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Abstract

The purpose of this paper is threefold. First, it investigates the influence of the
prospect of recycling on the per-period market power of an extractor, which can be as-
sociated with Alcoa when the recycling sector it faces is competitive. Second, it analyzes
whether or not the extractor’s first period market power is a§ected when it is capacity-
constrained. Third, it explores whether the structure of the recycling sector a§ects the
extractor’s per-period market power or not. Toward these ends, we study a two-period
Cournot framework where the extractor produces aluminum over two consecutive peri-
ods. In the second period, it engages in competition with a recycling sector that can
be competitive or not. Our results run as follows. (1) When the recycling sector is not
competitive, recycling does not a§ect the extractor’s first period market power but in-
creases its second period market power. (2)When the recycling sector is competitive, the
extractor’s second period market power increases with the recycled output but becomes
lower (compared to the non-competitive case), while its first period market power can be
lower or higher (compared to the non-competitive case). Then, it can increase or decrease
with the recycled output. (3) In either case, the extractor’s first period market power
further increases when the primary resource constraint is binding. (4)We also show that
the extractor’s market power can increase or decrease over time.
–––––––––
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1 Introduction

The classical example of a dominant firm facing competition from recycled goods is the Alu-

minum Company of America before World War II (Grant, 1999). This company, better

known as Alcoa, possessed more than 90 percent of virgin aluminum production capacities

in the United States, thus exceeding the legal treshold of monopolisation (De Beir and Gir-

mens, 2009; Grant, 1999; Swan, 1980). It was therefore accused by Judge Learned Hand1

to constitute an illegal monopoly (Swan, 1980) and was found in violation of the Sherman

Act (Grant, 1999). In the scope of its defense, Alcoa countered that the virgin aluminum

is recycled by a competitive recycling fringe, which reduces its part of production to 64 %

(De Beir and Girmens, 2009). This conflict was called by Adams (1951) "one of the most

celebrated judicial opinions of our time". It covered the front pages at that time and lead

several authors to investigate, both theoretically and empirically, whether the presence of a

competitive recycling sector a§ects Alcoa’s market power or not.

Theoretically, several papers show that the presence of a competitive recycling sector does

not a§ect Alcoa’s market power (for instance, see Gaskins, 1974; Swan, 1980; Martin, 1982;

Hollander and Lasserre, 1988; Grant, 1999; De Beir and Girmens, 2009) in that it charges a

price higher than its marginal cost. Notice that Gaskins (1974) finds that the presence of a

competitive fringe makes things worse by increasing the short-run market power. Recently,

two papers have explored the e§ect of recycling on the virgin resource producer’s market

power (Gaudet and Long, 2003; Baksi and Long, 2009). They show that the presence of

recycling increases the primary producer’s market power. More recently, Sourisseau et al.

(2017) explore this research question by considering an oligopoly that operates within the

iron and steel sector. They show that the long-run market power of the oligopoly can increase

or decrease depending on whether the level of recycling is low or high.

From an empirical standpoint, the following conclusions are drawn. Gaskins (1974) shows

1He was, at that time, a Judge at the court of appeals in the United States.
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that the presence of recycling makes things worse in the short-run in the sense that the initial

price charged by Alcoa becomes higher. Swan (1980) finds that the price charged by Alcoa

is higher than the competitive price and slightly lower than the pure monopoly price, even

in the presence of the recycling sector. Suslow (1986) finds that Alcoa maintains its market

power despite the presence of recycling. Grant (1999), in turn, shows that Alcoa preserves a

significant degree of market power in the steady state.

The present paper joins the earlier literature by investigating a similar research question

that can be phrased as follows. Does the prospect of recycling a§ect Alcoa’s (or the primary

aluminum extractor’s) per-period market power ? In addition, we explore the influence of

the capacity constraints (the extracted aluminum constraint and the recycled aluminum con-

straint) on the extractor’s per-period market power. In order to answer the above questions,

we postulate a two-period Cournot framework in which the extractor, that has some degree

of market power, produces aluminum over two consecutive periods. In the second period, it

faces the entry of a recycling sector which can be competitive or not. The recycling sector is

considered to be competitive when the whole scrap collected in the first period is recycled.

In this case, the extractor is designated by the term "Alcoa" because this corresponds ex-

actly to the Alcoa case. Conversely, when the whole scrap collected in the first period is not

recycled (i.e. the recycled output is low), the recycling sector will be considered to be non-

competitive. In this case, the extractor is called a "monopolist" in order to distinguish this

case to that of Alcoa. The extractor and the recycling sector engage in Cournot competition

in the second period. It is worth noting that the choice of the two-period model is motivated

by the fact that there is a time lag between extraction and recycling. Thus, this two-period

setting enables us to capture the sequential aspect between these two activities.

