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Abstract

This study investigates the nature of technological progress in six
manufacturing industries covered under the EU-ETS, plus the power
sector, and its effect on carbon price formation using marginal abate-
ment cost curves. We adopt a technological frontier framework, which
we calibrate to input and output data at the plant level from 2013
to 2017, with a directional distance function approach. Our results
reveal that most of the time, technological progress resulted in in-
flating baseline emissions, despite decreasing the carbon intensity of
production. In our sample industries, technological progress therefore
leads to increase abatement efforts, raising the equilibrium price of
carbon.
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1 Introduction

The role of technological progress in a pollution-constrained world has mostly been studied
through the prism of induced technological change. First developed by J.R. Hicks in the con-
text of the labor market, it states that technological progress will benefit more some inputs
than others, according to their relative prices. In his words, "A change in the relative prices
of the factors of production is itself a spur to invention, and to invention of a particular kind
- directed to economising the use of a factor which has become relatively expensive" (Hicks,
1932). Assuming factor-augmenting technologies, Acemoglu (1998, 2002, 2007) then formal-
ized that market mechanisms can, by altering input prices, steer technological change in favor
of specific technologies in turn. Economists being increasingly concerned with environmental
problems like global warming, it was soon showed that an environmental policy can also influ-
ence the direction of technological change towards cleaner inputs (Acemoglu et al., 2012) or
low carbon innovation (Grubb et al., 1994; Goulder & Schneider, 1999; Gerlagh et al., 2009),
with consequences on the design of CO2 abatement policies (Goulder & Mathai, 2000).

Most of the above mentioned literature has focused on the technological consequences of
CO2 pricing. However, induced technological change can be approached in a broader sense,
as suggested by Porter’s hypothesis. The initial version of Porter’s hypothesis (Porter &
Van der Linde, 1995) sheds light on how environmental policy, in a broad sense, is likely to
push companies to reduce technical or organizational inefficiencies of which they would not be
aware in the absence of this policy. The two authors then extend their analysis by taking into
account innovation strategies aimed at circumventing the additional cost of environmental
policy and by examining the overall incidence on firm’s performance. Empirical analysis
of this extended Porter’s hypothesis have either consider the incidence of all environmental
levies in total environmental exploitation costs (Van Leeuwen & Mohnen, 2017) or explicitly
control for the impact of environmental standards in parallel to the impact of prices (Aghion
et al., 2016). Another piece of literature is concerned with the fact that it is relative prices
that matter in guiding technological change. Thus, Popp et al. (2020) interpret the sharp
drop in patent filings covering clean technologies over the last decade as, at least in part, the
consequence of the fall in the price of fossil fuels. It emerges from all of these works that
environmental policy instruments probably influence the direction of technological change,
but that their effect is interwoven with many other influences that make their assessment
complex.

This paper specifically put the emphasis on the interplay between carbon markets and tech-
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nological change. Due to low carbon prices until the late third trading period (2013-2020),
little attention has been paid to the response of technological progress to the European
Union Emissions Trading Scheme (EU-ETS). A few studies analyzing the causal impact of
the EU-ETS on technological advances did so with a focus on low-carbon patenting and
R&D expenditure (Borghesi et al., 2015; Calel & Dechezleprêtre, 2016; Calel, 2020). The
specificity of carbon markets for the study of oriented technological change lies in the fact
that it is not directly the price that is regulated but the supply of allowances. The direction
of technical progress therefore crucially depends on two elements. The first element is the
link between the supply of allowances on the one hand and their market price on the other
hand. The existence of transaction costs (Baudry et al., 2021) and the dynamic nature of the
market (Quemin & Trotignon, 2021) are indeed likely to disrupt the theoretical link between
the two. The second element is that the price of allowances does not only depend on the
quantity of allowances allocated but also on multiple other factors. The much studied price
slump that occurred in the second trading period (2008-2012) has mainly been attributed
to a supply imbalance indeed (De Perthuis & Trotignon, 2014; Ellerman et al., 2015), and
econometric studies identified energy prices (Creti et al., 2012; Koch et al., 2014), renewable
energy supply and weather variation (Alberola et al., 2008; Rickels et al., 2015), political
events and announcements (Hitzemann et al., 2015; Koch et al., 2016), banking of allowances
(Hintermann, 2010), or hedging and speculation (Friedrich et al., 2020; Tietjen et al., 2020) to
be the main carbon price drivers.1 Nevertheless, the feedback effect of technological progress
on carbon price formation and policy design has never been considered, to our knowledge, in
the theoretical and empirical literature on the EU-ETS.

In the context of the EU-ETS, we argue that half of the picture could have been missed,
by overlooking the role of technological progress in carbon price formation. By contrast to
Acemoglu’s model and the subsequent literature, we do not make any preliminary assumption
about the nature of technological progress. More precisely, we go beyond the dichotomous
view resulting from the explicit distinction between intrinsically "green" and intrinsically
"gray" inputs. By implicitly considering that any input can be more or less "green" or "gray",
we introduce the idea of a continuum of possible directions of technological change. We
therefore consider that any improvements of regulated plants’ total factor productivity can
affect the carbon market’s fundamentals, namely marginal costs of abatement, and investigate
their effect on carbon price formation. The paper proceeds in three structuring steps.

First, and on the basis of the technological frontier framework developed by Shephard (1970),
1A comprehensive review can be found in Hintermann et al. (2016).
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we develop a measure of technological progress experienced by plants over time. Departing
from a binary, clean versus dirty technological adoption, this approach enables us to charac-
terize technological progress without any presupposition about its nature, and information
about the price of production factors. As a characterizing criterion, we define non-directed
technological progress to increase both carbon intensity of production and baseline emissions
under laisserfaire conditions. By contrast, technological progress is referred to as directed
when the carbon intensity of production decreases. As sub-cases, strongly (weakly) directed
technological progress results in decreasing (increasing) baseline emissions. However, im-
plementing these definitions to characterize technological change requires measuring carbon
intensity in an relevant manner. Indeed, the carbon intensity on which these definitions are
based is not that observed but that which would prevail in the absence of any policy influenc-
ing it. In other words, it is the carbon intensity intrinsically characterizing the technology in
place that must be used. This is done using a directional distance function method. (Chung
et al., 1997) We focus on six manufacturing industries covered under the EU-ETS over the
2013-2017 period, plus the power sector, and calibrate industry technological frontiers on
plant input and output data from the European Union Transaction Log2 and the Amadeus3

databases. Our results reveal that on average, technological progress mostly led to inflate
plants’ baseline, i.e. laisserfaire emissions, and lower the carbon intensity of production,
which we qualify as weakly directed. Therefore, we find that plants primarily seek total factor
productivity gains despite the environmental regulation, putting in perspective the induced
technological change literature.

Second, calibrated technological frontiers enable us to compute annual, parametric marginal
abatement cost (MAC) curves at the industry level, based on a revenue-maximization pro-
gram. Therefore, we contribute to the empirical literature on MAC estimation in the EU-
ETS, which mainly relies on the outputs of macroeconomic models (Landis, 2015), or ad-
hoc calibration methods (Baudry et al., 2021; Beck & Kruse-Andersen, 2018; Quemin &
Trotignon, 2019). By contrast to these methods, our approach to estimate MAC curves re-
quires little assumptions about the structure of the markets for products and pollutants, and
has modest data requirements. Consequently, we argue that it could provide a practical al-
ternative to the benchmarking procedure, currently used to determine the size of plants’ free
permit endowment in the EU-ETS. The analysis of MAC curves’ then reveals great differences
in magnitude between high and low carbon intensity industries. Specifically, a realistic price
of carbon would trigger a much greater abatement effort in highly carbon-intensive industries

2The emissions and transactions electronic registry of the EU-ETS
3From Bureau Van Dijk, which records financial plant data
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that in low carbon intensity ones. Furthermore, the nature of technological progress greatly
affects the amount of abatement that can be realized at a given price, because of its effect
on aggregate baseline emissions. Specifically, baseline-inflating (resp. deflating) technological
progress contributes to increase (resp. decrease) emissions reductions.

