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Abstract 

In this paper, we present evidence based on a theoretical model developed that links the impact 

of climate variability on health. Using Swedish data on infectious diseases, we empirically 

estimate the causal relationship between climate variability and health outcomes. Generally, we 

find that the number of infectious disease patients and admissions are significantly driven by 

indicators of climate variability and socio-economic variables such as income and number of 

immigrants. Specifically, the effect of temperature variation on the health outcomes is ambiguous 

and sensitive to the choice of winter, summer or average temperature. Precipitation is relevant in 

explaining the number of infectious disease patients and admissions only when summer 

temperature considered in the model. Further, we find that an increase in carbon emissions 

directly causes the number patients and admissions in the summer. The relationship between 

infectious disease proxies (i.e. patients and admissions) and income per capita follows an 

inverted-U shape.    
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1.0 Introduction 

Climate change has become a topical issue globally, as the physical and biological systems on all 

continents are already being affected by recent changes in climatic conditions (Asante and 

Amuakwa-Mensah, 2015). Climate change, including climate variability, has multiple influences 

on human health and these are expected to be either direct or indirect. The impacts of climate 

change on human health include intensity of transmission of vector -, tick-, and rodent-borne 

diseases; food- and water-borne diseases, and changes in the prevalence of diseases associated 

with air pollutants and aeroallergen. Climate change could alter or disrupt natural systems, 

making it possible for diseases to spread or emerge in areas where they had been limited or had 

not existed, or for diseases to disappear by making areas less hospitable to the vector or the 

pathogen (NRC, 2001). The direct and immediate effects such as deaths due to heat waves and 

floods which are mostly dramatic provoke immediate policy-responses. However, long-term 

effects act through changes in natural ecosystems and in most cases impact on disease vectors, 

waterborne pathogens, and contaminants (NRC, 2001). 

Until recently, the climate change-health nexus did not feature prominently in the climate change 

discourse. In the past, discussions on climate change focused on the effects of the phenomenon 

on the global economic outlook and eco-systems sustainability (McMichael, et al., 2009). 

Increasingly, scientists have become interested in the potential effects of global climate change 

on health. According to McMichael et al (2006), climate change already has and will continue to 

have a negative impact on the health of human populations. Evidence already exists that climate 

change affects the rates of malnutrition, diarrhoeal diseases, malaria and deaths as a result of 

changing precipitation and high temperatures (McMichael, 2005). This is because there is ample 

evidence that links most of the world’s killer diseases to climatic variations (Campbell- Lendrum 

et al, 2003). Climate change according to Costello (2009) was responsible for 5.5 million disability 

adjusted life years (DALYs) lost in 2000. These initial assessments and figures of the disease 

burden attributable to climate change were conservative and relate only to deaths caused by 

cardiovascular diseases, diarrhoea diseases, malaria, accidental injuries during coastal and inland 

floods, landslides and malnutrition. Studies show that small increases in the risk for climate-

sensitive disease conditions such as diarrhoea diseases and malnutrition can result in very large 

increases in the total disease burden (Haines et.al, 2006). Not all of the effects of climate change 

will be harmful to human health but the damages are projected to outweigh the benefits. A 

warmer climate is expected to bring benefits to some populations, including reduced mortality 

and morbidity in winter and greater local food production, particularly in northern high latitudes. 

Against this background, the negative effects of climate change on health are likely to be greater 

and are more strongly supported by evidence than are the possible benefits.  

Developed countries are also not immune to the health impact of climate change. As presented 

in Table 1, climate-dependant infectious diseases is likely to impact on most developed countries 

(Panic and Ford, 2013). For example, water-borne and food-borne diseases which are caused by 

environmental or climate factors are likely to affect almost all developed countries. Also, 

Northern European countries (particularly Sweden) are expected to be affected by tick-borne 

diseases which are predominantly caused by increased daily precipitation, humidity, changed 

patterns of seasonal precipitation, increased average temperatures and extreme heat.  



3 
 

Table 1: Climate-Dependant infectious diseases and sample countries likely to experience health 

hazards linked to changes in disease exposure 

Disease 
Type Disease 

Environmental factors 
impacting disease 
dynamics 

Countries likely to 
be affected 

Mosquito-
borne 

diseases 

Malaria 
Increased average 
temperatures 

Australia, New 
Zealand, Chile, 
Southern Europe 

West Nile Virus 
Increased average 
temperatures, drought 

USA, Southern 
Europe, Canada, 
Australia, New 
Zealand, Chile 

Dengue, Chikungunya 
fever, Yellow fever 

Increased average 
temperatures 

New Zealand, 
Mediterranean 
region (coastal areas 
in Spain, Portugal 
and France), Chile 

Tick-borne 
diseases 

Lyme borreliosis, tick-borne 
encephalitis, 

Increased daily 
precipitation, humidity, 
changed patterns of 
seasonal precipitation, 
Increased average 
temperatures, extreme heat 