Our main results can be summarized as follows. (1) When the recycling sector is not

competitive, recycling does not a§ect the extractor’s first period market power but increases

its second period market power. (2)When the recycling sector is competitive, the extractor’s

second period market power increases with the recycled output but becomes lower (compared
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to the non-competitive case), while its first period market power can be lower or higher

(compared to the non-competitive case). Then, it can increase or decrease with the recycled

output. (3) In either case, the extractor’s first period market power further increases when

the resource constraint is binding. (4) We also show that the extractor’s market power can

increase or decrease over time.

The present paper contributes to the earlier literature in the following way. First, to the

best of our knowledge, it is one of the few, if it is not the only, which shows that recycling does

not a§ect the monopolist’s first period market power. This occurs, here, when the whole scrap

collected in the first period is not recycled, i.e. when the recycling sector is not competitive.

This finding implies that the monopolist ignores recycling because this is the best strategy

for it, and preventing recycling will be costly for it. Second, we show that, when the resource

constraint is binding, the first period market power futher increases. Third, allowing the

recycling market to be competitive or not a§ects the results. When it is competitive, Alcoa’s

second period market power increases with the recycled output but becomes lower (compared

to the non-competitive case), while its first period market power can be lower or higher, in

comparison with the market power under a non-competitive recycling sector case, and then

can increase or decrease with the recycled output. To our knowledge, this comparison has

not been done before, and the result whereby the first period market power can decrease with

the recycled output has not been highlighted by the previous literature.

The remainder of the paper is structured as follows. The next section constructs the

two-period model. The dynamic of the extractor’s market power is established in section 3.

The main conclusions and some further research lines are given in section 4. The proof of

some calculations is relegated to the appendix in section 5.

2 The two-period model

We consider a two-period model where an extractor, which has some degree of market power

on the market of aluminum, extracts this resource. Its extraction cost function is denoted
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Ct(Qt), where t = 1, 2 is an index over time periods. We assusme that
2X

t=1

qt ≤ S, where

qt > 0 is the quantity of aluminum extracted over each period, and S > 0 the stock of

aluminum held by the extractor. In the second period, the extractor faces the entry of a

recycling sector that can be competitive or not. The recycled aluminum is denoted r. We

assume that the aluminum consumed in the first period is collected and given to the recycling

sector at price zero. The recycling sector incurs only a recycling cost given by Cr(r). The

recycled aluminum is viewed by consumers as a perfect substitute for the extracted aluminum.

Consumers’s preferences for aluminum are captured by the inverse demand function P (Qt),

where Qt = qt + r stands for the total output produced over each period, and P
0
(Qt) < 0.

Note that Q1 = q1 in the first period and Q2 = q2 + r in the second period. The last

equation indicates that recycling increases the quantity of the available aluminum by the

amount r. Then, the market clears at the price P (q2+ r) in the second period. For purposes

of simplification, we assume that the common discount factor is normalized to one. We will

relax the latter assumption in section 3.

The timing of the game between the extractor and the recycling sector can be precisely

described as follows. At time t = 1, the extractor produces q1. This quantity becomes a

scrap which is exactly recycled at time t = 2. In this period, the recycling and the extraction

activities occur simultaneously. Accordingly, the extractor and the recycling sector compete

à la Cournot at time t = 2. Notice that we will use backward induction in order to obtain

the Subgame Perfect Nash Equilibrium of the game. In the following, we will analyze the

recycling sector’s behavior before switching to the extractor’s behavior.

2.1 The recycling market

In the second period, the optimal recycling problem is the following:

Max
r

Πr = P (q2 + r)r − Cr(r) (1)

S.t. r ≤ βq1, with β 2 [0, 1] (2)
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Where βq1 is the scrap from the first period extraction. The parameter β can be interpreted

as the e¢ciency of the recycling technology. Since β < 1, equation (2) says that recycling

cannot exceed the scrap collected in the first period. This equation illustrates the phenomenon

of depreciation that occurs during the recycling process or the loss2 of extracted resources

before the recycling process. The Lagrangian from the above programme is:

Lr = P (q2 + r)r − Cr(r) + µ(βq1 − r) (3)

Where µ is the Lagrange multiplier associated with the recycling constraint. The first-order

conditions that maximize (3) writes:

P (q2 + r) + P
0
(q2 + r)r − C

0

r(r)− µ = 0 (4)

µ(βq1 − r) = 0 (5)

In the sequel, we will distinguish two cases:

Case 1: the output of the recycling sector is lower than the scrap collected in the first

period, i.e. r < βq1. Since the recycled output is low, this case can be considered to be

non-competitive. In the present case, we will use the term "monopolist" to designate the

extractor. The case where the recycling constraint is binding will be reserved for the term

"Alcoa". From (5), we get µ = 0 and (4) becomes:

P (qr2 + r) + P
0
(qr2 + r)r − C

0

r(r) = 0 (6)

From (6), we get the following best response function:

r(qr2) = −
P (qr2 + r)− C

0

r(r)

P 0(qr2 + r)
(7)

Where qr2 is the quantity extracted by the monopolist in the second period provided that

r < βq1. Since the monopolist has some degree of market power, we have P (qr2+r)−C
0

r(r) > 0.

