canopy and select every vegetation higher than 5m, potentially leading to consider secondary forest loss as

deforestation.

OA1.2 Suitability

A crucial information to define our cell-specific price crop index is the crop-specific agronomic suitability

of a cell. The FAO provides for the suitability for 45 crops at a resolution of 5 arc minute (FAO’s global

agroecological zones, GAEZ). These data are constructed from models that use location characteristics, such

as climate information (rainfall and temperature, for instance) and soil characteristics. This information

is then combined with crops’ characteristics (in terms of growing requirements) to generate a global GIS

raster of the suitability for each of the 45 crops. Constrained by the availability of international price

data, our final sample encompasses 15 crops.

OA1.3 Other data

Throughout the manuscript we make use of different datasets. First, we use information on night-time

lights in 2000 aiming to approximate local economic development.16 Second, we compute the geodesic

distances between each centroid grid cell of 0.5×0.5 degree longitude and latitude and the closest port. We

use location of ports from World Port Index dataset17 that provides GPS location of ports with a depth

larger than 11 meters. Third, we compute the geodesic distance between each centroid grid cells and the
16Data from the DMSP-OLS, Nighttime Lights Time Series Version 4 (Average Visible, Stable Lights, & Cloud Free Coverages),

as available in PRIO-GRID.
17Available at the following link https://msi.nga.mil/Publications/WPI
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capital city of each country.18 Fourth, to compute the crop-specific country market share in world trade,

we make use of the dataset on exports and imports from the FAO.19. Last, we make use of information on

rainfall and temperature from the climate research unit from the University of East Anglia.20

OA1.4 Forest cover and deforestation: maps and descriptive statistics

Figure OA.1: Cumulated deforestation, 2001-2018

(a) Americas (b) Africa

(c) Asia and Oceania

Note: Accumulated deforestation, in number of pixels (max. total of land pixel in a cell is 4000K), forest defined with a 25%
threshold. Source: Hansen et al. (2013).

18We use the distance to the capital city at the beginning of the period, as in a very small number of cases the capital city
has changed during the period.

19Faostat data site http://www.fao.org/faostat/en
20Available at https://crudata.uea.ac.uk/cru/data/hrg/
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Figure OA.2: Forest cover in 2000

(a) Americas (b) Africa

(c) Asia and Oceania

Note: Number of pixels covered by forest, using a 25% canopy cover threshold. Year: 2000. The maximum total of land pixels
per cell is 4000K.
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Figure OA.3: Percentage of deforested pixels by cell cover decile
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Source: The figure represents the number of deforested pixels over the total number of pixels in the cell at the beginning of the
period, by groups of cells defined based on deciles of initial forest cover. Authors’ computation from Hansen et al. (2013), using
a canopy threshold of 25%.

Table OA.1: Suitability within-country variance

Crop Within Country Crop Within Country Crop Within Country
share share share

Banana 0.61 Cotton 0.58 Sugar 0.69
Barley 0.64 Maize 0.62 Soybean 0.57
Cocoa 0.64 Oil Palm 0.66 Tea 0.70
Coconut 0.74 Rice 0.71 Tobacco 0.50
Coffee 0.64 Sorghum 0.51 Wheat 0.63

Source: Authors’ computation from GAEZ data. Share of variance of average cell suitability within country in total variance.
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OA1.5 International prices: descriptive statistics

Figure OA.4: Average price index variation, 2001-2018

(a) Americas (b) Africa

(c) Asia and Oceania

Note: Average value of the crop price index over the 2001-2018 period, taking 2001 as a base year.
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Figure OA.5: Crop price series
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Table OA.2: Crop prices correlation matrix

banana barley cocoa coconut coffee cotton maize oilpalm rice sorghum soybean sugar tea tobacco wheat
banana 1
barley 0.137 1
cocoa 0.528 0.231 1
coconut 0.592 0.154 0.569 1
coffee 0.552 0.329 0.633 0.783 1
cotton 0.0802 0.304 0.336 0.593 0.720 1
maize 0.371 0.839 0.470 0.549 0.677 0.583 1
oilpalm 0.576 0.485 0.639 0.914 0.852 0.679 0.767 1
rice 0.681 0.574 0.641 0.676 0.708 0.413 0.831 0.813 1
sorghum 0.373 0.754 0.526 0.602 0.682 0.536 0.960 0.748 0.804 1
soybean 0.533 0.736 0.627 0.663 0.684 0.487 0.916 0.861 0.935 0.878 1
sugar -0.0820 -0.0348 -0.107 -0.166 0.0465 0.182 -0.205 -0.0425 -0.293 -0.371 -0.249 1
tea 0.550 0.0283 0.572 0.731 0.652 0.465 0.475 0.640 0.690 0.525 0.552 -0.332 1
tobacco 0.474 -0.185 0.615 0.612 0.512 0.297 0.257 0.433 0.464 0.389 0.325 -0.469 0.874 1
wheat 0.345 0.900 0.465 0.427 0.542 0.368 0.894 0.691 0.782 0.870 0.900 -0.241 0.262 0.0693 1
Source: World Bank and authors’ computation.
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OA1.6 Summary statistics

Table OA.3 displays the summary statistics of all variables used in the paper.