Northern Europe, 
Canada, USA 

Waterborne 
diseases 

Sewage and sanitation: 
Vibrio vulnificus and Vibrio 
cholera, E.Coli, 
Campylobacter, Salmonella, 
Cryptosporidium, Giardia, 
Yersinia, Legionella 

Increased rainfall and 
storm frequency, flooding, 
landslides, increased 
average temperatures, 
extreme heat episodes 

All countries 

Food borne 
diseases 

Salmonellosis, 
campylobacteriosis 

Extreme rainfall, flooding, 
increased average 
temperatures, increased 
frequency of extreme heat, 
changed seasonal patterns 

All countries 

Source: Panic and Ford (2013) 

Although the impact of climate change on health is anticipated, few studies have really used data 

to empirically estimate the effect of climate change on health outcomes, specifically infectious 

diseases. This study attempts to theoretically and empirically investigate how climate change 

affects health. We empirically estimate the effect of climate change on infectious diseases using 

data from Sweden. Moreover, we examine how the number of immigrants affects the number of 

infectious disease patients and admissions in Sweden. Although it is expected that migration 

activities have effect on infectious diseases, we are not aware of any study in Sweden that has 

estimated this effect.  This study therefore seeks to fill this gap.   
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The remainder of the paper is organised as follows. Section two discusses how climate change 

and socio-economic factors affect health while section three presents an analysis of the 

conceptual and theoretical linkage between climate change and health outcomes. The fourth 

section explains the method and data used for the empirical investigation with section five 

focused on discussion of the empirical results. Section six concludes the study. 

 

2. How Climate Change and Socio-economic factors affect Health 

Generally, health outcomes can be affected by climate, socio-economic and ecological factors. In 

this section we discuss how climate change affects health while paying attention to the potential 

effect of socio-economic factors (including migration dynamics) on infectious diseases. The 

likely effects and outcomes of climate change on human health as summarized by Confalnieri et 
al. (2007) are presented in Figure 1. The figure shows that climate change has both positive and 

negative effects on health outcomes, with the negative effects most likely to outweigh the 

positive effects.  

Figure 1: Direction and Magnitude of Change of Selected Health Impacts of Climate Change 

 
 Source: Confalnieri et al. (2007) 

Woodward et al. (2011) observe that the risk of climate change to health results mainly from the 

effects of the phenomenon on local food production, severity and frequency of storms and 

floods, threats to water supplies and the direct effect of heat on people. Confalnieri et al. (2007) 

also classify human exposure to the effects of climate change into two (i.e.  direct and indirect). 

People are affected directly through changing weather patterns and indirectly through food and 

water quality and quantity, agriculture, among others.  Exposure to any of these conditions can 

cause morbidity and even death. Most literature on the implications of climate change suggests 
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that climate change may affect human health through three pathways: directly, indirectly and 

through social and economic disruptions (IPCC, 2007).  

 

2.1 Health effects due to direct and indirect exposure to changes in climatic variables 

Changes in climatic conditions are expected to affect the distribution of morbidity and mortality 

through the physical effects of exposure to high or low temperature (Campbell-Lendrum et al., 
2003). Several studies have concluded on the impact of atmospheric temperature on the health 

status of a given population. Human beings are able to cope well with mid-range temperatures 

and are only stressed by temperatures that are ‘uncommonly’ high or low (Woodward, 2011). 
Significant increase or reduction in temperature adversely affects body temperature and 

metabolism processes within the body. The early effect of high temperature usually is reduced 

physical and mental work capacity, further and sustained exposure leads to dehydration, 

exhaustion and heat stroke (Kovats, 2006). These have direct effects on productivity (IPCC, 

2007 and Nerlander, 2009). 

Heat waves are expected to have tremendous effect on human health. According to Robine et al. 
(2008), the heat wave in Europe in 2003 caused about 70,000 deaths principally from 

cardiovascular diseases. Other studies in California by Knowlton et al. (2009) found similar 

results. Another direct impact of climate is cold waves which usually affect people who spend a 

lot of time outdoors such as the homeless. In the polar and temperate regions, cold waves can 

still increase mortality when electricity and heating systems malfunction (Confalnieri et al., 2007). 

Cold related mortality has declined in most European countries since 1950 (Carson et al., 2003). 

Many attribute the reduction in winter time mortality to decline in cold days and nights. Carson et 
al. (2006) however reports that the reduction in cold temperature accounts for a small proportion 

of the reduction in winter time mortality. Schwarts (2005) also found in his study that socio-

demographic characteristics and medical conditions can increase the risk of death associated with 

extreme temperatures.  He indicated that while patients with diabetes had a higher risk of dying 

on hot days, women had higher risk of dying on cold days. Studies by D'Ippoliti et al. (2010) 

confirmed the results of an earlier study by Schwarts (2005) that, the effect of heat waves was 

highest among people with respiratory diseases and women aged between 75 and 84 years. 