2Several reasons can explain this loss. For the case of aluminum cans in the beverage industry, for example,
it is hard to collect all the used cans due to the sparsity of consumption and disposal. For high-tech devices
like mobile phones an computers, many of them stay in garages or drawers for years without attention of their
owners (Ha, 2017).
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Then, r(qr2) > 0 because P
0
(qr2+r) < 0. The best response function r(q

r
2) shows how recycling

reacts in response to the second period extracted quantity. Since extracted and recycled

products are considered as perfect substitutes, the increase of the second period extraction

decreases the recycled output3.

Case 2: all the scrap collected in the first period is recycled. This case corresponds to

the Alcoa case since it can be associated with a competitive recycling sector. Said di§erently,

the higher the recycled output, the more it tends to a competitive output. In this case, we

get:

r̃(q1) = βq1 (8)

Equation (8) is an another best response function. It shows that the prior extraction increases

the recycled output. So, in this case, Alcoa would be better o§ reducing its first period

extraction in order to limit recycling.

2.2 The extraction market

The extractor will choose q1 and q2 to maximize its profit over the two periods. Then, its

optimal programme runs as follows:

Max
q1,q2

Πe = P (q1)q1 − C1(q1) + P (q2 + r)− C2(q2) (9)

S.t. q1 + q2 ≤ S (10)

Equation (10) indicates that the stock of aluminum is consumed over the two periods and

can be exhausted or not during this planning horizon. The Lagrangian associated with this

programme is:

Le = P (q1)q1 − C1(q1) + P (q2 + r)q2 − C2(q2) + λ(S − q1 − q2) (11)

3This result can be mathematically proved. Indeed, we have @r(qr2)

@qr2
= −

8
>>><

>>>:

[P
0
(.)]2−P”(.)[

+z }| {
P (.)− C

0

r(.)]
[P

0
(.)]2

9
>>>=

>>>;
.

The numerator is positive only and only if P ”(.) < 0, which holds for the Lagrangian to be concave. In fact,

we get @2Lr

@(Lr)2
= 2P

0
(.) + P ”(.)r − C

”

r (.) < 0 if P
”(.) < 0. Then, @r(q

r
2)

@qr2
< 0.
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Where λ is the Lagrange multiplier associated with the resource constraint. Depending on

whether the whole scrap collected in the first period is recycled or not, the extractor can

choose to ignore recycling or to limit it. Assume that it chooses to ignore recycling when

the whole scrap collected in the first period is not recycled, i.e. r < βq1. Said di§erently, it

decides to reduce its first period extraction when the whole scrap is recycled, i.e. r̃ = βq1.

These two cases will be treated separately when analyzing the extractor’s behavior.

Case 1: r < βq1. As mentioned above, this situation does not correspond to the Alcoa

case.

Let us analyze the monopolist’s behavior in the second period. For simplicity, we will only

focus here on the case where the stock of aluminum is not exhausted over the two periods,

i.e. q1 + q2 < S and λ = 0. In this context, the maximization problem in (11) yields the

following first-order condition:

P (qr2 + r) + P
0
(qr2 + r)q

r
2 − C

0

2(q
r
2) = 0 (12)

Conditions (6) and (12) constitute a Subgame Perfect Nash Equilibrium provided that r <

βq1. They say that each firm will charge a price higher than its marginal cost in the second

period. In order to investigate the e§ect of recycling on the monopolist’s second period market

power, which is conventionally measured by the Lerner measure, let us rewrite equation (12)

in the following way:

Lr
nc

2 ≡
P (qr2 + r)− C

0

2(q
r
2)

P (qr2 + r)
=

1

"2(Qr2)
(13)

Where the superscript "r" refers to the case where r < βq1, the term "nc" means that the

monopolist is not constrained by the exhaustion of the primary aluminum and "2(Qr2) =

− P (Qr2)

P 0 (Qr2)q
r
2

is the second period elasticity of demand for the extracted output when all the

scrap is not recycled. Notice that Qr2 = q
r
2+r is the industry production at time t = 2, where

qr2 and r are the Nash-Cournot outputs produced by the two producers in the second period.