Table OA.3: Summary statistics

Variable Mean Std. Dev. Min. Max. N
Forest cover in 2000 (forest: > =25%) 2160762.943 1468356.427 5002 4000000 221184
Forest cover in 2000 (forest: > =50%) 1733182.742 1517453.892 0 4000000 221184
Deforestation (pixel share, forest: > =25%) 0.005 0.01 0 0.43 221184
Deforestation (pixel share, forest: > =50%) 0.008 0.023 0 1 220122
Deforestation (pixel count, forest: > =25%) 10553.688 22859.436 0 749160 221184
Deforestation (pixel count, forest: > =50%) 9074.951 21442.323 0 746363 221184
Inverse hyperbolic sine transformation of
Deforestation (pixel count, forest: > =25%) 8.028 2.688 0 14.22 221184
Inverse hyperbolic sine transformation of
Deforestation (pixel count, forest: > =50%) 7.417 3.141 0 14.216 221184
Price index 66.763 21.041 1.547 215.39 221184
Distance to nearest seaport in km (dist. port) 604.582 436.82 1.811 1893.287 221184
Distance to capital city in km (dist. cap.) 901.101 793.15 1.773 7916.136 221184
Stable night-time lights in 2000 (night lights) 0.842 2.594 0 44.547 221184

Note: See appendix Sections OA1.1, OA1.2 and OA1.3 for more details.
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OA2 Statistical analysis

OA2.1 Baseline estimates

This sub-section contains the two Tables related to the Figures displaying the baseline estimates in

the manuscript. Table OA.4 displays the estimates used to construct Figure 1, Model 1 (Column 1) and

Model 2 (Column 2). Table OA.5 shows the estimates used in Figure 3. Column (1) provides the estimates

of Model 1, that is of specification (3) when we include interaction variables between the price index and

cell characteristics (distance to the closest port, distance to the capital city and the intensity of nighttime

lights in 2000). In column (2), we provide the estimates of the same specification, but with the price index

interacted with a binary variable for each decile of the initial forest cover distribution. Finally, in column

(3) we control for a full set of interactions between country dummies and the price index.
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Table OA.4: Baseline results

(1) (2)
Model Model 1 Model 2

ln Price 1.267a

(0.088)

× Cover[D1] -0.136
(0.113)

× Cover[D2] 0.566a

(0.104)

× Cover[D3] 0.866a

(0.102)

× Cover[D4] 0.877a

(0.101)

× Cover[D5] 1.115a

(0.097)

× Cover[D6] 1.177a

(0.097)

× Cover[D7] 1.409a

(0.098)

× Cover[D8] 1.594a

(0.094)

× Cover[D9] 1.837a

(0.092)

× Cover[D10] 2.153a

(0.095)

Cell FE Yes Yes
Country × Year FE Yes Yes
Observations 221184 221184
Period 2001-2018 2001-2018
R2 0.860 0.861

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell
level in parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price
is our crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000.
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Table OA.5: Baseline results with cell characteristics

(1) (2)
Model 1 Model 2 Model 3

ln Price 1.166a

(0.087)

× ln dist. port -0.111a -0.287a -0.125a

(0.025) (0.024) (0.026)

× ln dist. cap. 0.189a 0.032 0.177a

(0.024) (0.025) (0.025)

× night lights in 2000 -0.101a -0.060a -0.110a

(0.015) (0.014) (0.016)

× Cover[D1] -0.189c

(0.113)

× Cover[D2] 0.512a

(0.103)

× Cover[D3] 0.809a

(0.101)

× Cover[D4] 0.826a

(0.100)

× Cover[D5] 1.077a

(0.097)

× Cover[D6] 1.132a

(0.097)

× Cover[D7] 1.373a

(0.097)

× Cover[D8] 1.625a

(0.095)

× Cover[D9] 1.909a

(0.094)

× Cover[D10] 2.258a

(0.098)

Cell FE Yes Yes Yes
Country × Year FE Yes Yes Yes
Country FE × price No No Yes
Observations 221184 221184 221184
Period 2001-2018 2001-2018 2001-2018

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is our crop price
index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000. ln dist. port is the log of distance from the closest
seaport. ln dist. cap. is the log of the distance from the country’s capital city at the beginning of the period. night lights is the average
amount of nighttime lights emitted in the cell in 2000.
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OA2.2 Focus on the Congo Basin (grey scale)

Figure OA.6: Focus on the Congo Basin: (b) Additional contribution of cell-level characteristics (grey scale)

Note: Quantification is based on the estimation results of Model 2 (see Section 3). We first compute the predicted level of deforestation
using observed prices (the benchmark). We then compute a counterfactual level of deforestation assuming fixed prices at their 2001 level.
Finally, we sum these predictions by cell over the period and compute for each cell the contribution of prices as the difference between the
benchmark and the counterfactual prediction, divided by the counterfactual. The Figure shows the difference in p.p. between Figure (4.a)
and the sample quantification based on a specification where interaction terms between prices and cell characteristics are included (dist.
port, dist cap. and light lights in 2000).
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OA2.3 Full quantification with cell-level characteristics

Figure OA.7 provides the same quantification as in Figure 4, but over all the Tropics.

Figure OA.7: Additional contrib. of cell-level characteristics, full Tropics sample

(a) Americas (b) Africa

(c) Asia and Oceania

Note: Difference (in percentage point) in the contribution of crop prices to deforestation when interacting variables with cell characteristics
(Model 2, Figure 3), compared to our baseline (Figure 2). For each model, the quantification is computed in the following way. First,
we compute the predicted level of deforestation using observed prices, our benchmark). Then, we compute a counterfactual level of
deforestation assuming fixing prices at their 2001 level. Finally, we sum these predictions by cell over the period, and compute for each
cell the contribution of prices as the difference between the benchmark and the counterfactual predictions, divided by the counterfactual.
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OA2.4 Quantifications, PPML estimator

Figures OA.8 to OA.11 provides the equivalent to Figures 2, 4, OA.6 and OA.7, using a PPML

estimator instead of OLS with an Inverse Hyperbolic Sine transformation.