Third, numerical MAC curves enable us to analyze the transmission of technological progress
to the annual market price of carbon from 2013 to 2017. More precisely, we compute equi-
librium carbon prices under 2013’s conditions, had technological progress observed in later
years happened. Price deviations from their 2013 level can then be attributed to technolog-
ical progress. Thus, we use permit allocation data from the EUTL to compute the permit
deficit of production sites. Interestingly, and since baseline-inflating technological progress is
dominant in our samples, it results in increasing the market clearing price by up to 34AC/tCO2

over time. The analysis of industries’ net permit demand in equilibrium also reveals signifi-
cant permit transfers from low to high carbon-intensity industries. Consequently, our results
suggest that technological progress which is not strongly directed by nature tightens the ef-
fective emissions constraint, and increases the financial burden of highly carbon intensive
industries, which has policy implications.

The remainder is organized as follows: Section 2 presents the technological frontier framework
and our modeling approach of marginal abatement cost curves, Section 3 presents the data
and the directional distance function calibration method, Section 4 conducts an efficiency
analysis of selected industries and discusses the dynamics of marginal abatement cost curves,
Section 5 presents the market equilibrium and analyzes the impact of technological change,
and Section 6 discusses policy implications.

2 Theoretical framework

2.1 Technological frontiers

In this study, the production of manufacturing goods is considered to be a multi-input, multi-
output process, involving the production of both good (e.g. cement) and bad (e.g. greenhouse
gases) outputs. First introduced by Shephard (1970), and generalized by Chambers et al.
(1998) to accommodate a multi-output framework, the relationship between inputs and out-
puts may be characterized by a production set containing all combinations of goods and
bads which can be obtained from a given set of inputs (Coelli et al., 2005). Considering a
vector x of inputs, a vector y of good outputs (i.e. production) and a vector b of bad outputs
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(i.e. pollutants), a production technology set P (x) of a plant can be defined as

P (x) = {(y, b) : x can produce (y, b)}

According to classical micro-economic assumptions, the representation of P (x) exhibits the
following properties

• production requires a positive level of inputs : P (0) = (0, 0).

• the size of the set cannot decrease if more inputs are used: x′ ≥ x implies P (x) ⊆ P (x′).

• desirable outputs can be disposed at no cost: y′ ≤ y implies (y′, b) ∈ P (x).

• good and bad outputs are jointly produced: if b = 0, y = 0.

• bad outputs cannot be freely disposed: 0 ≤ θ ≤ 1 leads to (θy, θb) ∈ P (x).

The production set is closed by a so-called technological frontier, which reflects the current
state of technology of a producing plant. Technological progress may then be characterized
by an expansion of the technological frontier, i.e. an increase in total factor productivity,
keeping inputs constant.

In the case of a single good and bad output, Figure 1 illustrates the technological structure
of a plant which experiences technological progress at t + 1 (dashed curve). Although this
approach enables us to represent a wide range of improvements in (b, y) combinations, we
select a criterion to qualify the nature of technological progress for the purpose of this study.
We choose to base this criterion on changes in the carbon intensity of production, rather than
in the absolute level of pollution b, for its greater flexibility and realism. Carbon intensity is
a concept widely used in the literature dealing with environmental performance, especially
at the macroeconomic level. At first glance, because it is defined as the ratio between carbon
emissions and output, it is easy to calculate and plays a crucial role when identifying the
factors that contribute to the total level of emissions in Kaya’s identity (Kaya, 1989). This
simplicity is however misleading because it does not provide information on how the observed
level of carbon intensity is obtained. The same observed level of carbon intensity can result
from very different contexts indeed. It can result from the use of inherently environmentally
efficient technology without a restrictive policy to control carbon emissions. Conversely, it
can be obtained under the decisive effect of a restrictive environmental policy and despite
a technology that is not efficient in terms of carbon emissions. The measurement of carbon
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intensity relevant to assess the direction taken by technical progress must be based exclusively
on technological aspects and must therefore disregard short-term emission reductions induced
by environmental policies. We are therefore concerned with the direction of the change in
the carbon intensity of production due to technological progress at maximum y, i.e. with
no constraints on pollution. Graphically, this corresponds to comparing positions of radius
of the (b, y) orthant passing through the top of the technological frontiers at t and t + 1.
Indeed, as detailed infra, the summit of a technological frontier corresponds to the optimal,
revenue-maximizing choice under laisserfaire conditions, and thus characterizes the carbon
intensity (i.e. the slope of the radius) associated to the technology in the absence of any
environmental policy.

Figure 1 illustrates the three natures of technological progress. In panel (C), technological
progress increases both the carbon intensity of production and baseline emissions, which we
refer to as non-directed technological progress. By contrast, panel (A) and (B) characterize
directed, i.e. carbon-intensity decreasing technological progress. Note that, although non-
directed technological progress unequivocally results in increasing the laisserfaire pollution
level bLF , the case of directed technological progress is not straightforward. The latter can
lead to either decrease or increase baseline emissions indeed. To clarify this difference, we
therefore distinct strongly and weakly directed technological progress, which respectively re-
sult in decreasing (panel (A)) or increasing (panel B) the level of laisserfaire pollution bLF .
In practice, an example of strongly directed technological change in the cement industry can
be the switch to a waste-heat recovery system,4 which enables to increase the productivity
of energy, thus decreasing the carbon-intensity of production. By contrast, the replacement
of an old limestone grinder can avoid raw material losses and lead to increase output-per-
capita, without changing the carbon intensity of cement. In our framework, this corresponds
to weakly directed technological change.

The nature of technological progress being defined at the micro, plant level, measuring it
requires to move to a meso level of analysis. Indeed, a technological frontier can only be
quantified with multiple points. Therefore, and conforming to the theoretical framework,
we have to consider a set of plants sharing the same technology in order to characterize an
industry technological frontier, which can be estimated as detailed in Section 3.

Letting two plants 1 and 2 use the same quantity of inputs x, the production sets P 1
t (x)

and P 2
t (x) can be represented in the bi-dimensional space (b, y), as in Figure 2. Their

4High-performing coolers make it possible to recover the excess heat during the clinker cooking process
for electricity generation.
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Figure 1: Nature of technological progress

(a) Strongly directed technological progress (b) Weakly directed technological progress

(c) Non-directed technological progress

Note: P i
t (x) and P i

t+1(x) denote the technological frontier of plant i at t and t + 1, respectively. bLF
t and

bLF
t+1 denote laisserfaire emissions at t and t + 1.

respective combination of good and bad outputs correspond to the empty and full grey
dots. First, note that plants operate below their technological frontier in our representation,
which reveals some scope for technical efficiency improvements, namely production technique
enhancements (e.g. plant management, organization of the production line) given the state
of technology and set of inputs. The reduction in emissions, with unchanged production,
which can be obtained by absorbing these inefficiencies reveals what is sometimes referred
to in the literature as being cost-free abatement. This level of abatement is obtained in
Figure 2 by moving horizontally to the border. However, it is possible to absorb the same
inefficiency by reducing emissions while increasing production, i.e. by moving towards the
border not horizontally but in a direction oriented to the left and upwards of Figure 2. This
configuration typically corresponds to the initial idea of Porter’s hypothesis, namely that
the reduction of inefficiencies can reconcile improvement of environmental performance and
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improvement of the economic performance of the plant. Second, both plants experience
technological progress between t and t+1, as their production sets P 1

t (x) and P 2
t (x) expands

over-time. Consequently, the new production technology enables them to make more out
of an unchanged set of inputs, in terms of quantity of desirable output y. Furthermore,
plant 2’s technology is dominated by plant 1’s despite technological progress. For any b

indeed, the maximum production level y is greater at both t and t+ 1 for plant 1. Note that
technological progress, characterized by a displacement of the frontier, is independent from
technical efficiency which relates to the distance to the frontier.

