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Exploitation and Recycling of Rare Earths ∗

Bocar Ba† Raphael Soubeyran‡

We study the exploitation of recyclable exhaustible resources such as rare earths and Phosphorus.

We use a standard Hotelling model of resource exploitation that includes a primary sector and a

recycling sector. We show that, when the primary sector is competitive, the price of the recyclable

resource increases through time. This result stands in contrast to durable resources, for which the

optimal price path is either decreasing or U-shaped (Levhari and Pindyck, 1981). We then show

a new reason why the price of an exhaustible resource may decrease: when the primary sector is

monopolistic, the primary producer has incentives to delay its production activities in order to delay

recycling. As a consequence, the price path of the recyclable resource may be U-shaped. We also

show that a technological improvement in the recycling sector increases the price in the short term

but decreases it later.
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1 Introduction

Recyclable exhaustible resources, such as rare earths and Phosphorus, are increasingly impor-

tant industrial inputs. Indeed, rare earth elements are important inputs for the production of

many modern technologies, such as cell phones, light bulbs, automobiles, hybrid car batteries

and gearboxes, and wind turbines (Chakhmouradian and Wall, 2012). Phosphorus (derived from

Phosphate rocks) is essential for soil fertility and has no substitute in agricultural production

processes (Cordell et al., 2009). Due to economic development and an increasing world popula-

tion, demand for rare earths and phosphorus has been growing rapidly and is expected to grow

even more in the future (Alonso et al. 2012, Steen 1998).1

Historically, the supply of these resources has been highly concentrated. Until 2010, China

controlled 95% of the production of rare earths (Chakhmouradian and Wall, 2012), while a

handful of countries, including Morocco, China, and the U.S.A, controlled most of the world’s

Phosphate rock production (IFDC, 2010). However, prospects for the supply of rare earths and

Phosphate rocks differ. Since 2010, the supply of rare earths has become less concentrated as

China currently possesses less than 40% of rare earth reserves, while the supply of Phosphate

rocks has become more concentrated, as 85% of these reserves are currently located in Morocco

and Western Sahara.2

One strategy to increase the supply of these resources is recycling. The recycling of rare

earths is in its infancy (UNEP, 2011), currently focused on scrap materials that contain high

amounts of rare earth elements and on high value rare earths, including magnets, lamp phos-

phors, and nickel hybrid batteries (Golev et al., 2014). European fertilizer firms, such as Ostara

and CNP-Technology already produce recycled Phosphorus fertilizers (Hukari and Nätto 2015)

and, according to the U.K. Environment Agency (EA, 2012), approximatively 70% of Phospho-

rus from sewage sludge produced in the U.K. is currently recycled as biosolids to be used as

fertilizer.3

In order to assess the effect of recycling, it is necessary to understand how the primary

sector may react. Since the main input to the production of recycled materials is the stock of

scrap, the emergence of recycling activities may affect the dynamics of both the extraction of

the exhaustible resource as well as the price of the final goods.

In this paper, we study the impact of a recycling sector in a stylized economic model of

exhaustible resource extraction. We develop a Hotelling model of resource extraction in which

the consumption good is produced from virgin or recycled materials. Virgin materials are

extracted from a finite stock of a virgin resource and recycled materials are derived from the stock

of scrap. The stock of recyclable scrap grows with current consumption of the virgin resource at

1 Alonso et al. (2012) predict that the demand for rare earths will increase by 5 to 9 percent per annum until
2025. According to EFMA (2000) and Steen (1998), the demand for phosphorus may increase by as much as 50
to 100% by 2050 with increased global demand for food.

2After the 2008 peak in demand due to the pro-biofuel policy in the U.S. and to the 150% increase in the
export tariff on phosphate in China, Phosphate rock reserve estimates for Morocco and Western Sahara increased
from 6 to 50 billion tons, while reserve estimates remained below 6 billion and 2 billion tons for China and other
countries (U.S.A, South Africa, Jordan, and Russia), respectively (USGS, 2011).

3A new German ordinance (AbfKlärV) will make phosphorus recovery obligatory for most sewage
sludge. It has been notified to the European Commission and may enter into force in 2018. See
http://www.phosphorusplatform.eu/scope-in-print/scope-in-press/1327-german-sludge-p-recycling-ordinance-
notified-to-europe
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a given recyclability rate. We assume a competitive recycling sector in which production costs

decrease with the stock of recyclable scrap. As a consequence, production in the primary sector

generates a positive externality that benefits to the recycling sector. To ensure consistency with

the various possible (future and present) market structures in the rare earths and Phosphate

rocks extraction sectors, we consider two polar cases: competitive and monopolistic extraction.