Figure OA.8: Contribution of crop prices increases to deforestation, 2001-2018, PPML

(a) Americas (b) Africa

(c) Asia and Oceania

Note: Contribution of crop price increases to deforestation. Quantification based on the estimation results of Model 2 (see Section 3),
using a PPML estimator instead of OLS. We first compute the predicted level of deforestation using observed prices, our benchmark).
Then we compute a counterfactual level of deforestation assuming fixing prices at their 2001 level. Finally, we sum these predictions by
cell over the period, and compute for each cell the contribution of prices as the difference between the benchmark and the counterfactual
predictions, divided by the counterfactual.
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Figure OA.9: Focus on the Congo Basin, PPML estimator

(a) Baseline quantification (b) Additional contribution of cell-level characteristics

Note: Figure (a) shows the contribution of crop price increases to forest loss, sample restricted to the Congo Basin. Quantification based
on the estimation results of Model 2 (see Section 3), estimated with a PPML estimator instead of OLS. We first compute the predicted
level of deforestation using observed prices, our benchmark. Then we compute a counterfactual level of deforestation assuming fixing prices
at their 2001 level. Finally, we sum these predictions by cell over the period, and compute for each cell the contribution of prices as the
difference between the benchmark and the counterfactual predictions, divided by the counterfactual. Figure (b) shows the difference in p.p.
between Figure (a) and the sample quantification based on a specification where interaction terms between prices and cell characteristics
are included, again using a PPML estimator.

Figure OA.10: Focus on the Congo Basin, PPML estimator: (b) Additional contribution of cell-level
characteristics (grey scale)

Note: Quantification based on the estimation results of Model 2 (see Section 3), estimated with a PPML estimator instead of OLS.
We first compute the predicted level of deforestation using observed prices, our benchmark. Then we compute a counterfactual level of
deforestation assuming fixing prices at their 2001 level. Finally, we sum these predictions by cell over the period, and compute for each
cell the contribution of prices as the difference between the benchmark and the counterfactual predictions, divided by the counterfactual.
The Figure shows the difference in p.p. between Figure (OA.9.a) and the sample quantification based on a specification where interaction
terms between prices and cell characteristics are included, again using a PPML estimator.
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Figure OA.11: Additional contrib. of cell-level characteristics, full Tropics sample, PPML

(a) Americas (b) Africa

(c) Asia and Oceania

Note: Difference (in percentage point) in the contribution of crop prices to deforestation when interacting variables with cell characteristics
(Model 2, Figure 3), compared to our baseline (Figure OA.8); these maps use a PPML estimator instead of OLS. For each model, the
quantification is computed in the following way. First, we compute the predicted level of deforestation using observed prices, our benchmark).
Then, we compute a counterfactual level of deforestation assuming fixing prices at their 2001 level. Finally, we sum these predictions by
cell over the period, and compute for each cell the contribution of prices as the difference between the benchmark and the counterfactual
predictions, divided by the counterfactual.
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OA2.5 Country characteristics

In this section, we use data from the Worldwide Governance Indicators (WBGI) as well as information

on GDP per capita and a global measure of institutional quality, the International Country Risk Guide

(ICRG) index. We use the value of these variables at the beginning of the period, in 2000, interacted with

our price index. We control for continent fixed effects and forest cover, both interacted with our price

index.

Table OA.6 displays the results. Several observations can be made. First, though the significance

of the effect of distance to capital city varies, the coefficients of cell specific characteristics (distance to

port, nighttime luminosity) are quite stable. Second, the significance of the estimates of the country-level

institutions variables vary. A high institutional quality (ICRG index) limits the impact of international

crop prices on deforestation (columns 1 and 2); GDP per capita does not seem to play a role (columns

2 and 4). In column 4, where all the variables are included, we find that the effect of crop prices is

lower in countries with better control of corruption, rule of law and to a lesser extent regulatory quality,

but worsens in countries where government effectiveness and accountability are high. Though these are

interesting results, interpreting them would require thinking theoretically about how different types of

institutions should affect the response of deforestation to crop price variations. Such a theoretical study

is beyond the scope of the paper, which is why we chose, in our main results, to control for country

characteristics through fixed effects (interacted with prices) rather than directly investigating the impact

of country characteristics.
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Table OA.6: Baseline results with country characteristics

(1) (2) (3) (4)

ln Price

× ln dist. port -0.269a -0.269a -0.289a -0.289a

(0.025) (0.025) (0.025) (0.025)

× ln dist. cap. 0.045c 0.042 0.020 0.021
(0.025) (0.025) (0.026) (0.026)

× night lights in 2000 -0.064a -0.064a -0.070a -0.069a

(0.014) (0.014) (0.015) (0.015)

× ICRG Index -4.611a -5.477a

(1.222) (1.328)

× ln real GDP per cap. 0.327 -0.201
(0.208) (0.242)

× Control of corruption (WBGI) -1.600b -1.614b

(0.758) (0.756)

× Voice and accountability (WBGI) 1.928a 1.948a

(0.467) (0.465)

× Government effectiveness (WBGI) 3.716a 4.010a

(1.072) (1.067)

× Regulatory Quality (WBGI) -0.581 -0.731
(0.598) (0.596)

× Political Stability (WBGI) 0.795a 0.758a

(0.259) (0.259)

× Rule of Law (WBGI) -3.072a -2.991a

(0.846) (0.850)

Cell FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Region FE × ln Price Yes Yes Yes Yes
Forest cover × ln Price Yes Yes Yes Yes
Observations 208476 208476 214326 214326