In the same way as at the plant level, the three natures of technological progress (i.e strongly
or weakly directed, and non-directed) can then be characterized at the industry level. To do
so, we define an envelope curve which embodies plants’ production sets in a single, industry
super-set (plain and dashed black curves in Figure 2). The envelope curve at t+1 captures all
technological changes that occurred at the plant level in turn. Comparing carbon intensities
at the top of the envelope curve at t and t + 1 then enables us to characterize the type of
technological progress experienced in aggregate. In the illustration, technological change at
the industry level is strongly directed.

Figure 2: Plant and industry technological frontiers

Note: Representation at t and t + 1 of the production sets P (x) of two producing plants producing one
desirable good and one pollutant, y and b, and using x inputs.

2.2 Marginal abatement cost curves

Having characterized technological progress, we can now compute the marginal abatement
cost (MAC) of plants that are subject to a pollution constraint. We define MAC in line with
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textbook environmental economics, which state profit-maximizing producers trade-off sales
revenue from the production of goods with the cost of complying with the environmental
regulation (Tietenberg & Lewis, 2016). Our approach thus substantially differs from that
of expert based MAC curves like McKinsey’s (McKinsey, 2009), who analyze the cost merit
order of abatement options relying on the adoption of low-carbon technologies or energy-
efficiency measures. More precisely, the technological frontier method enables us to consider
two ways of carry out emissions reductions visible on Figure 2. On the one hand, a plant
can abate by reducing its production level y, thus leading to a financial sacrifice. On the
other hand, it can switch to another, ’cleaner’ technology, as if plant 1 adopted plant 2’s
technology (plain grey lines on Figure 2). Such costs of technological adoption corresponds
to abatement costs a la McKinsey. Yet, note that micro technological changes are hidden in
our meso analysis.

More precisely, in presence of an individual cap on emissions, a plant’s cost of compliance
is equivalent to the decrease in sales revenue due to required emissions reductions. The
corresponding abatement cost may then be measured by comparison to the laisser-faire
situation. Thus, MAC can be defined as the foregone revenue associated with the tightening
of the pollution constraint by one additional unit. When the environmental regulation takes
the form of a market based instrument, such as an emissions trading scheme or a tax on
emissions, MAC directly guide plants’ production choices. For instance, polluting plants will
optimally emit until the marginal abatement effort is as costly as the permit price on the
emissions trading scheme, or as the unitary tax.

Formally, the objective of a polluting plant i selling its production y on the goods market is

max
y,b

Ri = pyyi s.t (bi, yi) ∈ Pi(x) , bi ≤ b̄i

where revenue-generating production necessarily involves a polluting by-product b. All plants
are assumed to be price takers on the goods market. Besides, inputs are fixed according to
the technological frontier framework presented in Section 2.

Under laisserfaire conditions, b̄i does not bind, hence the producer faces an unconstrained
revenue maximization problem. The solution corresponds to the level bLF

i , also referred to as
baseline emissions, which satisfies f ′i(b) = 0 where fi denotes the functional expression of the
technological frontier in the (b, y) space. Graphically, the (yLF

i , bLF
i ) coordinates correspond

to the top of the technological frontier (see Figure 3). In presence of an environmental
regulation however, b ≤ b̄ is binding. The optimal level of abatement of plant i can thus be
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defined as ai = bLF
i − b?

i , with b?
i the solution of the constrained maximization program. For

any pollution constraint, the abatement cost then corresponds to the foregone revenue, or
py × (fi(bLF

i ) − fi(bLF
i − ai)). The plant’s MAC can be computed as the derivative of the

above: py × f ′i(bLF
i − ai).

Next, to obtain an industry MAC curve mapping pollution prices against abatement efforts,
first denote plant i’s MAC MCi(ai) = py×f ′i(bLF

i −ai) to obtain ai = bLF
i − (f ′−1

i )(MCi/py).
The last expression gives, for plant i, the quantity of emissions reduced relative to baseline
emissions at any implicit pollution price. At the industry level I, the total abatement effort
at any price then corresponds to the horizontal sum of a over plants:

aI =
∑
i∈I

(
bLF

i − f ′−1
i (MCi(ai)/py)

)

Figure 3 illustrates the correspondence between technological frontiers and MAC curves.
Although plants can experience some technical inefficiency in practice, revenue maximization
necessarily results in technically efficient production decisions. In turn, MAC are computed
along the technological frontier, meaning that zero-cost abatement measures are non-existent.

The left part of Figure 3 illustrates an industry’s technological frontier f(b) before techno-
logical progress occurs (plain black line). Starting from baseline emissions bLF

t , any level of
pollution constraint matches an implicit price of pollution. Graphically, and for an arbitrary
abatement effort at, the corresponding MAC reflects the absolute value of the slope of the
tangent to the technological frontier. Besides, the asymptote of MAC curves shown in Figure
3 corresponds to the maximum abatement that can be done at the industry level. Note
indeed that laisserfaire conditions correspond to the intercept of the MAC curve. Then, as
pollution control strengthens, the foregone revenue from production increases and tends to
infinity as emissions tend to zero.

It becomes clear in Figure 3 that the shape of MAC curves is inherently linked to that of
technological frontiers, and the nature of technological progress in turn. Specifically, non-
directed and weakly directed technological progress shifts the MAC’s asymptote to the right
as baseline emissions increase, which will result in lowering the MAC curve (dashed grey
line). By contrast, strongly directed technological progress shift the asymptote to the left,
which contributes to increasing MAC (dashed black line). Changes in the curvature of the
technological frontier due to technological progress will also affect the slope of MAC curve,
in no clear direction yet.
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Figure 3: Technological change and MAC curves

3 Empirical Approach

In this Section, we apply our theoretical framework to manufacturing industries covered
under the EU-ETS during the early third trading period (2013-17), and analyze the effect of
technological progress on industries’ MAC curves.

3.1 Data

First, we collect input, production and pollution data at the plant level to estimate industries’
technological frontiers, conforming to the theoretical framework presented in section 2. Two
databases, paired by plant names ("account holder name") are used. First, the Amadeus
database from Bureau van Dijk documents financial information on European production
sites, including annual accounts, financial ratios, industry and ownership. Amadeus data
covers the 2009-2017 period. Second, the European Union Transaction Log (EUTL) records
the trading and compliance activity of plants covered under the EU-ETS, including transac-
tions, annual allocation and reconciliation of permits. The EUTL covers the same years as
Amadeus, yet the transition from the second (2008-2012) to third (2013-2020) trading period
led to discrepancies in the reporting of emissions data, as many production sites changed
account holder name. Therefore, we choose 2013 as the initial date for our panels, which co-
incides with the start of Phase 3 of the EU-ETS. We obtain balanced panels binned in seven
4-digit NACE rev. 2 code,5 from 2013 to 2017. Table 1 provides an overview of selected

5We chose to merge NACE 20.12, 20.13 and 20.14 under a more general «Chemicals» industry, due to
data scarcity at the 4-digit level. We checked that three sub-industries present similar carbon intensities.
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industries, most of which are manufacturing of mineral products and basic metals, plus the
power sector.