Our main results are the following. We show that, if the primary sector is competitive, the

optimal level of production for firms in the primary sector is such that the price of the resource

grows at the discount rate (this is the so-called Hotelling rule) because these firms assume that

their production will not increase the stock of scrap. We then show that, if the extraction sector

is monopolistic, the dynamics of the price of the resource depend on the recyclability rate. When

the recyclability rate is sufficiently low, the price of the resource increases over, which is similar

to the case without a recycling sector. When the recyclability rate is sufficiently high, the

monopolistic firm has an incentive to postpone extraction. As a consequence, the price of the

resource is U-shaped, i.e. the price first decreases and then increases. We also generate insights

concerning the impact of technological progress in the recycling sector when the primary sector

is monopolistic. We show that an increase in the recyclability rate has first a positive and then

a negative effect on the price of the resource. This suggests that technological progress in the

recycling sector can be detrimental to consumers in the short-run and beneficial for them in the

long run. We also show that the exhaustion date increases with both the initial stock and the

recyclability rate of the resource.

The present paper is related to the literature dealing with durable resources. Durable re-

sources differ from other resources (among which, recyclable resources) in that their demands are

for quantities of stock in circulation rather than for flows of production. Producers of durable

goods use similar production technologies and consumers typically consume durable goods for

a certain period of time. Primary and recycled goods, in contrast, are typically produced us-

ing two different production processes. As stated in Levhari and Pindyck (1981), demand is a

stock relationship for durable resources while it is a flow relationship for recyclable resources.

Our results highlight important differences between recyclable and durable resources. We show

that the two assumptions lead to quite different results. Indeed, Levhari and Pindyck (1981)

show that, in the case of a competitive industry that produces a durable good, the price of the

resource first decreases and may increase thereafter. In contrast, we find that the price of the

resource is always increasing in the context of a competitive extraction sector.

Our model reveals a new reason why the price of a resource may decrease: a firm with market

power in the extraction sector will (strategically) choose to delay extraction in order to reduce

the opportunities for recycling. This differs from the case of durable resources (Levhari and

Pindyck, 1981), in which the initial price decrease is due to the growing amount of the durable

good in circulation and the resulting decrease in demand (the price of the resource increases at

some point in time only if the durable good depreciates).

There are other explanations for U-shaped price profiles of exhaustible resources. Pindyck

(1978) shows that this may occur when exploration and reserve accumulation are taken into

account. In a model with exogenous technical change and endogenous change in grades, Slade

(1982) also finds that U-shaped price profiles may occur. These studies do not consider the

possibility of recycling.
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The environmental advantages of recycling have long been recognized in the economic liter-

ature (Smith, 1972; Weinstein and Zeckhauser, 1974; Hoel, 1978).4 The present paper is related

to literature that focuses on the possible adverse social consequences of market power in the ex-

traction sector. A series of papers consider a monopolistic extraction sector facing a competitive

recycling sector (Gaskins, 1974; Swan, 1980; Martin, 1982; Suslow, 1986; Hollander and Lasserre,

1988) and show that, despite the presence of a competitive recycling sector, the extraction firm

maintains (at least some of) its monopoly rents.5 However, none of these papers show that

market power in the primary sector can result in a U-shaped price profile of the non-renewable

resource.

The remainder of the paper is structured as follows. Section 2 introduces the model in which

the monopolist of the exhaustible resource faces a competitive recycling sector. Section 3 studies

price dynamics in the case of a competitive primary producer sector. Section 4 focuses on the

qualitative properties of the optimal path in the case of a monopolistic primary producer. The

main conclusions from this analysis are gathered in section 5.

2 The Model

The economy produces a quantity Q of a consumption good. The consumption good can be pro-

duced from a non-renewable resource or from recycled materials. For simplicity we assume that

the virgin and recycled materials are perfect substitutes. The primary sector faces a competitive

sector of recycling firms.

Non-renewable resource and scrap dynamics

Let X (t) ≥ 0 be the residual stock of virgin resource at time t, X0 be the initial stock, with

X (0) ≡ X0 > 0, and x (t) ≥ 0 be the extraction rate at time t, so that:

Ẋ (t) = −x (t) . (1)

The unit cost of extraction of the virgin resource is assumed to be zero.

Let S (t) ≥ 0 be the stock of (recyclable) scrap at time t, with a zero initial stock, S (0) = 0.

Let r (t) ≥ 0 be the quantity of recycled materials marketed at time t, so that the total quantity

consumed at time t is then Q (t) = x (t) + r (t). Let α ∈ [0, 1] be the proportion of the resource

that is not recycled and becomes recyclable scrap. The dynamics of the scrap material writes

Ṡ (t) = α (Q (t)− r (t)) or,

Ṡ (t) = αx (t) , (2)

where α represents the recyclability rate of the non-renewable resource.

The recycling sector

4André and Cerdá (2006) provide a model that takes into account the interactions of the material composition
of output and waste as potentially recyclable products.

5Gaudet and Van Long (2003) consider the possibility of imperfect competition in the recycling sector. They
show that, when primary and secondary production decisions are made simultaneously, the presence of the re-
cycling sector may increase the market power of the primary producer. Weikard and Seyhan (2009), motivated
by the case of Phosphorus, consider a model of competitive resource extraction and the possibility of saturated
demand (i.e. taking into account the possibility that soil can become saturated with Phosphorus).
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The recycling sector is assumed to be competitive and the marginal cost of recycling to be a

decreasing function of the stock of scrap and an increasing function of the quantity of recycled

materials, c (S, r).