Unsurprisingly, equation (13) tells us that the higher the elasticity of demand, the less the

price set by the monopolist will be. The intuition is that a slight increase in price reduces
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drastically the demand. When the elasticity of demand is infinite, i.e. "2(Qr2) ! +1, the

price charged by the monopolist equals its marginal cost of extraction.

To analyze the e§ect of recycling on the monopolist’s second period market power, we

will compare its market power in the benchmark case where recycling is absent to its market

power when recycling exists. In the first case, its extraction qb2 satisfies the following optimal

condition:

P (qb2) + P
0
(qb2)q

b
2 − C

0

2(q
b
2) = 0 (14)

The superscript "b" refers to the term benchmark. Here, the extractor behaves as a standard

monopoly4. Its market power is given by:

Lb
nc

2 ≡
P (qb2)− C

0

2(q
b
2)

P (qb2)
=

1

"2(qb2)
(15)

Where "2(qb2) = −
P (qb2)

P 0 (qb2)q
b
2

is the second period elasticity of demand for the extracted output

in the absence of recycling.

Now, let us compare the left-hand side of (13) to the left-hand side of (15). Straightforward

calculations shows that 1
"2(Qr2)

> 1
"2(qb2)

(see appendix 1 for the detail of calculations). Then,

we conclude that Lr
nc

2 > Lb
nc

2 , which means that recycling increases the monopolist’s second

period market power.

Now, let us turn into the first period. Since r < βq1, the monopolist behaves as if recycling

were irrelevant and produces a standard monopoly quantity. Then, the first-order condition

in this period is:

P (qb1) + P
0
(qb1)q

b
1 − C

0

1(q
b
1)− λ = 0 (16)

I First, assume that the resource constraint is not binding, i.e. q1 + q2 < S and λ = 0.

Then, (16) rewrites:

P (qb1) + P
0
(qb1)q

b
1 − C

0

1(q
b
1) = 0 (17)

4By this term, we mean that the extractor does not face a recycling sector.
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From (17), we get the following Lerner measure in the first period:

Lr
nc

1 = Lb
nc

1 ≡
P (qb1)− C

0

1(q
b
1)

P (qb1)
=

1

"1(qb1)
(18)

In this case, recycling does not a§ect the market power of the monopolist in the first period

since its behavior matches that of a standard monopoly.

I Now, assume that the resource constraint is binding, i.e. qb2 = S − qb1. This means

that the resource becomes worthless after the second period. This formulation is inspired by

Gaudet et al. (1995). As it is never optimal to exploit the resource beyond the second period,

the monopolist sells all remaining resource stock, S− qb1, in the second period. Given the fact

that the first period extraction determines what is left to be sold in the second period, the size

of the stock constrains the monopolist, which thus takes no strategic decision in the second

period. Then, its first period market power is:

Lr
c

1 ≡
P (qb1)− C

0

1(q
b
1)

P (qb1)
=

1

"1(qb1)
+
P
0
(S − qb1 + r)(S − q

b
1) + P (S − q

b
1 + r)− C

0

2(S − q
b
1)

P (qb1)| {z }
Resource constraint e§ect

(19)

Where the superscript "c" means that the monopolist is constrained by the exhaustion of

the primary aluminum. Equation (19) shows that recycling does not a§ect the monopolist’s

first period market power. Nevertheless, in comparison with (18), equation (19) presents an

additional e§ect called "Resource constraint e§ect". It represents the monopolist’s marginal

profit in the second period. Thus, it must be positive for the monopolist to extract the

resource in this case. Accordingly, the "Resource constraint e§ect" increases the monopolist’s

first period market power. Notice that this e§ect appears because there is a direct link

between the two extracted quantities.

Case 2: the recycling sector is so e¢cient that it recycles the whole scrap collected in

the first period. Then, we get:

r̃(q̃1) = βq̃1 (20)
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Since the recycling market is competitive here, this situation corresponds to the Alcoa case.

Notice that q̃1 is the quantity extracted by Alcoa in the first period. We use this notation

in order to distinguish this quantity to the benchmark quantity qb1. Let us mention that

conditions (12) and (20) constitute another Subgame Perfect Nash Equilibrium. Anticipating

(20) and assuming that the resource constraint is not binding, Alcoa maximizes its second

period profit with respect to q2. Then, (13) rewrites:

Lr̃
nc

2 ≡
P (q̃2 + βq̃1)− C

0

2(q̃2)

P (q̃2 + βq̃1)
=

1

"2(Q̃2)
(21)

Where "2(Q̃2) = −
P (Q̃2)

P 0 (Q̃2)q̃2
, with q̃2 the new quantity extracted by Alcoa and Q̃2 = q̃2 + βq̃1

the global production of the industry when r̃(q̃1) = βq̃1. It is easy to show that q12 = q
b
2 < Q̃2

(see appendix 2). Then, 1
"2(Q̃2)

> 1
"2(qb2)

. This concludes that Alcoa’s second period market

power increases also when the whole scrap is recycled (i.e. when the recycling market is

competitive).