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is our crop price
index, defined in equation (2). Forest cover × ln Price is a set of interaction variables, Cover[x] × ln Price, where Cover[x] are bins for
deciles of forest cover in 2000. ln dist. port is the log of distance from the closest seaport. ln dist. cap. is the log of the distance from the
country’s capital city at the beginning of the period. night lights is the average amount of nighttime lights emitted in the cell in 2000. All
the country level variables are taken at the beginning of the period, in 2000.
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OA2.6 Sensitivity analysis

OA2.6.1 Canopy threshold & PPML

Table OA.7: Sensitivity analysis of baseline estimates: canopy threshold & PPML

(1) (2) (3) (4)
Model Model 1 Model 2 Model 1 Model 2
Canopy threshold 50% 50% 25% 25%
Estimator OLS OLS PPML PPML

ln Price 1.351a 1.377a

(0.088) (0.117)

× Cover[D1] 0.080 0.375b

(0.113) (0.167)

× Cover[D2] 0.451a 0.881a

(0.108) (0.149)

× Cover[D3] 0.761a 0.877a

(0.105) (0.132)

× Cover[D4] 0.813a 1.085a

(0.104) (0.134)

× Cover[D5] 1.109a 1.141a

(0.100) (0.132)

× Cover[D6] 1.193a 1.093a

(0.099) (0.129)

× Cover[D7] 1.531a 1.267a

(0.099) (0.126)

× Cover[D8] 1.739a 1.557a

(0.095) (0.126)

× Cover[D9] 1.990a 1.768a

(0.093) (0.126)

× Cover[D10] 2.297a 1.886a

(0.096) (0.148)

Cell FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Observations 220122 220122 221006 221006

Note: Least square estimator in columns (1) and (2), PPML in columns (3) and (4). c significant at 10%; b significant at 5%; a significant
at 1%. Standard errors clustered at the cell level in parentheses. The dependent variable is the hyperbolic inverse sine of the number of
pixels deforested in the cell. ln Price is the log of our crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover
in 2000. With the 50% canopy threshold (columns 1 and 2), the number of observations is reduced compared to the estimates with the
25% canopy threshold as few grid of 0.5 degree do not include any pixels of 30 meters with a 50% canopy cover in 2000.
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Table OA.8: Sensitivity analysis of specifications with cell characteristics: canopy threshold & PPML
estimator

(1) (2) (3) (4)
Model Model 1 Model 2 Model 1 Model 2
Canopy threshold 50% 50% 25% 25%
Estimator OLS OLS PPML PPML

ln Price 1.248a 1.109a

(0.088) (0.111)

× ln dist. port -0.119a -0.328a -0.417a -0.484a

(0.027) (0.026) (0.035) (0.035)

× ln dist. cap. 0.193a 0.003 0.205a 0.099a

(0.025) (0.025) (0.038) (0.037)

× night lights in 2000 -0.103a -0.051a -0.093a -0.038b

(0.017) (0.015) (0.018) (0.017)

× Cover[D1] 0.027 0.110
(0.112) (0.164)

× Cover[D2] 0.397a 0.546a

(0.107) (0.145)

× Cover[D3] 0.700a 0.511a

(0.104) (0.126)

× Cover[D4] 0.760a 0.745a

(0.103) (0.128)

× Cover[D5] 1.071a 0.860a

(0.099) (0.126)

× Cover[D6] 1.153a 0.788a

(0.098) (0.124)

× Cover[D7] 1.506a 0.978a

(0.098) (0.119)

× Cover[D8] 1.800a 1.319a

(0.096) (0.120)

× Cover[D9] 2.105a 1.575a

(0.095) (0.121)

× Cover[D10] 2.455a 1.782a

(0.099) (0.143)

Cell FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Observations 220122 220122 221006 221006

Note: Least square estimator in columns (1) and (2), PPML in columns (3) and (4). c significant at 10%; b significant at 5%; a significant
at 1%. Standard errors clustered at the cell level in parentheses. The dependent variable is the hyperbolic inverse sine of the number of
pixels deforested in the cell. ln Price is the log of our crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover
in 2000. ln dist. port is the log of distance from the closest seaport. ln dist. cap. is the log of the distance from the country’s capital city
at the beginning of the period. night lights is the average amount of nighttime lights emitted in the cell in 2000.
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OA2.6.2 Outliers

Table OA.9: Sensitivity analysis of the baseline estimates: dropping outliers

(1) (2) (3) (4) (5) (6)
Model Model 1 Model 1 Model 1 Model 2 Model 2 Model 2
Sample: Excluded outliers 3 σ 2 σ 1 σ 3 σ 2 σ 1 σ

ln Price 1.116a 0.994a 0.905a

(0.072) (0.061) (0.042)

× Cover[D1] -0.245a -0.259a -0.430a

(0.093) (0.077) (0.052)

× Cover[D2] 0.417a 0.346a 0.181a

(0.085) (0.073) (0.049)

× Cover[D3] 0.691a 0.574a 0.465a

(0.083) (0.070) (0.048)

× Cover[D4] 0.728a 0.617a 0.419a

(0.082) (0.071) (0.048)

× Cover[D5] 0.931a 0.835a 0.680a

(0.082) (0.070) (0.047)

× Cover[D6] 0.977a 0.877a 0.732a

(0.082) (0.071) (0.048)

× Cover[D7] 1.207a 1.095a 0.920a

(0.082) (0.070) (0.048)

× Cover[D8] 1.410a 1.297a 1.113a

(0.079) (0.068) (0.047)

× Cover[D9] 1.651a 1.503a 1.352a

(0.078) (0.067) (0.046)