In equilibrium in the recycling sector, the price of the consumption good must equal the

marginal cost of recycling:

p (Q (t)) = c (S (t) , r (t)) . (3)

The primary sector

The discounted profits in the primary sector, with discount rate δ ≥ 0, are given by:

+∞∫
0

e−δtpxdt, (4)

In the following, we will consider two polar cases: the case of a competitive primary sector and

the case of a monopolistic primary sector. In the case of a competitive primary sector, resource

owners behave as price takers, and they consider the price of the resource to be a function of

time, p ≡ P (t). In the case of a monopolistic primary sector, the owner of the resource takes

into account how extracted quantities affect the total quantity of material supplied (virgin as

well as recycled) and the effect of this supply on the price of the resource, i.e. p ≡ p (Q (t)).

3 Competitive primary sector

In this section, we consider the case of a competitive primary sector. In this case, producers take

the price, P , as well as the total quantity, Q, as given. They consider the following problem:

Max
{x(t),t≥0}

+∞∫
0

e−δtP (t)x (t) dt, (5)

s.t. Ẋ (t) = −x (t) , (6)

X (t) ≥ 0, x (t) ≥ 0. (7)

The Hamiltonian and the Lagrangian for this optimal control problem are as follows:6

H = Px+ λX (−x) , (8)

L = H + µXX + µxx, (9)

where λX is the co-state variable associated with the stock X, and, µX , µx are the multipliers

associated with the non-negativity constraints X ≥ 0, and x ≥ 0. The competitive solution is

found by solving problem (5) subject to (6) and (7) and then using (3), (2) and P (t) = p(Q(t)),

∀t, to determine the recycling level and the market clearing price. The Maximum Principle

6We drop the time index when there is no possible confusion.
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requires that the following conditions hold:

∂L

∂x
= P − λX + µx = 0, (10)

λ̇X = δλX −
∂L

∂X
= δλX − µX , (11)

x ≥ 0, µx ≥ 0, µxx = 0, (12)

X ≥ 0, µX ≥ 0, µXX = 0, (13)

and one transversality constraint is given by:

lim
t→+∞

e−δtλX (t)X (t) = 0, (14)

When both extraction and residual stock levels, x(t) and X(t), are strictly positive, we have

µx = 0 and µX = 0. Substituting these respective values into (10) and (11) yields:

P − λX = 0, (15)

λ̇X = δλX (16)

Differentiating (15) with respect to time gives:

λ̇X
λX

=
Ṗ

P
(17)

From (16), we have:

λ̇X
λX

= δ (18)

The combination of (17) and (18) yields:

Ṗ

P
= δ (19)

Equation (19) is known as Hotelling’s rule: the price of the resource grows at the discount

rate. Since δ > 0, the price of the resource increases over time. This result reveals a major

difference between recyclable goods and durable goods. The price of a durable exhaustible

resource decreases with the amount of the durable good in circulation. It is then either always

decreasing or U-shaped when the resource extraction sector is competitive (Levhari and Pindyck,

1981).

4 Monopolistic primary sector

In this section, we consider the case of a monopolistic primary sector. We derive several quali-

tative properties regarding the optimal time path of virgin resource extraction, the equilibrium

recycling quantity, and the price of the consumption good. We then provide comparative statics

in order to highlight the role of recycling technology in the dynamics of the price.

For simplicity, we assume in the rest of the paper that the inverse demand for the consump-
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tion good and the cost of recycling are linear,

p (Q (t)) = 1−Q (t) and c (S (t) , r (t)) = 1− b− β (S (t)− r (t)) , (20)

with β > 0 and b ∈ (0, 1). Parameter b is a measure of the added value of recycled material

compared to scrap.

Solving the recycling sector equilibrium condition (3), we characterize the equilibrium quan-

tity of recycled material at time t as follows:

r (t) =
b+ βS (t)− x (t)

1 + β
. (21)

Thus, the quantity of recycled material at time t increases with the quantity of scrap and

decreases with the quantity of extracted resource. This result is quite intuitive. Since recycling

relies on scrap, the higher the stock of scrap, the larger the recycling firms’ production. Recycling

at time t decreases with the quantity of virgin product sold at time t because recycled and virgin

products are strategic substitutes. In the following, we assume that the right hand side of (21)

is nonnegative.

The current value Hamiltonian H and Lagrangian L are defined as follows:

H = p (Q)x+ λX (−x) + λS (αx) , (22)

L = H + µXX + µSS + µxx, (23)

where λX and λS are the co-state variables associated with the stocks X and S, and µX , µS , µx

are the multipliers associated with the non-negativity constraints X ≥ 0, S ≥ 0, and x ≥ 0. The

total quantity writes Q = x+ r = [b+ β (S + x)] / (1 + β).