Let us now investigate the e§ect of recycling on Alcoa’s first-period market power. Since

r̃(q̃1) = βq̃1, the recycled output increases mechanically with the first period extraction.

Then, Alcoa can have the incentive to reduce its first period extraction in order to limit the

possibility of recycling. Hence, we must have q̃1 < qb1.

I Assume, first, that the resource is not exhausted over the two periods. Then, Alcoa’s

first period extraction satisfies the following first-order condition:

P (q̃1) + P
0
(q̃1)q̃1 − C

0

1(q̃1) + P
0
(q̃2 + βq̃1)q̃2β = 0 (22)

Equation (22) can be rewritten in the following way:

Lr̃
nc

1 ≡
P (q̃1)− C

0

1(q̃1)

P (q̃1)
=

1

"1(q̃1)
−
P
0
(q̃2 + βq̃1)q̃2
P (q̃1)

β

| {z }
Recycling e§ect

(23)

Notice that "1(q̃1) = −
P (q̃1)

P 0 (q̃1)q̃1
is the elasticity of demand for the extracted aluminum in the

first period when r̃(q̃1) = βq̃1. Since P
0
(q̃2 + βq̃1)q̃2 < 0 and 1

"1(q̃1)
< 1

"1(qb1)
[because q̃1 <b1

(see appendix 2)], equation (23), incomparison with (18), says that the prospect of recycling
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may increase or decrease Alcoa’s first period market power. Its right-hand side indicates

that recycling the whole scrap a§ects Alcoa’s first period market power in two di§erent ways.

First, it increases this market power by decreasing its first period extraction. This e§ect

is captured by the term 1
"1(q̃1)

. Second, it reduces Alcoa’s second period market power (in

comparison with the case where it would behave as a standard monopoly, which would be

equivalent to the case where the whole scrap is not recycled given by (18)). This e§ect is

captured by the term −P
0
(q̃2+βq̃1)q̃2
P (q̃1)

β. The net e§ect depends on whether the sum of the

intertemporal market power (when the whole scrap is recycled) outweighs its first period

market power when it behaves as a standard monopoly or not. Formally, we have:

(i) Lr̃
nc

1 > Lr
nc

1 when 1
"1(q̃1)

− P
0
(q̃2+βq̃1)q̃2
P (q̃1)

β > 1
"1(qb1)

. In this case, Alcoa’s first period

market power is greater in the case where the whole scrap is recycled than in the case where

it is not recycled. Then, its first period market power increases with the recycled output.

(ii) Lr̃
nc

1 < Lr
nc

1 when 1
"1(q̃1)

− P
0
(q̃2+βq̃1)q̃2
P (q̃1)

β < 1
"1(qb1)

. Alcoa’s first period market power is

lower in the case where the whole scrap is recycled than in the case where it is not recycled.

Consequently, its first period market power decreases with the recycled output.

Equation (23) states also that the standard result whereby the Lerner index is equal to

the inverse of the elasticity of demand is obtained in the absence of recycling.

I Let us now turn into the case where the stock of aluminum is exhausted, i.e. the

resource constraint is binding. Then, Alcoa’s first period extraction satisfies the following

first-order necessary condition:

P (q̃1)+P
0
(q̃1)q̃1−C

0

1(q̃1)−P (S−q̃1+βq̃1)+P
0
(S−q̃1+βq̃1)(β−1)(S−q̃1)+C

0

2(S−q̃1) = 0 (24)

After some rearrangements, equation (24) writes:

Lr̃
c

1 ≡
P (q̃1)−C

0
1(q̃1)

P (q̃1)
= 1

"1(q̃1)
+

Resource constraint e§ectz }| {
P
0
(S − q̃1 + βq̃1)(S − q̃1) + P (S − q̃1 + βq̃1)− C

0

2(S − q̃1)
P (q̃1)

−
P
0
(S − q̃1 + βq̃1)(S − q̃1)

P (q̃1)
β

| {z }
Recycling e§ect

(25)
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In the following subsection, we will explore whether the extractor’s (Alcoa’s or the monopo-

list’s) second period market power is greater in the case where the whole scrap is recycled or

not.