× Cover[D10] 1.987a 1.854a 1.628a

(0.080) (0.069) (0.047)

Cell FE Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes
Observations 217908 210305 171382 217913 210312 171342

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is the log of our
crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000.
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Table OA.10: Sensitivity analysis of specifications with cell characteristics: dropping outliers

(1) (2) (3) (4) (5) (6)
Model Model 1 Model 1 Model 1 Model 2 Model 2 Model 2
Sample: Excluded outliers 3 σ 2 σ 1 σ 3 σ 2 σ 1 σ

ln Price 0.995a 0.888a 0.802a

(0.082) (0.071) (0.048)

× ln dist. port -0.264a -0.266a -0.190a -0.676a -0.646a -0.547a

(0.064) (0.055) (0.037) (0.062) (0.055) (0.037)

× ln dist. cap. 0.469a 0.445a 0.350a 0.037 0.021 -0.046
(0.061) (0.053) (0.035) (0.060) (0.052) (0.035)

× night lights in 2000 -0.041a -0.036a -0.030a -0.026a -0.020a -0.017a

(0.006) (0.005) (0.003) (0.005) (0.005) (0.003)

× Cover[D1] 0.051 0.025 -0.138b

(0.100) (0.085) (0.057)

× Cover[D2] 0.716a 0.627a 0.470a

(0.094) (0.081) (0.054)

× Cover[D3] 0.991a 0.852a 0.754a

(0.090) (0.078) (0.053)

× Cover[D4] 1.024a 0.895a 0.704a

(0.090) (0.078) (0.053)

× Cover[D5] 1.238a 1.123a 0.966a

(0.090) (0.077) (0.052)

× Cover[D6] 1.276a 1.161a 1.020a

(0.090) (0.078) (0.054)

× Cover[D7] 1.512a 1.380a 1.218a

(0.090) (0.078) (0.054)

× Cover[D8] 1.756a 1.624a 1.455a

(0.091) (0.079) (0.054)

× Cover[D9] 2.030a 1.864a 1.713a

(0.092) (0.080) (0.055)

× Cover[D10] 2.386a 2.231a 2.002a

(0.096) (0.083) (0.057)

Cell FE Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes
Observations 217898 210295 171419 217912 210298 171388

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is the log of our
crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000. ln dist. port is the log of distance from the
closest seaport. ln dist. cap. is the log of the distance from the country’s capital city at the beginning of the period. night lights is the
average amount of nighttime lights emitted in the cell in 2000.

44



OA2.6.3 Dropping large players

Table OA.11: Sensitivity analysis of the baseline estimates: dropping countries with a large crop market
share

(1) (2) (3) (4) (5) (6)
Model Model 1 Model 1 Model 1 Model 2 Model 2 Model 2
Sample: Excluded Top 10% Top 25% Top 50% Top 10% Top 25% Top 50%

ln Price 1.449a 1.449a 0.921a

(0.095) (0.095) (0.128)

× Cover[D1] 0.115 0.115 -0.164
(0.125) (0.125) (0.159)

× Cover[D2] 0.709a 0.709a 0.288c

(0.115) (0.115) (0.152)

× Cover[D3] 0.926a 0.926a 0.746a

(0.112) (0.112) (0.147)

× Cover[D4] 0.934a 0.934a 0.867a

(0.111) (0.111) (0.150)

× Cover[D5] 1.178a 1.178a 0.966a

(0.107) (0.107) (0.145)

× Cover[D6] 1.247a 1.247a 1.113a

(0.107) (0.107) (0.146)

× Cover[D7] 1.456a 1.456a 1.320a

(0.110) (0.110) (0.150)

× Cover[D8] 1.692a 1.692a 1.470a

(0.104) (0.104) (0.143)

× Cover[D9] 1.947a 1.947a 1.568a

(0.101) (0.101) (0.139)

× Cover[D10] 2.384a 2.384a 1.849a

(0.105) (0.105) (0.153)

Cell FE Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes
Observations 171990 171990 87624 171990 171990 87624

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is our crop price
index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000. In columns (1) and (4), we dropped the top 10% of
the countries with respect to their average market share in our sample’s crops post-2000 (top 25% in columns (2) and (5) and top 50%
in columns (3) and (6)). The crops considered to compute the market shares are those included in our analysis: banana, barley, cocoa,
coconut, coffee, cotton, maize, oil palm, rice, sorghum, soybean, sugar, tea, tobacco, wheat.
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Table OA.12: Sensitivity analysis of specifications with cell characteristics: dropping countries with a large
crop market share

(1) (2) (3) (4) (5) (6)
Model Model 1 Model 1 Model 1 Model 2 Model 2 Model 2
Sample: Excluded Top 10% Top 25% Top 50% Top 10% Top 25% Top 50%

ln Price 1.449a 1.449a 0.921a

(0.095) (0.095) (0.128)

× Cover[D1] 0.115 0.115 -0.164
(0.125) (0.125) (0.159)

× Cover[D2] 0.709a 0.709a 0.288c

(0.115) (0.115) (0.152)

× Cover[D3] 0.926a 0.926a 0.746a

(0.112) (0.112) (0.147)

× Cover[D4] 0.934a 0.934a 0.867a

(0.111) (0.111) (0.150)

× Cover[D5] 1.178a 1.178a 0.966a

(0.107) (0.107) (0.145)

× Cover[D6] 1.247a 1.247a 1.113a

(0.107) (0.107) (0.146)

× Cover[D7] 1.456a 1.456a 1.320a

(0.110) (0.110) (0.150)

× Cover[D8] 1.692a 1.692a 1.470a

(0.104) (0.104) (0.143)