Table 1: Industry description

Industry NACE rev. 2 Activity description

Baked clay 23.32 Manufacture of bricks, tiles and construction products,
in baked clay

Cement 23.51
Manufacture of clinkers and hydraulic cements, includ-
ing Portland, aluminous cement, slag cement and super-
phosphate cements

Chemicals 20.1(2-3-4) Manufacture of organic and inorganic basic chemicals,
dyes and pigments

Electricity 35.11 Production of electricity, including operation of genera-
tion facilities that produce electric energy

Metallurgy 24.1 Manufacture of basic iron and steel and of ferro-alloys

Paper 17.12 Manufacture of paper and paperboard

Plaster 23.52
Manufacture of plasters of calcined gypsum or calcined
sulphate, and manufacture of quicklime, slacked lime
and hydraulic lime

Using the practical guidance of Coelli et al. (2005), we select capital, labor and energy
as inputs, and production and CO2 emissions as desirable and undesirable outputs. More
precisely, capital is measured by the value of tangible assets, labor by total payroll and energy
by the value of purchased raw materials and other supplies. Production is measured by sales
revenues and pollution by verified CO2 emissions. Besides, to correct inflation variations
over-time and price-level differences across countries, we deflate the data with an inflation
index and convert it to purchasing power parity.6 Table 2 reports descriptive statistics of the
resulting samples, and Figure 6 in the appendix shows the dynamics of variables over 2013-17.
Note that data belonging to a NACE 4-digit industry can be split in two or three sub-samples
according to carbon intensity, measured by the average emissions-to-production ratio of plants
over all years (see for instance baked clay products, metallurgy and paper production). This
first ensures that samples have a similar 20-to-30 observations. Having homogeneous samples,
in terms of economic activity, is indeed a central point of the technological frontier calibration
presented in Section 3.2. Second, it enables us to further analyze whether the carbon intensity
of production affects the nature of technological progress.

On average for the selected production sites, Table 2 shows that cement and power sectors are
the biggest emitters, with more than 400ktCO2 annually. Manufacturers of mineral product

6https://appsso.eurostat.ec.europa.eu/nui/submitViewTableAction.do
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(NACE 23) also have the highest carbon intensity.7 Moreover, computing the capital inten-
sity of production sites, i.e. the capital-to-production ratio, reveals that on average, plants
that have a higher carbon intensity of production also tend to be more capital intensive.8

We could therefore expect a greater potential for directed technological progress in those
industries. Surprisingly, cement manufacturers presents a low capital intensity despite being
highly carbon intensive. This could be due to the use of carbon inputs, which is not reflected
here, or a low valuation of tangible assets.

Table 2: Data overview

Industry (Nace 2) #Obs Carbon
intensity

Capital
intensity Emissions Production Capital Energy Labor

Baked clay (23.32)
28 0.4 0.6 18,035 42,437 26,762 15,342 10,376

(0.7) (0.7) (14,541) (20,536) (14,370) (5,765) (3,733)

29 3.6 1.2 11,082 3,012 3,541 1,198 638
(4.1) (0.7) (7,756) (1,886) (1,467) (670) (442)

Cement (23.51) 26 5.1 0.6 626,319 121,636 75,303 38,167 22,268
(6.8) (0.7) (56,794) (83,456) (62,588) (29,623) (13,580)

Chemicals (20.1) 20 0.3 0.3 156,674 578,601 160,064 328,671 60,224
(0.4) (0.3) (87,645) (195,624) (78,383) (73,810) (19,944)

Electricity (35.11) 22 1.1 0.9 420,341 379,998 356,290 200,814 37,284
(0.2) (1.2) (49,204) (229,560) (269,279) (116,953) (18,726)

Metallurgy (24.1)
28 0.1 0.2 68,845 574,689 138,704 395,098 55,397

(0.1) (0.2) (54,413) (420,228) (95,780) (281,465) (40,344)

25 0.5 0.4 116,663 232,382 78,202 148,902 22,532
(0.6) (0.4) (91,921) (134,096) (49,529) (75,231) (15,432)

Paper (17.12)

25 0.1 0.2 18,659 138,541 33,715 69,946 19,988
(0.1) (0.2) (12,863) (109,382) (26,437) (50,405) (14,778)

24 0.5 0.2 49,887 104,520 24,191 64,404 12,816
(0.4) (0.9) (26,564) (69,471) (20,540) (31,181) (7,639)

25 1.1 0.3 69,714 63,828 22,034 33,898 7,392
(0.9) (0.4) (44,097) (47,870) (17,566) (23,029) (4,826)

Plaster (23.52) 27 2.8 0.7 122,911 43,651 32,705 14,396 6,716
(4.6) (0.5) (81,940) (17,475) (8,425) (4,662) (2,352)

Note: Indicated values are means over years and plants. Production and inputs are expressed in kAC. Emis-
sions are expressed in tCO2. The column #Obs indicates the number of production sites per cross-section.
Medians are reported in brackets.

7Recall that carbon intensity is usually expressed in tCO2/unit of production, yet it is expressed in
tCO2/kAC in our case, as our data is in constant AC corrected with purchasing power parity.

8Capital intensity is lower than one in most cases, meaning that the market value of production is superior
to that of tangible assets on average. This is consistent with usual Fixed Asset Turnover Ratios.
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3.2 Directional distance functions

Next, we employ a directional distance function approach to calibrate industries’ technological
frontiers over the 2013-17 period. First introduced by Chung et al. (1997), the general idea
behind directional distance function is to minimize the distance between observed plants and
their technological frontier. It is then possible to identify plants that are technically efficient
(namely, make the most of inputs given the state of technology) and those for which technical
efficiency improvements are possible. As such, directional distance functions have been widely
used as management tools to benchmark decision-making-units (e.g. companies’ services,
production plants etc.). This approach has several methodological advantages. First, it does
not require any assumption about the economic or regulatory environment (Wei et al., 2013;
Zhou et al., 2014). Second, data requirements are modest in directional distance function
analysis (only input and output quantities or values are needed at the production unit level),
which facilitates its implementation and reproduction. Therefore, the directional distance
function method has allowed to develop a measure of technical efficiency and total factor
productivity growth that does not rely on the price of production factors.

Formally, an individual directional distance function is defined as9

~Di(x, y, b; gy,−gb) = sup{β : (y + βgy, b− βgb) ∈ P (x)} (1)

where β represents the maximum expansion (resp. contraction) in the good (resp. bad) out-
puts allowed by the plants’ technological state along some direction vector g = (gy,−gb).
Graphically, the directional distance function projects each decision-making-unit onto the
boundary of the production set (or frontier). The inefficiency score β is then null for techni-
cally efficient plants, which lie on the technological frontier, while plants for which technical
efficiency improvements are possible present a positive distance.

For the purpose of this study, the specification of the directional distance function must
fulfill two criteria. First, it must be parametric since we need a technological frontier that is
twice differentiable for our analysis of marginal abatement cost curves. We then exclude the
Data Envelopment Analysis method, which consists in evaluating plants’ technical efficiency
scores β with a non-parametric approach, for it would result in a piece-wise representation
of MAC curves. Second, the directional distance function’s functional form must allow for
linear transformation of parameters, to satisfy the translation property (Färe et al., 2005).
This translation property ensures the distance from a plant’s good and bad output bundle

9The i subscript on inputs and outputs have been omitted for simplicity.
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to the technological frontier is minimized along the chosen direction vector. It reads

~Di(x, y, b; gy,−gb) = ~Di(x, y + s× gy, b− s× gb; gy,−gb) + s (2)

with s a scalar. The translation property excludes logarithmic specifications in turn, despite
trans-log forms often being used in general output distance functions frameworks. Instead,
we choose a quadratic distance function as in Färe et al. (2005) and Wei et al. (2013). With
k = 3 inputs xk,t (capital, labor and energy), one desirable output yt (sales revenue) and one
pollutant bt (CO2 emissions), the directional distance function reads

Di,t(xk,t, yt, bt) = α0 +
3∑

k=1
αkxk,i,t + β1yi,t + γ1bi,t + 1

2

3∑
k=1

3∑
k′=1

αkk′xk,i,txk′,i,t + 1
2β2y

2
i,t + 1

2γ2b
2
i,t

+
3∑

k=1
δkxk,i,tyi,t +

3∑
k=1

ηnxk,i,tbi,t + µyi,tbi,t

(3)
We choose the direction vector g = (1,−1), which corresponds to a simultaneous expansion
of production and contraction of pollution, as is standard in the related literature on shadow
price estimation (Färe et al., 2006; Marklund & Samakovlis, 2007; Zhou et al., 2015; Wei
et al., 2013).10 Moreover, imposing the translation property to the quadratic specification
requires the following parameter restrictions: (i) γ1 = β1 + 1, (ii) β2 = γ2 = µ2, (iii) δn = ηn

and (iv) αnn′ = αn′n.