2.3 Some comparisons

This part investigates whether the extractor’s per-period market power is a§ected by the

capacity constraints or not. Let us analyze what happens in the first period :

• The comparison of (18) and (19), and that of (23) and (25) show that Lrc1 > L
rnc
1 and

Lr̃
c

1 > Lr̃
nc

1 since the resource constraint e§ect is positive. We conclude that the capacity

constraint that faces the extractor increases its first period market power.

• In what follows, we will investigate whether the extractor’s second period market power

is greater when the whole scrap is recycled or not. For this, we will compare (13) and (21). If

Q̃2 > Q
r
2, we will conclude that the extractor’s second period market power is greater in the

case where all the scrap is recycled. Otherwise, a non-competitive recycling market would

yield a greater second period market power. Since it is di¢cult to provide a clearer insight

with the general functional forms, let us make the following assumption: P (Qt) = a − Qt,

with t = 1, 2 and Qt stands for the global production of the industry over each period.

Straightforward comparisons show that Qr2 > Q̃2 (the detail of calculations is relegated to

the appendix 2). This condition implies 1
"2(Qr2)

> 1
"2(Q̃2)

, resulting then in Lr
nc

2 > Lr̃
nc

2 . This

inequality says that the extractor’s second period market power is greater in the case where

the whole scrap is not recycled than in the case where it is recycled.

3 Dynamic of Alcoa’s market power

In contrast to section 2 where we have analyzed the extractor’s (Alcoa’s and monopolist’s)

per-period market power, this section aims at investigating how the market power evolves over

time. Notice that q(t) and q(t+ 1) are respectively the quantities extracted by the extractor

in the periods t and t + 1. Let c(t) and c(t + 1) denote the marginal costs of extraction.
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Assume that recycling occurs at time t + 1 and depends on the prior extraction q(t). For

simplicity, assume that a fraction of q(t) is recycled at time t+ 1, i.e. the recycled quantity

is given by r = βq(t). Recall that this situation corresponds to the Alcoa case. Let δ = 1
1+α

be the discount factor, where α is the rate of interest.

Knowing the recycled output, Alcoa faces the following programme over the two periods:

Max
q(t),q(t+1)

Πe = P [q(t)]q(t)− c(t)q(t) + δ {P [q(t+ 1) + βq(t)]q(t+ 1)− c(t+ 1)q(t+ 1)} (26)

q(t) + q(t+ 1) ≤ S (27)

The Lagrangian associated with this programme is:

Le = P [q(t)]q(t)−c(t)q(t)+δ {P [q(t+ 1) + βq(t)]q(t+ 1)− c(t+ 1)q(t+ 1)}+λ[S−q(t)−q(t+1)]

(28)

We get the following first order conditions:

P [q(t)] + P
0
[q(t)]q(t)− c(t) + δ

n
βP

0
[q(t+ 1) + βq(t)]q(t+ 1)

o
− λ = 0 (29)

δ
n
P [q(t+ 1) + βq(t)]− c(t+ 1) + P

0
[q(t+ 1) + βq(t)]q(t+ 1)

o
− λ = 0 (30)

λ[S − q(t)− q(t+ 1)] = 0 (31)

I First, assume that the resource constraint is not binding, i.e. q(t)+q(t+1) < S and λ = 0.

Then, substituting δ = 1
1+α into the system of equations, combining (29) and (30) due to the

intertemporal optimization principle5 and rearranging some terms yield:

∆P −∆c
P (t)

= α[1−
c(t)

P (t)
+
P
0
[q(t)]q(t)

P (t)
] +

P
0
[q(t)]q(t)

P (t)
−
(1− β)P 0

[q(t+ 1) + βq(t)]q(t+ 1)

P (t)

(32)

Where ∆P = P [q(t+1)+βq(t)]−P [q(t)] and ∆c = c(t+1)−c(t) are respectively the changes

in the price and the cost from one period to another period. Equation (32) shows that Alcoa’s

market power increases over time when α[1− c(t)
P (t) +

P
0
[q(t)]q(t)
P (t) ] > (1−β)P

0
[q(t+1)+βq(t)]q(t+1)

P (t) −

5 It states that discounted marginal revenues should be equalized across periods (Liski and Montero, 2014).
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P
0
[q(t)]q(t)
P (t) . Otherwise, it decreases over time. Notice that when recycling is absent, we ob-

tain the standard optimal condition for a monopoly, i.e. ∆P−∆cP (t) = α[1− c(t)
P (t) +

P
0
[q(t)]q(t)
P (t) ]−

P
0
[q(t+1)]q(t+1)

P (t) + P
0
[q(t)]q(t)
P (t) . In the case where the firm behaves as a price-taker6, the distor-

tions due to the imperfect competition disappear and we get P [q(t+1)]−P [q(t)]
P (t) = α(1 − φ) +

c(t+1)−c(t)
c(t) φ, where φ = c(t)