× Cover[D9] 1.947a 1.947a 1.568a

(0.101) (0.101) (0.139)

× Cover[D10] 2.384a 2.384a 1.849a

(0.105) (0.105) (0.153)

Cell FE Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes
Observations 171990 171990 87624 171990 171990 87624

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is our crop price
index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000. In columns (1) and (4), we dropped the top 10% of
the countries with respect to their average market share in our sample’s crops post-2000 (top 25% in columns (2) and (5) and top 50% in
columns (3) and (6)). ln dist. port is the log of distance from the closest seaport. ln dist. cap. is the log of the distance from the country’s
capital city at the beginning of the period. night lights is the average amount of nighttime lights emitted in the cell in 2000.
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OA2.6.4 Conley standard errors

Table OA.13: Sensitivity analysis of the baseline estimates: Conley’s standard errors

(1) (2) (3) (4)
Model Model 1 Model 2 Model 1 Model 2
Spatial threshold 500km 500km 1000km 1000km

ln Price 1.267a 1.267a

(0.307) (0.372)

× Cover[D1] -0.136 -0.136
(0.319) (0.371)

× Cover[D2] 0.566c 0.566c

(0.297) (0.340)

× Cover[D3] 0.866a 0.866a

(0.292) (0.330)

× Cover[D4] 0.877a 0.877a

(0.292) (0.329)

× Cover[D5] 1.115a 1.115a

(0.294) (0.338)

× Cover[D6] 1.177a 1.177a

(0.296) (0.337)

× Cover[D7] 1.409a 1.409a

(0.304) (0.347)

× Cover[D8] 1.594a 1.594a

(0.302) (0.350)

× Cover[D9] 1.837a 1.837a

(0.302) (0.359)

× Cover[D10] 2.153a 2.153a

(0.318) (0.372)

Cell FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Observations 221184 221184 221184 221184

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Conley (1999) standard errors allowing for
infinite serial correlation and spatial correlation within a 500km or 1000km radius. The dependent variable is the hyperbolic inverse sine
of the number of pixels deforested in the cell. ln Price is the log of our crop price index, defined in equation (2). Cover[x] are bins for
deciles of forest cover in 2000.
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Table OA.14: Sensitivity analysis of specifications with cell characteristics: Conley standard errors

(1) (2) (3) (4)
Model Model 1 Model 2 Model 1 Model 2
Spatial threshold 500km 500km 1000km 1000km

ln Price 1.220a 1.220a

(0.310) (0.369)
× ln dist. port -0.293 -0.703a -0.293 -0.703a

(0.190) (0.182) (0.200) (0.187)

× ln dist. cap. 0.367b -0.038 0.367c -0.038
(0.183) (0.165) (0.210) (0.182)

× night lights in 2000 -0.040a -0.023b -0.040a -0.023b

(0.010) (0.009) (0.010) (0.010)

ln Price*Cover[D1] 0.210 0.210
(0.329) (0.386)

ln Price*Cover[D2] 0.909a 0.909b

(0.311) (0.357)

ln Price*Cover[D3] 1.204a 1.204a

(0.307) (0.349)

ln Price*Cover[D4] 1.212a 1.212a

(0.306) (0.347)

ln Price*Cover[D5] 1.458a 1.458a

(0.309) (0.357)

ln Price*Cover[D6] 1.520a 1.520a

(0.310) (0.356)

ln Price*Cover[D7] 1.756a 1.756a

(0.318) (0.365)

ln Price*Cover[D8] 1.997a 1.997a

(0.318) (0.370)

ln Price*Cover[D9] 2.276a 2.276a

(0.320) (0.381)

ln Price*Cover[D10] 2.621a 2.621a

(0.334) (0.396)

Cell FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Observations 221184 221184 221184 221184

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is the log of our
crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000. ln dist. port is the log of distance from the
closest seaport. ln dist. cap. is the log of the distance from the country’s capital city at the beginning of the period. night lights is the
average amount of nighttime lights emitted in the cell in 2000.
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OA2.6.5 Lagged effect

Table OA.15: Sensitivity analysis of the baseline estimates: lags

(1) (2) (3) (4)
Model Model 1 Model 1 Model 1 Model 2

ln Price 1.267a 1.030a

(0.088) (0.098)

ln Price: average t to t− 2 1.915a

(0.154)

ln Price: t− 1 0.330a

(0.096)

ln Price: t− 2 0.694a

(0.113)

ln Price: average t to t− 2 × Cover[D1] 0.253
(0.176)

ln Price: average t to t− 2 × Cover[D2] 1.261a

(0.165)

ln Price: average t to t− 2 × Cover[D3] 1.614a

(0.163)

ln Price: average t to t− 2 × Cover[D4] 1.724a

(0.164)

ln Price: average t to t− 2 × Cover[D5] 1.964a

(0.159)

ln Price: average t to t− 2 × Cover[D6] 2.080a

(0.159)

ln Price: average t to t− 2 × Cover[D7] 2.344a

(0.162)

ln Price: average t to t− 2 × Cover[D8] 2.632a

(0.158)

ln Price: average t to t− 2 × Cover[D9] 3.000a

(0.158)

ln Price: average t to t− 2 × Cover[D10] 3.469a

(0.162)

Cell FE Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes
Observations 221184 196608 196608 196608

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is the log of our
crop price index, defined in equation (2). ln Price: average t to t − 2 is the average price from t to t − 2.
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Table OA.16: Sensitivity analysis of specifications with cell characteristics: lags

(1) (2)
Model Model 1 Model 2

ln Price: average t to t− 2 1.738a

(0.152)

× ln dist. port -0.130a -0.360a

(0.032) (0.031)