The model then becomes

Di,t(xi,k,t, yi,t, bi,t) = α0 +
3∑

k=1
αkxk,i,t + β1(yi,t + bi,t) + 1

2

3∑
k=1

3∑
k′=1

αkk′xk,i,txk′,i,t

+ 1
2β2(yi,t + bi,t)2 +

3∑
k=1

δkxk,i,t(yi,t + bi,t) + bi,t

(4)

which we calibrate below.

3.3 Frontier calibration

Next, we calibrate the parameters of equation 4, using a deterministic, linear programming
method. Two reasons moved us away from an econometric estimation (or stochastic frontier
analysis). First, it does not accommodate small sample sizes, yet we use data with a fine

10A sensitivity analysis of direction vectors can be found in Vardanyan & Noh (2006).

16



granularity to ensure comparability between production sites’ activities. Besides, working
at a dis-aggregated level enables us to analyze the effect of technological progress across
sectors. Second, stochastic frontier analysis usually relies on maximum likelihood estimation
(Murty et al., 2007; Behr, 2015; Löschel et al., 2019), which results are highly dependent on
the assumptions about the distribution of errors. By contrast, the deterministic approach
directly reveals the state of technology from the data, without other assumptions than the
functional form of the technological frontier.

As in Färe et al. (2005) and Wei et al. (2013), we calibrate industries’ technological frontiers
using the following linear-quadratic program P :

Min
[
~Di,t(xi,k,t, yi,t, bi,t; g)

]
such that

(a) ~Di,t(xi,k,t, yi,t, bi,t; g) ≥ 0

(b) ∂ ~Di,t

/
∂yi,t ≤ 0

(c) ∂ ~Di,t

/
∂bi,t ≥ 0

(d) ∂ ~Di,t

/
∂xi,t ≥ 0

(e) ~Di,t(xi,k,t, 0, 0; g) < 0

Where ~Di,t(xi,k,t, yi,t, bi,t; g) is defined as in equation 4. Importantly, minimizing the distance
removes any technical inefficiency, as plants are projected onto the technological frontier in
the (b, y) space. In turn, D̂i,t(xk,t, yt, bt; g) = 0 implicitly defines an expression for the techno-
logical frontier. Moreover, the program’s constraints ensure that the production possibility
set has the desired shape. In particular,

• (a) implies that observations are located on or under the technological frontier

• (b) and (c) imply that the distance to the frontier decreases (resp. increases) with
respect to a marginal increase in the good (resp. bad) output

• (d) implies that inefficiency increases with input use

• (e) states that a positive amount of inputs must be associated with some production

Besides, P allows CO2 emissions b to be positive with a null production, y = 0. This
corresponds to residual emissions that can take place in practice, due to the preliminary
heating of machinery for instance.
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The linear-quadratic program P is run on industries’ sequential production possibility sets,
namely using observations from the initial date up to time t (Oh & Heshmati, 2010). For
instance, 2014’s frontier is obtained by calibrating the distance function on 2013 and 2014
observations, while 2015’s frontier relies on 2013, 2014 and 2015 data (and so forth until
2017).11 This approach enables us to take into account that a technologically feasible pro-
duction set remains valid in the future. Thus, it implies that over time, technological progress
can only push the technological frontier upwards. Moreover, and by contrast to a contempo-
raneous production set which only contains t-time observations, the sequential set embodies
any technological change occurring from the initial date up until the year of interest. Last,
we normalize input and output data by the samples’ means12 to avoid convergence problems
(Färe et al., 2005; Wei et al., 2013).

4 Results

This section first presents results from the calibration of the distance function, namely tech-
nical efficiency and technological frontier estimates across industries and over time. Next,
it analyzes the nature of technological progress in sample industries and last, discusses its
effect on industry MAC curves.

4.1 Efficiency and technological change

Once technological frontiers calibrated, we start by computing plants’ zero-cost abatement
potential from the estimated distance to the technological frontier (or equivalently, technical
efficiency score). Distance estimates corresponds to those emissions reductions that can be
achieved by improving the technical efficiency of production without changing the quantity
or allocation of inputs.

Denoting D̂i,t(xt, yt, bt) the calibrated distance function, the zero-cost abatement potential
of plant i at time t corresponds to D̂i,t × b̄t, with b̄t the samples’ mean pollution (recall that
data is normalized). Table 3 reports average (over plants and years) values as a percentage
of observed emissions. Results indicate that potential emission reductions due to technical
efficiency improvements are important, ranging from 20 % in the chemical industry to more
than 70 % in electricity and paper production. The dispersion of values within each sample

11In turn, year t sample has (t− 2013 + 1)×N observations.
12The average plant is defined by the (xi,k,t, yi,t, bi,t) = (1, 1, 1) coordinates
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(standard deviations are reported in brackets) further indicates a strong heterogeneity in
the data, with efficient plants operating on the technological frontier and others for which
significant improvements are possible.

Furthermore, we analyze technological and efficiency changes across industries using a se-
quential Malmquist-Luenberger (SML) total factor productivity index. Developed by Chung
et al. (1997), and adapted by Oh & Heshmati (2010) in the context of sequential produc-
tion sets, the SML index enables to measure the evolution of plants’ productivity over time.
Specifically, the index can be decomposed into two terms capturing (i) changes in techni-
cal efficiency on the left (how far observations lie from the technological frontier), and (ii)
technological progress (by how much the technological frontier expands). The plant-level,
year-to-year index can be computed as

SMLt,t+1
i =

 Dt
i(xt, yt, bt)

Dt
i(xt+1, yt+1, bt+1) ×

Dt+1
i (xt, yt, bt)

Dt+1
i (xt+1, yt+1, bt+1)

1/2

= Dt
i(xt, yt, bt)

Dt+1
i (xt+1, yt+1, bt+1)︸ ︷︷ ︸
Efficiency change (EC)

×

 Dt+1
i (xt, yt, bt)
Dt

i(xt, yt, bt)
× Dt+1

i (xt+1, yt+1, bt+1)
Dt

i(xt+1, yt+1, bt+1)︸ ︷︷ ︸
Technological change (TC)

1/2

To obtain the total productivity change over the period, the SML index can be chained over
the years as follows

SML2013,2017
i = SML2013,2014

i × SML2014,2015
i × SML2015,2016

i × SML2016,2017
i

= (EC2013,2014
i × EC2014,2015

i × EC2015,2016
i × EC2016,2017

i )×

(TC2013,2014
i × TC2014,2015

i × TC2015,2016
i × TC2016,2017

i )

= EC2013,2017
i × TC2013,2017

i

Specifically, SML2013,2017
i indicates total factor productivity gains (resp. losses) over the

period when > 1 (resp. < 1), and a constant productivity when = 1. Because of the sequential
production set approach yet, the technological change component cannot be < 1 (Oh &
Heshmati, 2010). In turn, any productivity loss is due to a decrease in technical efficiency.
The plant average of SML2013,2017

i , EC2013,2017
i and TC2013,2017

i are reported in Table 3.13

First, most industries experience total factor productivity gains over time. More precisely,
these gains are more often due technological progress, rather than improvements in the