The necessary conditions include:

∂L

∂x
=

β

1 + β
p′ (Q)x+ p (Q)− λX + αλS + µx = 0, (24)

λ̇X = δλX −
∂L

∂X
= δλX − µX , (25)

λ̇S = δλS −
∂L

∂S
= δλS − µS −

β

1 + β
p′ (Q)x, (26)

x ≥ 0, µx ≥ 0, µxx = 0, (27)

X ≥ 0, µX ≥ 0, µXX = 0, (28)

S ≥ 0, µS ≥ 0, µSS = 0, (29)

and two transversality conditions:

lim
t→+∞

e−δtλX (t)X (t) = 0, (30)

lim
t→+∞

e−δtλS (t)S (t) = 0, (31)

and S (0) = 0 and X0 > 0 are given.
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In the rest of the paper we focus on solutions in which the exhaustion date of the virgin

resource, T ∗, is finite, that is T ∗ < +∞.7

4.1 Optimal extraction path, recycling path and price dynamics

Full resolution of the monopolist’s programme yields the extraction and recycling paths as well

as the dynamics of the price of the consumption good. We first show that the optimal extraction

and the recycling paths are monotonic.

Proposition 1 [Optimal Path]: The optimal extraction path is such that the quantity of

extracted material decreases while the quantity of recycled material increases over time:

ẋ∗ (t) ≤ 0 and ṙ∗ (t) ≥ 0.

All proofs can be found in the appendix.

Proposition 1 states that the optimal level of extraction decreases through time. This result

is in line with the standard Hotelling model. Indeed, the extracting firm discounts time, choosing

to extract more of the resource today and less tomorrow. The quantity of marketed recycled

material, in contrast, increases over time. The intuition of these results is as follows. The stock

of scrap increases over time, which reduces the unit cost of recycling. This, in turn, provides

incentives for recycling firms to increase their production. At the same time, the quantity of

extracted material decreases, causing the market price of the resource and the level of recycling

to increase.

The price dynamics of the consumption good is established in the following proposition for

the case in which scrap material has a low level of recyclability.

Proposition 2 [Price Dynamics]: The price of the final good is never decreasing if the

recyclability rate is sufficiently low. Formally, there exists α̂ > 0 such that ∂p∗/∂t ≥ 0 for all t

if α ≤ α̂.

Proposition 2 states that the standard result of an increasing resource price holds if the level

of recyclability is low. In this case, the existence of the recycling sector has a limited impact

on the optimal choice of the monopolistic firm. We show in the following Proposition that this

result no longer holds when the level of recyclability is sufficiently large.

Proposition 3 [Non Monotonic Price]: If the recyclability rate is sufficiently large, then

the price of the final good first decreases and then increases. Formally, if α > α̂ there exists

0 < t̂ < T ∗ such that ∂p∗/∂t < 0 if t ∈ [0, t̂) and ∂p∗/∂t ≥ 0 if t ∈ [t̂, T ∗].

Proposition 3 states that, when the recyclability rate is sufficiently large, then the optimal

price path is U-shaped. The intuition behind this result lies in the fact that the monopolistic

firm has an incentive to postpone extraction of the virgin resource. In delaying extraction, the

monopolist delays the increase in the stock of scrap, which in turn delays the reduction of recy-

cling costs. This results in a delayed increase in the quantity of marketed recycled materials.

7A sufficient condition is 1 − βαX0

1−b+β > 0. This condition can be derived from equation (67) in the proof of
Proposition 1.
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Propositions 2 and 3 can be illustrated using the following numerical example:

Numerical Example A: Let X0 = 1, β = 1 and δ = 0.02. Figure 1 shows the price path over

time for each value of α.

Figure 1: The price path is either increasing or U-shaped

 

4.2 The Role of Recyclability

In this section, we focus on the influence of the recyclability rate on the exhaustion date, the

extraction rate, and the price of the consumption good.

We first show that the exhaustion date increases with the availability of the virgin and

recycled materials.

Proposition 4 [Exhaustion date and Recyclability]: The optimal exhaustion date increases

with both the initial stock and the recyclability rate of the resource. Formally:

∂T ∗

∂X0
> 0 and

∂T ∗

∂α
> 0

Proposition 4 states that the date of exhaustion of the resource is delayed with the initial

stock, which is intuitive. It also states that the exhaustion date increases with the recyclability

rate of the resource. This is due to the fact that a higher recyclability rate provides stronger

incentives for the monopolist to delay extraction of the virgin resource.

In the next proposition, we focus on the effect of an increase in the recyclability rate on the

optimal extraction and recycling paths.

Proposition 5 [Extraction and Recyclability]: Early extraction decreases while later ex-

traction increases with recyclability. Formally, there exists a date 0 < t̃ < T ∗ such that

∂x∗

∂α
< 0 for t ∈ [0, t̃) and

∂x∗

∂α
≥ 0 for t ∈

[
t̃, T ∗

)
.

Proposition 5 shows that when the level of recyclability of the resource increases, extraction

is delayed. Thus, extraction first decreases and then increases as the recyclability rate increases.