× ln dist. cap 0.317a 0.098a

(0.029) (0.029)

× night lights in 2000 -0.090a -0.034c

(0.019) (0.018)

ln Price: average t to t− 2 × Cover[D1] 0.154
(0.174)

ln Price: average t to t− 2 × Cover[D2] 1.162a

(0.164)

ln Price: average t to t− 2 × Cover[D3] 1.512a

(0.162)

ln Price: average t to t− 2 × Cover[D4] 1.635a

(0.162)

ln Price: average t to t− 2 × Cover[D5] 1.889a

(0.158)

ln Price: average t to t− 2 × Cover[D6] 1.992a

(0.157)

ln Price: average t to t− 2 × Cover[D7] 2.268a

(0.160)

ln Price: average t to t− 2 × Cover[D8] 2.631a

(0.158)

ln Price: average t to t− 2 × Cover[D9] 3.039a

(0.159)

ln Price: average t to t− 2 × Cover[D10] 3.536a

(0.164)

Cell FE Yes Yes
Country × Year FE Yes Yes
Observations 196608 196608

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. The dependent variable is the hyperbolic
inverse sine of the number of pixels deforested in the cell. ln Price is the log of our crop price index, defined in equation (2). ln Price:
average t to t − 2 is the average price from t to t − 2. ln dist. port is the log of distance from the closest seaport. ln dist. cap. is the log of
the distance from the country’s capital city at the beginning of the period. night lights is the average amount of nighttime lights emitted
in the cell in 2000.

OA2.6.6 Baseline results by continent
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Table OA.17: Baseline results by continent

(1) (2) (3) (4) (5) (6)
Model Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Continent Africa America Asia

ln Price 0.393b 1.839a 0.569b

(0.190) (0.110) (0.228)

× Cover[D1] -0.979a 1.025a -0.260
(0.209) (0.198) (0.244)

× Cover[D2] -0.236 0.906a 0.523b

(0.205) (0.159) (0.235)

× Cover[D3] 0.419b 0.771a 0.863a

(0.208) (0.135) (0.244)

× Cover[D4] 0.526b 0.816a 0.810a

(0.209) (0.132) (0.244)

× Cover[D5] 0.724a 1.083a 1.030a

(0.205) (0.129) (0.234)

× Cover[D6] 0.797a 1.064a 1.159a

(0.208) (0.129) (0.233)

× Cover[D7] 1.023a 1.374a 1.146a

(0.204) (0.132) (0.240)

× Cover[D8] 0.979a 1.671a 1.420a

(0.202) (0.119) (0.249)

× Cover[D9] 1.030a 2.041a 1.573a

(0.206) (0.116) (0.237)

× Cover[D10] 1.135a 2.463a 1.301a

(0.207) (0.118) (0.287)

Cell FE Yes Yes Yes Yes Yes Yes
Country × Year FE Yes Yes Yes Yes Yes Yes
Observations 73692 73692 91116 91116 56232 56232

Note: Least square estimator with cell and country × year fixed effects. c significant at 10%; b significant at 5%; a significant at 1%.
Standard errors clustered at the cell level in parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels
deforested in the cell. ln Price is the log of our crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in
2000.
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OA2.6.7 Controlling for time-varying covariates

Table OA.18: Controlling for precipitation and temperature

(1) (2) (3)
Model 1 Model 1 Model 2

ln Price 1.267a 1.237a

(0.088) (0.087)

Average temperature 0.237a 0.224a

(0.022) (0.022)

Average precipitation -0.000a -0.000a

(0.000) (0.000)

ln Price*Cover[D1] -0.163
(0.113)

ln Price*Cover[D2] 0.549a

(0.104)

ln Price*Cover[D3] 0.853a

(0.102)

ln Price*Cover[D4] 0.862a

(0.100)

ln Price*Cover[D5] 1.097a

(0.097)

ln Price*Cover[D6] 1.152a

(0.097)

ln Price*Cover[D7] 1.380a

(0.098)

ln Price*Cover[D8] 1.562a

(0.094)

ln Price*Cover[D9] 1.800a

(0.092)

ln Price*Cover[D10] 2.112a

(0.095)

Cell FE Yes Yes Yes
Country × Year FE Yes Yes Yes
Observations 221184 221184 221184

Note: Least square estimator with cell and country × year fixed effects. c significant at 10%; b significant at 5%; a significant at 1%.
Standard errors clustered at the cell level in parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels
deforested in the cell. ln Price is the log of our crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in
2000. Average temperature and Average precipitation are the yearly average temperature and precipitation of the cell, respectively.
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Figure OA.12: Controlling for average suitability
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Note: Point estimates and confidence intervals for the effect of the crop price index on deforestation. Model 1 is the baseline estimate
of the effect while Model 2 controls for average cell suitability interacted with year dummies. Horizontal lines represent 99% confidence
intervals.
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OA2.6.8 Relative deforestation: percent of 2000 forest cover

Figure OA.13: Relative deforestation: percent of 2000 forest cover
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Note: Point estimates and confidence intervals for the effect of the crop price index on deforestation. Model 1 is the baseline estimate of
the effect while Model 2 allows the effect of crops on the share of deforested pixels (relative to forest cover in 2000) to vary across deciles
of forest cover as of 2000. Horizontal lines represent 99% confidence intervals.
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OA2.6.9 Considering meat and pasture, rangeland, and grassland

For our baseline price index and baseline estimations, we choose to concentrate on agricultural crops,

and do not include meat, because meat production does not rely on land as strongly and systematically as

production of agricultural crops. Beef can be produced on or off the grassland. When beef is produced off

the grassland, it is fed hay or grain that is transported to the beef production site. Thus, the place where

the beef is raised and the place where the grass grows is not always the same. This is a major difference

with crop production. In addition, we do not have direct data on “beef suitability” but rather indirect

data on the type of soil that can be consumed by beef as food.