13We do not report intermediary, year-to-year indexes because no noticeable pattern stands out.
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technical efficiency of production. However, the deterioration of technical efficiency observed
in half of sample industries has to be nuanced. Let us indeed turn to Figure 4 which plots
EC2013,2017

i against TC2013,2017
i for every observation in the metallurgy, low carbon-intensity

sample. First, the majority of points lie in the upper left corner, which implies at first sight
a negative correlation between technological progress and technical efficiency improvements
(TC2013,2017

i > 1 and EC2013,2017
i < 1). Yet, Figure 4 shows that a few plants have carried out

important technological progress over the period, which implies an important displacement
of the technological frontier, and thereby increasing the distance to the majority of other
firms.
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Table 3: Efficiency and technical change

Industry Carbon
intensity

Zero-cost abatement potential
(% of observed emissions)

Decomposition of the SML index

SML2013,2017 EC2013,2017 TC2013,2017

Baked Clay (23.32)
0.4 35 % 0.96 0.67 1.44

(0.17) (0.85) (0.31) (0.92)

3.6 55 % 1.25 0.60 2.8
(0.30) (1.66) (0.71) (2.01)

Cement (23.51) 5.1 20.3 % 1.43 1.06 1.50
(0.13) (2.52) (1.37) (1.32)

Chemicals (20.1) 0.3 56.2 % 0.78 0.63 1.49
(0.27) (0.49) (0.38) (1.28)

Electricity (35.11) 1.1 73.2 % 1.05 1.12 1.11
(0.30) (0.65) (0.64) (0.49)

Metallurgy (24.1)
0.1 24.2 % 0.75 0.68 1.14

(0.11) (0.43) (0.42) (0.50)

0.5 28.5 % 1.59 1.23 1.21
(0.15) (4.01) (2.62) (0.47)

Paper (17.12)

0.1 71 % 0.99 1.08 1.08
(0.17) (0.83) (1.56) (0.20)

0.5 41 % 1.01 1.04 3.76
(0.22) (0.75) (0.30) (2.63)

1.1 39.5 % 1.03 0.27 5.76
(0.31) (0.72) (0.28) (4.89)

Plaster (23.52) 2.8 27.4 % 0.94 0.98 1.22
(0.15) (0.61) (1.03) (0.53)

Note: Zero-cost abatement potential represents the average technical efficiency improvement over years and production sites, reported in percentage
of observed emissions. Standard deviations can be found in brackets. The full SML index and its two components are meaned over observations.
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Figure 4: Distribution of SML index components, metallurgy (24.1)

Note: Low carbon-intensity sample. The reader may have noted that the chained technological change is
sometimes lower than one, although we use a sequential production set approach. This is due to imperfections
that come with the calibration of technological frontiers, and that are amplified by the multiplicative nature
of the SML index.

Second, note that samples with a relatively low (resp. high) average carbon intensity tend
to experience total factor productivity losses (resp. gains) over the period. Specifically, the
technological change component (TC2013,2017) increases with the carbon intensity of plants,
like in baked clay products manufacturing, and the metallurgy and paper industries. This
suggests that plants with a high carbon-intensity carry out more technical and/or technologi-
cal efforts than low carbon-intensity ones, which has interesting policy implications discussed
in Section 6. In particular, this result can be linked with the permit allocation method in
the EU-ETS.

4.2 Nature of technological progress

Next, we analyze the nature of technological progress that took place at the industry level
between 2013 and 2017, conforming to the theoretical framework outlined in Section 2. To
do so, we compute a carbon intensity ratio as CILF

I,2017/CI
LF
I,2013, where CILF

I,t = bLF
I,t /y

LF
I,t .

More precisely, the value of the ratio indicates the evolution of laisserfaire carbon intensity
between the initial and last date. Therefore, a ratio < 1 indicates directed technological
progress, while a ratio > 1 corresponds to non-directed technological progress. Coupled with
information about the variation of baseline emissions, the carbon intensity ratio enables us
to know whether directed technological progress is rather weakly directed or strongly directed.

Results are reported in Table 4. First, we learn that all types of technological progress took
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place over the period, depending on the industry considered. For instance, paper and baked
clay manufacturers have consistently seen a decrease in laisserfaire carbon intensity of pro-
duction, by contrast to metallurgy, which has rather experienced non-directed technological
progress. In four out of the eleven samples considered, plants did not carry out ’environ-
mentally friendly’ technological progress indeed, despite the environmental regulation. This
puts into perspective the induced technological change literature, which typically focuses on
low-carbon technologies.

Second, technological progress resulted in increasing most industries’ baseline emissions,
whether directed or non-directed. Specifically, technological progress can have a large in-
fluence on laisserfaire emissions, with a percentage variation of more than 40 % between
2013 and 2017 in some sample industries (see cement and paper manufacturing for instance).
Moreover, we find that technological progress tends to be weakly directed in industries where
plants have a low carbon intensity on average, and strongly directed in higher carbon inten-
sity industries. Interestingly, this suggests that high carbon-intensity plants translate the
absolute limit on emissions in their technological strategy, resulting in a decrease in baseline
emissions. However, low carbon-intensity plants rather carry out weakly directed technolog-
ical progress, implying that they perceive the EU-ETS as a relative cap in practice. This
argument will be developed in Section 6.

Table 4: Nature of technological progress

Industry Carbon intensity CILF
I,2017

/
CILF

I,2013 %∆ in baseline emissions Nature of T.P.

Baked clay 0.4 0.96 +10.6 % weakly directed
3.6 0.52 -4.8 % strongly directed

Cement 5.1 1.16 +45.9 % non-directed

Chemicals 0.3 0.74 -8.5 % strongly directed

Electricity 1.1 0.98 +6 % weakly directed

Metallurgy 0.1 1.04 +15.7 % non-directed
0.5 1.03 +21.7 % non-directed

Paper
0.1 0.93 +1.4 % weakly directed
0.5 0.61 -7.2 % strongly directed
1.1 0.49 -45.6 % strongly directed

Plaster 2.8 1.03 +14.5 % non-directed

Note: %∆ corresponds to the percentage change between 2013 and 2017.
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4.3 Effect of technological progress on MAC curves

Next, we compute industry marginal abatement cost curves, as outlined in section 2.2, and
examine the effect of technological progress in the context of the EU-ETS. To do so, we keep
inputs fixed at their 2013 (observed) level. This enables us to attribute year-to-year changes
of MAC to displacements of the technological frontier only, thereby eliminating changes due
to the quantity of inputs used. Figure 5 shows the resulting curves in baked clay product
manufacturing. As expected, they are increasing and convex, contrasting with the usual
linear specification used in theoretical models of carbon markets (Chaton et al., 2015, 2018;
Chevallier, 2012; Salant, 2016; Perino & Willner, 2016; Pahle et al., 2018). Moreover, their
asymptotes are equal to aggregate baselines net of residual emissions. Yet, residual emissions
are negligible in baked clay, and never exceed 10 % of the baseline in general (see details in
Table 8). Moreover, MAC are substantially higher in the low carbon intensity sample. Every
unit of CO2 abated leads to a greater revenue loss when carbon intensity is low indeed.

Figure 5: Marginal abatement cost curves, baked clay (23.32)

(a) Low carbon intensity (b) High carbon intensity

Note: The y-axis reports the marginal cost of abatement in AC/tCO2 and the x-axis reports abatement levels.

In order to characterize the dynamics of MAC curves under the influence of technological
progress, we compute abatement efforts keeping the carbon price at an arbitrary level of
100AC/tCO2. Results, reported in table 5 reveals significant variations of abatement efforts
depending on carbon intensity. In baked clay product manufacturing for instance, emissions
reductions vary from 8 % to nearly 50 % between the two sub-samples. In the context of
the EU-ETS, these results suggest large permit transfers from low to high carbon intensity
industries. Yet, abatement efforts at the observed European Union Allowance (EUA) prices
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from 2013 to 2017 are of little magnitude, ranging from 0.1% to 5.8% in dirtier plants (Table
5). This can be due to the low price levels observed over the Phase 3 of the EU-ETS
(6,5AC/tCO2 on average). Besides, our results suggest a large scope for emissions reductions
in the EU-ETS: at a price of 25AC/tCO2, which corresponds to the price level observed in the
last year, implied emissions reductions can reach 20 % in the most carbon-intensive industries
(Table 8).