The intuition of this result is as follows. When the virgin resource is not exhausted (X > 0),
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the dynamics of the shadow price of the virgin resource follows Hotelling’s rule. This (shadow)

price grows at a rate equal to the discount rate, λ̇X/λX = δ > 0. This means that the extracting

firm has incentives to extract the resource early. However, unlike in a standard Hotelling model,

the extracting firm in our model also faces the recycling sector. When there is a stock of scrap

(S > 0), the dynamics of the shadow price of the scrap stock is driven by the following differential

equation: λ̇S = δλS + β
1+βx. If there is no extraction (x = 0), then the Hotelling rule holds

for the stock of scrap, λ̇S/λS = δ > 0, and the owner of the virgin resource has an incentive to

delay extraction in order to maintain a small stock of scrap. If the level of extraction is positive,
β

1+βx > 0, there is a tendency for the shadow price of scrap to increase. This reinforces the

owner’s incentives to delay extraction. Thus, the higher the recyclability rate, the stronger the

incentives to postpone extraction. Since the resource is exhausted in finite time and the initial

stock is fixed, extraction will increase with the recyclability rate at some point in time. This

result can be illustrated in the following numerical example.

Numerical Example B: Let X0 = 1, β = 1 and δ = 0.02. Figure 2 depicts the optimal

extraction path for different values of α.

Figure 2: Optimal extraction path for various levels of the recyclability rate
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We can now derive comparative static results regarding the effect of an increase in the

recyclability rate on the dynamics of the consumption good price.

Proposition 6 [Price and Recyclability]: The price first increases and then decreases with

the recyclability rate . Formally, there exists a date 0 < t′ < T ∗ such that

∂p∗

∂α
> 0 for t ∈ [0, t′) and

∂p∗

∂α
≤ 0 for t ∈

[
t′, T ∗

)
.

A consequence of Proposition 6 is that a higher recyclability rate is not always beneficial to

consumers. In the short-run (t < t′), consumers must pay a higher price for the consumption

good. However, in the long run (t′ < t), consumers pay a lower price for the consumption good

(thanks to the increased supply). The intuition underlying this result is as follows. The price

of the final good negatively depends on the marketed quantity of virgin and recycled materials.

When the recyclability rate increases, the stock of scrap tends to increase, which leads to an

increase in recycling. However, because the stock of scrap increases with extraction by a factor

α < 1, the increase in recycling cannot compensate for the short-run decrease in extraction,

and the marketed quantity of the consumption good decreases. This explains why the price of

the final good increases in the short run. Approaching the exhaustion date, an increase in the

recyclability rate increases both the stock of scrap and the level of extraction. This explains why

the price of the final good decreases in this period. Gaskins (1974) also finds that the price of

the resource increases in the short run in the presence of a recycling sector. However, in contrast

with the present analysis, he focuses on the steady state and finds that the steady state price of

the resource is close to the competitive price.

This result can be illustrated in the following numerical example.

Numerical Example C: Let X0 = 1, β = 1 and δ = 0.02. Figure 3 depicts the optimal price

path for different values of α.

Figure 3: Comparative statics: The price first increases and then decreases with α
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5 Conclusion

Recycling rare earths and Phosphorus appears to be a promising strategy to increase the supply

of these important exhaustible resources. Although the production of the these resources is

concentrated in a few countries, reserve estimates suggest that the supply of rare earths will

become more competitive while the supply of Phosphorus will become less competitive in the

future.

Motivated by these two examples, we built a model of resource extraction in which the pri-

mary sector faces a recycling sector. We have shown that, when the primary sector is competitive,

the price of the recyclable resource increases through time. This result stands in contrast to

durable resources, for which the optimal price path is either decreasing or U-shaped (Levhari

and Pindyck, 1981). We have also shown that, when the primary sector is monopolistic, the

price of the recyclable resource may be U-shaped when the recyclability rate is sufficiently large.

This occurs because the primary producer has incentives to delay the extraction of the resource

in order to delay recycling. We have also shown that the price of the resource first increases

and then decreases as the recyclability rate increases. Our results suggest that market power in

the primary sector may lead to phases in which the price of the resource decreases. They also

suggest that consumers may oppose progress in recycling technologies if they sufficiently weight

the negative short term effect at the expense of the positive long term effect.
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Appendix

Proof of Proposition 1: Using the equilibrium recycling condition (21) and substituting,

we have p (Q) = β
1+β (a− x− S), where a = (1− b+ β) /β. The maximization problem then

formally writes:

Max
{x}

+∞∫
0

βe−δt

1 + β
(a− x− S)xdt, (32)

subject to (21), (1), (2), X,S, x ≥ 0, X0 and S0 given.

Thus, for the new problem, the necessary conditions include:

∂L

∂x
= a− 2x− S − λX + αλS + µx = 0, (33)

λ̇X = δλX −
∂L

∂X
= δλX − µX , (34)

λ̇S = δλS −
∂L

∂S
= δλS − µS + x, (35)

x ≥ 0, µx ≥ 0, µxx = 0, (36)

X ≥ 0, µX ≥ 0, µXX = 0, (37)

S ≥ 0, µS ≥ 0, µSS = 0, (38)

and two transversality constraints:

lim
t→+∞

e−δtλX (t)X (t) = 0, (39)

lim
t→+∞

e−δtλS (t)S (t) = 0. (40)

Let us assume that the solution is such that x (t) > 0 and X (t) > 0 over [0, T ) and x (t) =

X (t) = 0 for t ≥ T . We also assume that S (t) > 0 for all t > 0.