With these remarks in mind, we replicate here our estimations with a revised price index that considers

beef markets. More precisely, we use GAEZ suitability data for alfalfa, pasture and grass together with

data on the world price of beef from the World Bank. We build the modified price index as follows. We

first add the suitability of alfalfa, pasture and grass to have a measure of “beef suitability” for each cell c,

S16
c = Salfalfa

c + Spasture
c + Sgrass

c . We then compute the relative suitability of each crop i = 1, ..., 15 and

beef i = 16:

αi
c = Si

c∑16
j=1 S

j
c

. (OA.5)

Then, for each cell c and year t, we compute our modified price index of crops and beef based on the

cell-specific relative suitability of each crop and beef:

Pricec,t =
16∑

i=1
αi

c × P i
t , (OA.6)

Figures OA.14 and OA.15 and Tables OA.19 and OA.20 display the results.

Figure OA.14: Baseline effects of crop prices on deforestation (incl. meat)
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Note: Point estimates and confidence intervals for the effect of the crop price index on deforestation. The crop price index includes meat
prices, and the relative suitability of alfalfa, pasture and grass used as measure of meat suitability. Model 1 is the baseline estimate of the
effect while Model 2 allows the effect to vary across deciles of forest cover as of 2000. Horizontal lines represent 99% confidence intervals.
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Table OA.19: Baseline results (incl. meat)

(1) (2)
Model 1 Model 2

ln Price 1.537a

(0.096)

× Cover[D1] -0.035
(0.121)

× Cover[D2] 0.731a

(0.115)

× Cover[D3] 1.077a

(0.113)

× Cover[D4] 1.118a

(0.111)

× Cover[D5] 1.381a

(0.107)

× Cover[D6] 1.450a

(0.108)

× Cover[D7] 1.696a

(0.108)

× Cover[D8] 1.889a

(0.104)

× Cover[D9] 2.147a

(0.102)

× Cover[D10] 2.472a

(0.104)

Cell FE Yes Yes
Country × Year FE Yes Yes
Observations 221184 221184
Period 2001-2018 2001-2018

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell
level in parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. Ln
Price is the log of our crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000. The crop
price index includes meat prices, with share of alfalfa, pasture and grass suitability used as measure of meat suitability.
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Figure OA.15: Cell-level characteristics (incl. meat)
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Note: The figure displays the point estimates and confidence interval of the effect of the interaction between cell-specific characteristics
and our price index. The crop price index includes meat prices, and the relative suitability of alfalfa, pasture and grass used as measure
of meat suitability. The effect of crop price on deforestation is not reported here. Model 1 uses the baseline specification, augmented with
interaction terms between the price index and (standardized) cell-characteristic variables (see Section 3). Model 2 allows the effect of crop
price on deforestation to vary across the deciles of the initial forest cover distribution. Model 3 controls for a full set of interaction terms
between country dummies and the price index.
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Table OA.20: Baseline results with cell characteristics (incl. meat)

(1) (2)
Model 1 Model 2 Model 3

ln Price 1.406a

(0.096)

× ln dist. port -0.122a -0.310a -0.134a

(0.027) (0.026) (0.027)

× ln dist. cap. 0.204a 0.036 0.198a

(0.026) (0.026) (0.027)

× night lights in 2000 -0.110a -0.064a -0.119a

(0.017) (0.015) (0.017)

× Cover[D1] -0.094
(0.121)

× Cover[D2] 0.671a

(0.114)

× Cover[D3] 1.013a

(0.112)

× Cover[D4] 1.061a

(0.110)

× Cover[D5] 1.337a

(0.107)

× Cover[D6] 1.399a

(0.107)

× Cover[D7] 1.654a

(0.107)

× Cover[D8] 1.919a

(0.105)

× Cover[D9] 2.222a

(0.103)

× Cover[D10] 2.580a

(0.108)

Cell FE Yes Yes Yes
Country × Year FE Yes Yes Yes
Country FE × price No No Yes
Observations 221184 221184 221184
Period 2001-2018 2001-2018 2001-2018

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Standard errors clustered at the cell level in
parentheses. The dependent variable is the hyperbolic inverse sine of the number of pixels deforested in the cell. ln Price is the log of our
crop price index, defined in equation (2). Cover[x] are bins for deciles of forest cover in 2000. ln dist. port is the log of distance from the
closest seaport. ln dist. cap. is the log of the distance from the country’s capital city at the beginning of the period. night lights is the
average amount of nighttime lights emitted in the cell in 2000. The crop price index includes meat prices, with share of alfalfa, pasture
and grass suitability used as measure of meat suitability.
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OA2.7 Global and local prices: correlations

Figure OA.16: Local and word prices
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(c) Sorghum (d) Wheat
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Source: Porteous (2019) and World Bank.

Table OA.21: Correlation local prices and world prices

(1) (2) (3) (4) (5)
Dep. var. Local price

World price 0.659a 0.610a 0.694a 0.689a 0.960a

(0.023) (0.032) (0.026) (0.036) (0.074)

Sample (crops included) All Maize Rice Sorghum Wheat
Market FE Yes Yes Yes Yes Yes
Crop FE Yes No No No No
Observations 3292 1403 868 873 145

Note: Least square estimator. c significant at 10%; b significant at 5%; a significant at 1%. Data on local prices are from
Porteous (2019). Local price is the log of the local market price. World price is the log of the international price.
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