Furthermore, MAC dynamics are affected by the nature of technological progress. At a
price of 100AC/tCO2, abatement can vary by more than 50 % between 2013 and 2017 due to
technological change. Specifically, non-directed technological progress, as in the metallurgy
or plaster industries, unambiguously increases the abatement effort for a given price of CO2.
This further means that MAC curves shift down over-time. By contrast, strongly directed
technological progress results in decreasing the abatement effort between 2013 and 2017, in
line with a decrease in baseline emissions (see baked clay, high carbon intensity in Table 5).
Last, weakly directed technological progress yields greater abatement efforts for a given price,
despite lowering the carbon intensity of production. Yet, note that technological progress
resulted in increasing baseline emissions in most industries (i.e. was rarely strongly directed),
thus amplifying the abatement effort at a given price.

Table 5: Summary of abatement dynamics

Industry Carbon
intensity

Nature
of T.P.

Ave. abatement,
EUA prices

Ave. abatement,
100AC/tCO2

%∆ in abatement,
100AC/tCO2

Baked clay 0.4 weakly directed 0.5 % 8.1 % +10.4 %
3.6 strongly directed 4.2 % 48.8 % -10.9 %

Cement 5.1 non-directed 5.8 % 55.7 % +57.1 %

Chemicals 0.3 strongly directed 1.1 % 13.4 % -11.3 %

Electricity 1.1 weakly directed 1.3 % 19 % +7.2 %

Metallurgy 0.1 non-directed 0.1 % 2.2 % +16.7 %
0.5 non-directed 0.6 % 10.2 % +30.4 %

Paper
0.1 weakly directed 0.1 % 2.6 % +3.9 %
0.5 strongly directed 0.5 % 8.1 % -13.3 %
1.1 strongly directed 1.2 % 18.7 % -28.4

Plaster 2.8 non-directed 3.2 % 39.4 % +17 %

Note: %∆ corresponds to the percentage change between 2013 and 2017. The average abatement realized
at EUA price is expressed in % of observed emissions, with pEUA

2013 = 4AC/tCO2, pEUA
2014 = 5.1AC/tCO2, pEUA

2015 =
7.4AC/tCO2, pEUA

2016 = 6AC/tCO2, pEUA
2017 = 6.7AC/tCO2.

Finally, we use computed industry MAC curves to analyze the price elasticity of pollution
abatement at selected carbon price levels. Our results are consistent with that of Cialani
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& Mortazavi (2018), in the context of industrial electricity demand. We first find that
the elasticity of abatement demand is lower in high carbon-intensity industries. This may
seem counter-intuitive, although it can be explained by the magnitude of MAC being lower
for high carbon intensity plants, hence selected prices (10-500AC/tCO2) corresponding to
the flatter part of the MAC curve. Second, and consistently with the convex shape of
MAC curves, abatement becomes less elastic with higher price levels regardless of industries’
carbon intensity. Last, we do not find that technological progress affects the price elasticity
of abatement over time. This result confirms that MAC dynamics are mainly driven by
variations in baseline emissions, rather than changes in the curvature of the technological
frontier.

Table 6: Elasticity of emissions abatement

Industry Carbon
Intensity

Price elasticities

10AC/tCO2 25AC/tCO2 50AC/tCO2 100AC/tCO2 500AC/tCO2

Baked clay 0.4 0.99 0.98 0.96 0.93 0.72
3.6 0.94 0.86 0.75 0.59 0.16

Cement 5.1 0.92 0.81 0.68 0.49 0.08

Chemicals 0.3 0.99 0.98 0.97 0.95 0.81

Electricity 1.1 0.98 0.95 0.91 0.84 0.47

Metallurgy 0.1 0.99 0.99 0.99 0.98 0.90
0.5 0.99 0.97 0.95 0.92 0.68

Paper
0.1 0.99 0.99 0.98 0.97 0.89
0.5 0.99 0.98 0.96 0.92 0.70
1.1 0.98 0.95 0.91 0.84 0.48

Plaster 2.8 0.95 0.89 0.80 0.66 0.22

5 Equilibrium in the carbon market

In this section, we exploit permit allocation data from the EUTL and computed MAC curves
to analyze the effect of technological progress on the carbon market equilibrium. This analysis
should be taken as illustrative only, as our samples only account for a share of production
sites covered under the EU-ETS (see Table 7).

Two ingredients are needed to simulate a market clearing price : an abatement demand,
namely plants’ baseline emissions and an abatement supply, namely plant’s observed allo-
cation. The equilibrium price is the one that equalizes supply and demand, as determined
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by the aggregate marginal abatement cost curves. Since plant’s initial allocation is fixed by
the regulatory authority, only marginal abatement cost curves and baseline emissions can be
influenced by technological progress. Therefore, in order to isolate the effect of technological
progress on equilibrium price levels, we set the permit supply (the exogenous allocation) at its
2013 level until 2017. However, we let the permit demand (endogenous baseline emissions and
marginal abatement cost curves) vary over time, under the influence of technological progress.
This enables us to compare how technological progress disturbs the market clearing price, in
comparison to initial, i.e. 2013 conditions.

In our simulation exercise, we aggregate 2013’s observed permit allocation and computed
baseline emissions at the industry level. We do not consider the inter-temporal trading of
permits (i.e. banking and borrowing) in order to isolate the direct effect of technological
progress on market equilibrium.14 Table 9 reports the observed level of permit allocation in
2013, emissions baseline and the resulting permit demand in the 11 samples. Note that the
electricity sector does not receive any permits for free as a result of auctions being the default
allocation method since 2013. Moreover, yearly variations in industries’ abatement demand
(2013’s allocation minus annual baseline emission level) reflects the nature of technological
progress that took place from 2013 to 2017. For instance, permit demand rose sharply in
the cement and plaster industries, due to the increase in baseline emissions driven by non-
directed technological progress (Table 9). By contrast, strongly directed technological progress
led permit demand to decrease in the chemicals and paper industries.

In order to make 2013 computed price levels comparable with that observed on the EU-ETS,
and since our samples only represent a share of regulated plants, we introduce an autonomous
demand (it can be positive or negative). More precisely, the autonomous demand is calibrated
to eliminate differences between the computed equilibrium price and observed EUA price in
the initial year (2013), namely 4AC/tCO2. It is kept constant thereafter, so that price changes
are only attributed to technological progress.

Besides, we compute permit supply as the total abatement realized for a given pollution
price, namely the horizontal sum of industries’ marginal abatement cost curves (Section 2.2).
The market clearing price then equalizes permit demand, i.e. total baseline emissions plus
the autonomous demand, to the market permit supply, which is driven by the permit price
according to MAC curves. Next, we can find out the net permit demand at the industry
level, at the computed clearing price. This enables us to analyze industries’ net position in

14In an inter-temporal setting, inter-temporal arbitrages would indirectly affect market prices through the
induced technological progress.
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the market, namely the difference between permit demand (as baseline emissions minus free
allocation) and realized abatement at the market clearing price. Table 7 reports the results.