P (t) . This is similar to Stiglitz (1976)’s finding. Since φ < 1,

the sign of the previous equation depends on whether the extraction cost is increasing

[c(t + 1) − c(t) > 0] or decreasing [c(t + 1) − c(t) < 0]. In the first case, the price increases

over time. In the second case, it increases when α(1−φ) > − c(t+1)−c(t)
c(t) φ and decreases when

α(1−φ) < − c(t+1)−c(t)
c(t) φ. It is worth noting that when the extraction cost is zero, in addition,

we have P [q(t+1)]−P [q(t)]
P (t) = α, i.e. the price of the resource grows at the rate of interest. This

was Hotelling (1931)’s prediction.

I Now, assume that the resource constraint is binding, i.e. q(t+1) = S− q(t) and λ > 0.

Then, substituting δ = 1
1+α and q(t+ 1) = S − q(t) into the system of equations, combining

(29) and (30) and rearranging some terms yield:

∆P −∆c
P (t)

= α[1−
c(t)

P (t)
+
P
0
[q(t)]q(t)

P (t)
]+
P
0
[q(t)]q(t)

P (t)
−
(1− β)P 0

[(S + (β − 1) q(t)](S − q(t))
P (t)

(33)

Equations (32) and (33) are almost7 identical. Then, we conclude that the resource constraint

does not a§ect the dynamic of Alcoa’s market power.

4 Conclusion

This paper has explored the e§ects of recycling and capacity constraints on an extractor’s

per-period market power. For this, we have used a two-period Cournot model where the

extractor produces aluminum over the two periods. In the second period, it competes with

a recycling sector that can be competitive or not. Our results run as follows. (1) When

6As stated by Hotelling (1931), the di§erence between the monopolist and the competitive firm optimization
appears in ther term P

0
[q(.)]q(.).

7The term "almost" means that there is a small change in the way of writing the equations since q(t+ 1)
into (32) is replaced by S − q(t) into (33).

15



the recycling sector is not competitive, recycling does not a§ect the extractor’s first period

market power but increases its second period market power. (2)When the recycling sector is

competitive, the extractor’s second period market power increases with the recycled output

but becomes lower (compared to the non-competitive case), while its first period market

power can be lower or higher (compared to the non-competitive case). Then, it can increase

or decrease with the recycled output. (3) In either case, the extractor’s first period market

power further increases when the resource constraint is binding. (4) We also show that the

extractor’s market power can increase or decrease over time.

The present paper can be extended into several directions:

(i) First, it is based on the assumption that the recycled and the extracted resources

are strategic substitutes. Another natural extension would consist in considering that these

two types of resources exhibit strategic complementarity. The emergence of other potential

market e§ects may influence the results established in the present paper.

(ii) Second, in the present setting, we have taken the demand as a parameter that does

not vary over time. Since the demand can change due to technological evolutions, it would

be important to propose a model that captures this aspect. Specifying the inverse demand

function, it could take the following simple linear form: P (Qt) = (a−Qt) expβt (when demand

increases over time:) or P (Qt) = (a−Qt) exp−βt (when demand decreases over time). In this

specification, β represents the rate of growth of the linear demand curve.
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5 Appendix

Appendix 1: Comparison of Lr
nc

2 and Lb
nc

2 .

We will proceed as Gaudet and Long (2003) have done. We will, first, show that the global

production of the industry with the existence of recycling is higher than the production of the

monopolist in the absence of recycling, i.e. Qr2 > q
b
2. To do so, assume, on the contrary, that

Qr2 < q
b
2. This yields the following conditions: (a): P (Q

r
2) > P (q

b
2), and (b): "2(Q

r
2) > "2(q

b
2),

since it follows from P
0
(Qr2) < 0 that "

0

2(Q
r
2) < 0 for all Q

r
2 > 0. Hence, we have the following

relationship:

P (Qr2)− C
0

2(q
r
2)

P (Qr2)
<
P (qb2)− C

0

2(q
b
2)

P (qb2)
(34)

The inequality (34) implies:

C
0

2(q
r
2)

C
0
2(q

b
2)
>
P (Qr2)

P (qb2)
(35)

From (a), we have P (Qr2)

P (qb2)
> 1. Taking this inequality into account in (35) yields:

C
0

2(q
r
2)

C
0
2(q

b
2)
>
P (Qr2)

P (qb2)
> 1 (36)

In what follows, we will show that (36) cannot hold. As Gaudet and Long (2003), assume

that C
0

2(.)= 0 identically. Then (36) implies that 1 > 1, which is a contradiction. Accordingly,

we obtain Qr2 > q
b
2. Taking into account this inequality, we get:

1

"2(Qr2)
>

1

"2(qb2)
(37)

Hence, we conclude that recycling increases the monopolist’s second period market power,

i.e. Lr
nc

2 > Lb
nc

2 .