First consider the first phase in which t ∈ [0, T ). Since x (t) > 0, X (t) > 0 and S (t) > 0,

using (36), (37), and (38), we have µx = µX = µS = 0. Then (34) writes

λ̇X = δλX , (41)

and then

λX = c1e
δt, (42)

where c1 is a constant to be determined later.

Conditions (33), and (35) write

a− 2x− S − c1eδt + αλS = 0, (43)

and,

λ̇S = δλS + x, (44)
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Differentiating (43) with respect to time, we find

−2ẋ− Ṡ − δc1eδt + αλ̇S = 0. (45)

Using (43) and (45), we find

−2ẋ− Ṡ − δc1eδt − δ
(
a− 2x− S − c1eδt

)
+ α

(
λ̇S − δλS

)
= 0, (46)

or,

−2ẋ− Ṡ + δS + (α+ 2δ)x− δa = 0, (47)

Differentiating (2) with respect to time, we obtain

S̈ = αẋ. (48)

Substituting (48) and (2) into (47), and rearranging, we have

S̈ − δṠ − αδ

2
S +

αδ

2
a = 0. (49)

Solving for the stock of scrap S we find

S = c2e
γ+t + c3e

γ−t + a, (50)

where γ+ =
δ+
√
δ(2α+δ)

2 and γ− =
δ−
√
δ(2α+δ)

2 .

Differentiating (50) with respect to time, we obtain

Ṡ = γ+c2e
γ+t + γ−c3e

γ−t. (51)

Using (2), we have

x =
γ+

α
c2e

γ+t +
γ−

α
c3e

γ−t. (52)

Substituting (52) into (44), we obtain

λ̇S − δλS =
γ+

α
c2e

γ+t +
γ−

α
c3e

γ−t. (53)

Solving for the shadow price of the stock of scrap λS we find

λS = Deδt +
γ+

α (γ+ − δ)
c2e

γ+t − γ−

α (δ − γ−)
c3e

γ−t. (54)

Using X0 −X (t) =
t∫
0

xdt and integrating (52) between 0 and t, we find

X0 −X (t) =
1

α

(
c2

(
eγ

+t − 1
)

+ c3

(
eγ
−t − 1

))
. (55)

Now consider the second phase in which t ≥ T . We have x (t) = 0 = X (t) and S (t) > 0.
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Using (38), we have µS = 0. Condition (35) writes

λ̇S = δλS , (56)

and then

λS = c5e
δt, (57)

where c5 is a constant to be determined later.

Notice that Ṡ = αx = 0, and then

S = c4, (58)

where c4 is a constant to be determined later.

Using (58) and (57), transversality constraint (40) becomes

c4c5 = 0. (59)

Assume c5 6= 0. Then, using (58) at t = T , we have S (T ) = c4 = 0. Combining (50) and (55)

and taking t = T , we have αX0 = S (T ). Hence, we must have X0 = 0, which is false. We

conclude that c5 = 0. Thus, for t ≥ T , we have

λS = 0. (60)

In order to solve for c1, c2, c3, c4, D and T , we focus on solutions such that λS is continuous.

Using (54) and (60) at t = T , we obtain

DeδT +
γ+

α (γ+ − δ)
c2e

γ+T − γ−

α (δ − γ−)
c3e

γ−T = 0. (61)

Using x (T ) = 0 and (52), we have

γ+c2e
γ+T + γ−c3e

γ−T = 0. (62)

Using X (T ) = 0 and (55), we have

αX0 = c2

(
eγ

+T − 1
)

+ c3

(
eγ
−T − 1

)
. (63)

Using (50) at t = 0, we have

S0 = c2 + c3 + a. (64)

Using (43) and (50) at t = T , we obtain

c2e
γ+T + c3e

γ−T + c1e
δT = 0. (65)

Using (50) and (58) at t = T , we have

c4 = c2e
γ+T + c3e

γ−T + a. (66)
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Solving for c1, c2, c3, c4, D and T from conditions (61)-(66), we obtain

c1 =
γ+ − γ−

γ+eγ+T − γ−eγ−T
(
a− S0

)
,

c2 = − γ−eγ
−T

γ+eγ+T − γ−eγ−T
(
S0 − a

)
,

c3 =
γ+eγ

+T

γ+eγ+T − γ−eγ−T
(
S0 − a

)
,

c4 =
(
S0 − a

) (γ+ − γ−) eδT

γ+eγ+T − γ−eγ−T
+ a,

D =
a− S0

α

γ+ − γ−

γ+eγ+T − γ−eγ−T
,

and the exhaustion date T ∗ is implicitly characterized by :

αX0 =
(
a− S0

)(
1− γ+ − γ−

γ+eγ+T ∗ − γ−eγ−T ∗
eδT

∗
)
. (67)