First, and looking at net permit demands in equilibrium (Table 7), we find that all industries
are permit buyers. This is due to the autonomous demand which is negative, thus adding
up to the permit supply. It further means that the market equilibrium using our sample
data alone would have resulted in a much higher clearing price than that observed in 2013
in the EU-ETS. This can be due to the large permit bank that was accumulated over the
second trading period, and that we do not take into account here, or the small proportion of
plants in notoriously over-allocated sectors such as chemicals and metallurgy (samples’ share
of emissions in the entire sector is reported in Table 7). Furthermore, it appears that higher
carbon-intensity industries tend to hold a shorter position than low carbon ones. Intuitively,
this implies that dirtier plants need to buy more allowances in the market than cleaner ones
to cover their emissions. In turn, higher carbon-intensity plants bear the financial burden
of permit purchases, which tends to be amplified by the price increase due to non-directed
technological progress.

Second, and importantly, we find that technological progress has an overall upward effect
equilibrium prices, under 2013’s conditions. In 2013, the computed price is 4AC/tCO2 as a
result of the autonomous being calibrated to reproduce the annual EUA price. Thereafter,
the computed clearing price drops slightly below 2013’s price level, but rises again and to the
extent of 34AC/tCO2 from 2015 to 2017. Thus, if technological progress had occurred under
2013’s conditions, it would have resulted in a much higher carbon price than observed. It
implies that overall, technological progress tended to increase the aggregate permit demand
through an increase of baseline emissions. This is due to its dominantly weakly directed or
non-directed nature. Yet, our results suggest that strongly directed technological progress
can be an instrument to alleviate compliance costs. In the paper industry for instance (high
carbon intensity sample), technological progress can alleviate the net permit demand by more
than 45%.

Yearly variations in the computed carbon price also seem to correlate with oil prices vari-
ations. Environmental technological progress is historically linked to oil prices indeed. In
particular, Popp et al. (2020) show that high oil prices are associated with more green patents
being filled. Between 2013 and 2014, Europe’s brent spot price was peaking at the decade’s
maximum (above 100$/barrel).15 This could have urged plants to save fuel costs and carry
out strongly directed technological progress, relaxing the permit constraint on the EU-ETS

15Energy information administration : https://www.eia.gov/dnav/pet/hist/rbrteA.htm
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and pushing down the market equilibrium price. On the contrary, oil prices declined by
nearly 45% between 2014 and 2017, resulting in cheaper fuel and less economic benefits to
cut emissions. This could explain the dominantly non-directed technological progress we
observed, with an upward pressure on carbon prices.

Table 7: Market equilibrium

Industry Emissions share Carbon
intensity

Net demand (MtCO2)

2013 2014 2015 2016 2017

Baked Clay (23.32) 14.2 % 0.4 0.388 0.507 0.499 0.415 0.504
3.6 0.676 0.698 0.619 0.437 0.438

Cement (23.51) 14.1 % 5.1 11.318 11.963 11.808 12.452 14.455

Chemicals (20.1) 4.8 % 0.3 6.779 5.532 5.708 5.657 5.675

Electricity (35.11) 1,2 % 1.1 32.733 34.057 33.707 32.304 32.345

Metallurgy (24.1) 3.1 % 0.1 1.934 1.944 2.284 2.461 2.507
0.5 2.483 2.873 3.504 4.037 3.387

Paper (17.12) 13.9 %
0.1 0.389 0.570 0.553 0.535 0.395
0.5 0.988 0.876 0.859 0.851 0.735
0.9 5.221 3.468 2.910 4.198 2.833

Plaster (23.52) 12.4 % 2.8 3.301 3.772 3.887 2.963 3.045

Clearing price (AC/tCO2) 4 2.9 13 38.2 36.2

Price gap (AC/tCO2) 0 –1.1 +9 +34.2 +32.2

Note: The aggregate annual net demand sums up to minus calibrated autonomous demand, namely −6.6214×
107tCO2. The price gap represents the difference between our simulated market clearing price and the average
EUA price in 2013 (4AC/tCO2).

6 Policy Implications

In the context of the EU-ETS, we first find that non-directed technological change is at least
as, if not more prevalent than directed technological progress for regulated, manufacturing
plants. It implies that in presence of an environmental regulation, plants primarily seek total
factor productivity gains, which can have repercussions on the outcomes of the policy. Fur-
thermore, technological change often leads to increase baseline emissions, despite decreasing
the carbon intensity of production. In our context of plants covered under the EU-ETS, this
results in inflating the permit price, which affects the cost effectiveness of the regulation (sec-
tion 5). The financial burden of regulated plants is indeed amplified through two channels:
(i) a shorter market position and (ii) a dearer permit price. As a consequence, we find that
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only strongly directed technological progress enables to alleviate plants’ compliance costs.

Interestingly, these results suggest that plants often perceive the EU-ETS as a relative cap
on emissions in practice, namely a carbon intensity target, rather than an absolute limit
on emissions, which it actually is. This is particularly salient when plants present a low
average carbon intensity. We argue that this biased perception could be due to the allowance
allocation method. In 2013, an allowance distribution method based on ’benchmarking’
was implemented in the EU-ETS manufacturing sector. More precisely, free allocation is
determined based on product benchmarks, defined as the average of the 10 % most greenhouse
gas efficient installations in terms of carbon intensity of production over the years 2007-2008.
Actual allocation levels are then computed by multiplying the benchmark by a historical
production level and carbon leakage exposure factors. By setting a carbon-intensity standard
within industries, ’dirtier’ plants are incentivized to clean their production, while ’cleaner’
ones receive all the permits needed to cover their emissions.16

For the time being, a single study assesses the impact of product benchmarks empirically
(Sartor et al., 2014), and finds that the new allocation method reduces the scope for windfall
gains by EU-ETS firms. Although this study does not conduct an impact evaluation of
product benchmarks on technological adoption, our results suggest that they could contribute
to homogenize plants’ carbon intensity within industries. On the one hand, highly carbon
intensive plants could have an incentive to carry out strongly directed technological progress
and reduce their baseline emissions, in order to have a longer their position on the permit
market. On the other hand, low carbon intensity plants, would rather benefit from the
more generous permit endowment to carry out weakly directed or non-directed technological
progress, and increase their total factor productivity.

We also believe that the directional distance function approach used in this study, which
is also a benchmarking method, has several methodological advantages that make it an
interesting alternative to the EU-ETS benchmarking procedure. First, the development of
product benchmarks was rather costly and cumbersome, as it took two years of extensive
consultations and expertise with various stakeholders. By contrast, the directional distance
function analysis accommodates little input and output data at the plant level, making
it possible to update technical efficiency scores and baseline emissions at little cost. The
directional distance function method could prove helpful in updating historical emissions
factors and benchmarks, as planned for the second half of Phase 4. This study also points

16Over the third (and current) trading period, a 43 % share of the total permit offer is covered by a
product benchmark (European Commission)
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out that relying on a grandfathering allocation method underrates the effect of technological
progress on the effective abatement demand, with impacts on the carbon market outcomes.

Second, the directional distance function approach reflects plants’ production process as a
whole, including indirect emissions (related to energy or raw material purchase) to evaluate
technical efficiency scores. By contrast, computing plants’ permit allocation on the basis of
their output, as is currently done in the EU-ETS, presents some shortcomings. Zipperer et al.
(2017) raise that output-based allocation methods give an incentive to plants to outsource the
production of upstream inputs to off-site facilities, in order to avoid indirect emissions being
reflected in their emissions reports. By contrast, tuning plants’ permit endowments on the
basis of the efficiency input use, as is done in directional distance function approaches, could
bring an incentive to optimize the production lines, with greater environmental impacts.
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Appendix
Figure 6: Input and output dynamics across industries

(a) Baked Clay - High carbon intensity (b) Baked clay - Low carbon intensity

(c) Chemicals (d) Cement

(e) Electricity
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Figure 7: Input and output dynamics across industries - continued

(a) Metallurgy - High carbon intensity (b) Metallurgy - Low carbon intensity

(c) Paper - Low carbon intensity (d) Paper - Medium carbon intensity

(e) Paper - High carbon intensity (f) Plaster
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