Appendix 2: the model with a linear inverse demand function

We will use backward induction in order to obtain the Subgame Perfect Nash Equilibrium

of the game. Then, we have:

Period 2: the programmes are:
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For the extractor:
Max
q2

πe2 = (a− q2 − r)q2 − c2q2
q1 + q2 ≤ S

(38)

The Lagrangian associated with the extractor’s second period programme is:

Le2 = (a− q2 − r)q2 − c2q2 + λ(S − q1 − q2) (39)

For the recycling sector:
Max
r

πr = (a− q2 − r)r − crr

r ≤ βq1
(40)

Notice that c2 and cr are, respectively, the marginal costs of extraction and recycling. The

Lagrangian associated with (40) is:

Lr = (a− q2 − r)r − crr + µ(βq1 − r) (41)

The first-order conditions that maximize (39) and (41) are respectively:

a− r − c2 − 2q2 − λ = 0 (42)

λ(S − q1 − q2) = 0 (43)

And:

a− 2r − µ− q2 − cr = 0 (44)

µ(βq1 − r) = 0 (45)

(i) When µ = 0, i.e. r < βq1, (44) rewrites in the following way:

a− 2r − q2 − cr = 0 (46)

Assuming λ = 0, the intersection of (42) and (46) yields the Nash-Cournot outputs given by:

qr2 =
1
3 (a− 2c2 + cr) and r =

1
3 (a+ c2 − 2cr). The global production of the industry is then

Qr2 =
1
3 (2a− c2 − cr).

(ii)When µ > 0, we get r̃(q̃1) = βq̃1. Since q̃1 determines r̃(q̃1), let us go back to the first

period in order to compute the quantity extracted in this period.
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Period 1: in this period, the extractor produces q1 in order to maximize its profit over

the two periods. In the first case (point (i)), the extractor (the monopolist) ignores recycling

and extracts a standard monopoly quantity given by qb1 =
1
2 (a− c1).

In the second case (point (ii)), Alcoa takes the entry of the recycling sector as a threat

and maximizes its following profit over the two periods:

Πe = (a− q1 − c1)q1 + (a− q2 − βq1 − c2)q2
q1 + q2 ≤ S

(47)

And the Lagrangian is:

Le = (a− q1 − c1)q1 + (a− q2 − βq1 − c2)q2 + λ(S − q1 − q2) (48)

The first-order conditions are:

a− λ− c1 − 2q1 − βq2 = 0 (49)

a− λ− c2 − 2q2 − βq1 = 0 (50)

λ(S − q1 − q2) = 0 (51)

Assume that λ = 0, i.e. q1 + q2 < S, the intersection of (49) and (50) gives: q̃1 =

β(a−c2)−2(a−c1)
β2−4 , q̃2 =

β(a−c1)−2(a−c2)
β2−4 , r̃ = β(a−c2)−2(a−c1)

β2−4 β, and Q̃2 =
β(−a+c1+β(a−c2))−2(a−c2)

(β−2)(β+2) .

In order to make the analysis more tractable, assume that c1 = c2 = cr = 0. Then q̃1 = a
β+2 ,

q̃2 =
a
β+2 , r̃ = a

β
β+2 , Q̃2 = a

β+1
β+2 , q

b
1 =

1
2a and Q

r
2 =

2
3a. Simple mathematical computations

show that @q̃1@β < 0
8, @q̃2@β < 0 and

@r̃
@β > 0.

Let us verify that q̃1 < qb1. This holds when β > 0, which is true under our framework.

Straightforward comparisons show also that Qr2 > Q̃2 when β < 1, which holds. Since

"
0

2(.) < 0, the condition Q
r
2 > Q̃2 implies

1
"2(Qr2)

> 1
"2(Q̃2)

, resulting then in Lr
nc

2 > Lr̃
nc

2 .

Notice that, in the absence of recycling (with zero extraction cost), the extractor’s second

period extraction is qb2 =
1
2a. Simple comparisons show that Q̃2 > q

b
2 when β > 0, which is

8This result corroborates the idea whereby Alcoa reduces its first period extraction when the recycling
constraint is binding.
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true. Then, with the condition "
0

2(.) < 0, this inequality implies
1

"2(Q̃2)
> 1

"2(qb2)
, resulting in

Lr̃
nc

2 > Lr
b

2 . We conclude that recycling the whole scrap increases the extractor’s (Alcoa’s)

second period market power.
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