We conclude that the optimal extraction path is, for t ∈ [0, T ] :

x∗ (t) =

(
a− S0

)
δ

2

(
eγ

+T ∗eγ
−t − eγ−T ∗eγ+t

γ+eγ+T ∗ − γ−eγ−T ∗

)
, (68)

the stock of scrap is, for t ∈ [0, T ],

S∗ (t) =
(
a− S0

)(
1− γ+eγ

+T ∗eγ
−t − γ−eγ−T ∗eγ+t

γ+eγ+T ∗ − γ−eγ−T ∗

)
, (69)

and the market price, for t ∈ [0, T ],

p∗ (t) = S0 +
(
a− S0

)(γ+ − γ−
2

)
eγ

+T ∗eγ
−t + eγ

−T ∗eγ
+t

γ+eγ+T ∗ − γ−eγ−T ∗
. (70)

Since γ+ > 0 > γ−, the extraction level x∗ (t) characterized in (68) decreases through time,

while the stock of scrap increases through time, Ṡ∗ (t) = αx∗ (t) ≥ 0. Recycling is given by

r∗ (t) =
b

β
+ a

1−

(
γ+ + δ

2β

)
eγ

+T ∗eγ
−t −

(
γ− + δ

2β

)
eγ
−T ∗eγ

+t

γ+eγ+T ∗ − γ−eγ−T ∗

 , (71)

and increases through time.�

Proof of Proposition 2: From (70), we know that the price of the consumption good is

p∗(t, α) =
a

2

√
δ (2α+ δ)

eγ
+T ∗eγ

−t + eγ
−T ∗eγ

+t

γ+eγ+T ∗ − γ−eγ−T ∗
, (72)

The sign of the derivative with respect to time is given by

∂p∗

∂t
∝ γ−eγ+T ∗eγ−t + γ+eγ

−T ∗eγ
+t, (73)
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which is positive if and only if

t ≥ T ∗ +
1

γ+ − γ−
ln

(
1− δ

γ+

)
. (74)

Hence, ∂p∗

∂t ≥ 0 for all t ∈ [0, T ] if and only if

T ∗ ≤ 1

γ+ − γ−
ln

(
γ+

γ+ − δ

)
. (75)

We know from Proposition 3 that the left hand side of condition (75) is increasing with α.

The derivative of the right hand side with respect to γ+ is

−1

(2γ+ − δ)2

(
2 ln

γ+

γ+ − δ
+
δ (2γ+ − δ)
γ+ (γ+ − δ)

)
< 0. (76)

It is decreasing with α. When α goes to 0, γ+ goes to δ and the right hand side in (75) goes

to +∞. A first order approximation of (67) at α = 0 leads to
(
X0

a δ + 1− δT ∗
)
eδT

∗ ' 1. The

solution of this equation is T ∗ < +∞ because the left hand side is X0

a δ + 1 > 1 at T ∗ = 0. The

solution of the equation increases up to T ∗ = X0

a and then decreases and goes to −∞ when

T ∗ → +∞. This concludes the proof.�

Proof of Proposition 3: The result directly follows from the proof of Proposition 2.�

Proof of Proposition 4: The optimal exhaustion date is implicitly characterized by (67),

which can be rewritten as:

f
(
γ+, T ∗, α,X0, δ

)
≡ 1− 2γ+ − δ

γ+eγ+T ∗ + (γ+ − δ) e(δ−γ+)T ∗
eδT

∗ − αX0

a
= 0, (77)

where γ+ =
(
δ +

√
δ (2α+ δ)

)
/2. Its derivative with respect to T ∗ is given by

∂f

∂T ∗
=

γ+ (γ+ − δ) (2γ+ − δ) eδT ∗(
γ+eγ+T ∗ + (γ+ − δ) e(δ−γ+)T ∗

)2 (eγ+T ∗ − e−(γ+−δ)T ∗
)
. (78)

Since γ+ ≥ δ, we have
∂f

∂T ∗
> 0. (79)

The derivative of f with respect to γ+ is given by

∂f

∂γ+
= −

δ
(
eγ

+T ∗ − e−(γ+−δ)T ∗
)

+
(
γ+eγ

+T ∗ − (γ+ − δ) e−(γ+−δ)T ∗
)

(γ+ − δ)T ∗

(γ+ − δ)2
(

γ+

γ+−δe
γ+T ∗ + e−(γ+−δ)T ∗

)2 eδT
∗
. (80)

Since γ+ > δ, we have
∂f

∂γ+
< 0. (81)

The derivative of f with respect to α is

∂f

∂α
= −X0/a < 0 (82)
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Using (77) and the implicit function theorem, we have:

∂T ∗

∂X0
= −∂f/∂X

0

∂f/∂T
=

α/a

∂f/∂T
> 0. (83)

Using the implicit function theorem again, and ∂γ+/∂α > 0, (81), (79) and (82), the deriva-

tive of the exhaustion date with respect to the recyclability rate is such that:

∂T ∗

∂α
= −(∂f/∂γ+) (∂γ+/∂α) + ∂f/∂α

∂f/∂T
> 0. (84)

�

Proof of Proposition 5: The proof proceeds in three steps. We first show that the growth

rate of extraction is decreasing through time. Second, we show that the growth rate is increasing

with the recyclability rate. We then combine these properties in order to prove the result.

Differentiating (68), we can write the growth rate of extraction:

τ
(
γ+, T ∗

)
≡ ẋ∗ (t)

x∗ (t)
= −(γ+ − δ) e(2γ+−δ)(T ∗−t) + γ+

e(2γ+−δ)(T ∗−t) − 1
. (85)

The derivative of the growth rate with respect to T ∗ is

∂τ

∂T ∗
=
γ+ + δ + (2γ+ − δ) γ+(
e(2γ+−δ)(T ∗−t) − 1

)2 δe(2γ
+−δ)(T ∗−t) > 0. (86)

The derivative of the growth rate with respect to γ+ is

∂τ

∂γ+
= δ

G (t)(
e(2γ+−δ)(T ∗−t) − 1

)2 ,
where G (t) = 2 (T ∗ − t) (2γ+ − δ) e(2γ+−δ)(T ∗−t) + 1 − e2(2γ

+−δ)(T ∗−t). Notice that G′ (t) =

−2 (T ∗ − t) (2γ+ − δ)2 e(2γ+−δ)(T ∗−t) < 0 and G (T ∗) = 0. Hence G (t) > 0 and then

∂τ

∂γ+
> 0. (87)

We know from Proposition 4 that T ∗ increases with α and we also know that γ+ increases

with α. Using (86) and (87), we conclude that

dτ

dα
> 0. (88)

In other words, we have
∂2 ln (x)

∂t∂α
> 0. (89)

Hence lnx has the single crossing property with respect to time and the recyclability rate.

According to Proposition 4, the exhaustion date increases with recyclability, ∂T
∗

∂α > 0. Hence

recyclability necessarily increases extraction when time approaches the exhaustion date. Since

the initial stock does not depend on the recyclability rate, recyclability necessarily decreases
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extraction at some point in time. Thanks to the single-crossing property, there exists a date

0 < t̃ < T ∗ such that ∂x∗

∂α < 0 ⇐⇒ t < t̃.�

Proof of Proposition 6:

The stock of scrap can be rewritten as follows:

S∗ (t) = F
(
γ+, T ∗

)
= a

(
1− γ+eγ

+(T ∗−t) + (γ+ − δ) e−(γ+−δ)(T ∗−t)

γ+eγ+T ∗ + (γ+ − δ) e−(γ+−δ)T ∗
eδt

)
.

The derivative of this function with respect to T ∗ is:

∂F

∂T ∗
= −a

γ+ (γ+ − δ) (2γ+ − δ)
[
eδT−γt − eδT+(γ+−δ)t

]
(
γ+eγ+T ∗ + (γ+ − δ) e−(γ+−δ)T ∗

)2 eδt ≥ 0, (90)

and its derivative with respect to γ+ is

∂F

∂γ+
= −a

−t (γ+)
2
eγ

+(2T ∗−t) +
[
(2T ∗ − t) (γ+)

2 − δ
]
eδT−γ

+t −
[
2T ∗ (γ+)

2 − δ
]
eδT+(γ+−δ)t(

γ+eγ+T ∗ + (γ+ − δ) e−(γ+−δ)T ∗
)2
e−δt

≥ 0.

(91)

Since T ∗ and γ+ both increase with α, using (90) and (91) we conclude that S∗ increases when

α increases.

Now consider the growth rate of the price. Using (70), it can be written as follows:

ṗ∗

p∗
=
γ+ − (γ+ − δ) e(2γ+−δ)(T ∗−t)

1 + e(2γ+−δ)(T ∗−t)
≡ H

(
γ+, T ∗

)
. (92)

Its derivative with respect to γ+ is given by:

∂H

∂γ+
=

1− e2(2γ+−δ)(T ∗−t) − 2 (2γ+ − δ) (T ∗ − t) e(2γ+−δ)(T ∗−t)(
1 + e(2γ+−δ)(T ∗−t)

)2 ≤ 0. (93)

Since H is also decreasing with T ∗ and both T ∗ and γ+ increase with α, we conclude that

∂2 ln p∗

∂t∂α
< 0. (94)

This means that ln p∗ has the single-crossing property with respect to t and α. We know that

p∗ (T ∗) = 1− S∗ (T )− x∗ (T )

= 1− αX0.

Then p∗ (T ∗) decreases with α. Moreover, we have

p∗ (0) = 1− S∗ (0)− x∗ (0)

= 1− x∗ (0) . (95)

Using Proposition 5, we know that x∗ decreases with α at t = 0. Hence p∗ increases with α

at t = 0. Using the single-crossing property (94), we conclude that there exists t′ ∈ (0, T ∗) such
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that ∂p∗/∂α > 0 ⇐⇒ t′ ∈ [0, t′).�
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