Indirectly, climate change affects human health through air, food and water quality and quantity, 

agriculture and the ecology of vectors (IPCC, 2007). Malnutrition and food insecurity are also 

affected indirectly by climate change as high temperatures and erratic rainfall reduce crop yields 

(Costello et al., 2009). Contact between food and pest species, especially flies, rodents and 

cockroaches, is also temperature-sensitive. Fly activity is largely driven by temperature rather 

than by biotic factors (Goulson et al., 2005). Malnutrition according to the Intergovernmental 

Panel on Climate Change (IPCC) (2007) increases the risk of morbidity and mortality from 

infectious diseases. Azziz et al. (1990) confirmed this in his study in Bangladesh. In Bangladesh, 

drought and lack of food were linked to an increasing possibility of dying from a diarrhoeal 

disease.  

Changes in rainfall patterns affect surface water flow. Reduction in rainfall leads to reduced river 

flows and increased water temperature leading to declining water quality because the dilution of 
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contaminants in the water is reduced. Less oxygen is therefore dissolved in the water and 

microbiological activity is enhanced (Confalnieri et al. 2007 and Bates et al., 2008). This 

notwithstanding, several studies document the linkage between microbial load in water as a result 

of extreme rainfall events and runoff and cases of human disease is not very clear (Aramin et al., 
2000 and Schwartz et al., 2000). Work by Senhorst and Zwolsman (2005) in the Netherlands 

associated the low quality of water during the 2003 period to low river flows during the dry 

summer of 2003. The marked seasonal outbreaks of cholera in the Amazon and sub-Saharan 

Africa are often associated with reductions in rainfall, floods and the faecal contamination of 

water supplies (Gerolomo and Pema, 1999 and Confalnieri et al., 2007). In the United States, 

Curriro et al., (2003) found an association between extreme rainfall events and monthly reports 

of outbreak of water-borne diseases. Common forms of food contamination such as 

salmonellosis have been found to be associated with high temperatures (IPCC, 2007).  

 

2.2 How socio-economic factors affect infectious diseases 

Infectious diseases can also spread through human travel patterns. Thus, migration is one of the 

means by which diseases spread, either because migrants bring new pathogens with them to their 

destinations or because the migrants themselves constitute susceptible populations and lack 

immunity to endemic diseases in their areas of settlement (NRC, 2001). This situation is true for 

both forced migration (such as those based on political, religious and natural disasters) and for 

voluntary migration of people seeking new social or economic opportunities. Also, modern 

transportation such as jet transportation is an avenue through which pathogens and vectors can 

be spread rapidly from one area to another within a continent or from one continent to another. 

An example of such situation is that of influenza, where it appears that new strains initially 

spread from Southeast Asia to other areas of the world (NRC, 2001). Furthermore, individuals 

who are infected with infectious diseases and who may be asymptomatic can infect fellow 

passengers and susceptible people at their destinations.  

Transportation has been found to be the easiest means by which non-respiratory infectious 

diseases may be introduced into new areas (NRC, 2001). For instance, gonorrhea initially was 

found in Asia and then spread to the United States ( Knapp et al., 1997). The recent ebola 

outbreak in West Africa in the years 2014 and 2015 is an example, where the disease spread 

rapidly to other countries and continents through travels. Also, the means of transportation 

themselves can contribute to the spread of vectors to new areas. For example, the concept of 

“airport malaria” which is associated with the outbreaks of malaria among populations 

surrounding airports in temperate non-endemic areas such as the United States, England, and 

Northern Europe (NRC, 2001). This concept emerged from the clustering of cases around 

international airports, where an experiment confirmed that anopheline mosquitos could survive a 

long-distance flight in the wheel wells of jet aircraft, demonstrating the potential for air 

transportation to facilitate the spread of disease vectors (NRC, 2001; Guillet et al., 1998). An 

example of such occurrence is also the case where one of the Asian vectors of dengue, the 

mosquito Aedes albopictus, was transported to Houston in wet tires through container shipment 

(Moore and Mitchell, 1997).  
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Population density is also an important factor to be considered as population concentration may 

facilitate the spread of infectious diseases if there are persons in the population who are infected. 

In most cases, population density has been often linked with increasing ease to which airborne 

infections, waterborne diseases, and sexually transmitted infections are spread among the 

populace (NRC, 2001). Other social and demographic patterns which may encourage the spread 

of infectious disease include but not limited to poverty level, household design and architecture, 

and water development projects. 

   

3.0 Conceptual Framework: Climate Change and Health Nexus 

One of most comprehensive frameworks that explain the links between climate change or 

climate variability to health outcomes is provided by Haines and Patz (2004).  In the original 

form, the framework links natural phenomena and human influence to climate change or climate 

variability. The changes in regional and local climatic conditions manifest as extreme weather 

conditions, changes in precipitation and rise in oceanic and atmospheric temperature (global 

warming) occur.  These stressors will act directly or indirectly to determine health outcomes 

(IPCC, 2007). Directly, an increase or decrease in atmospheric temperature causes heat or cold 

waves leading to heat stroke and other diseases. In addition, climate change will elevate sea levels 

due to factors such as the melting of arctic ice sheets and rising sea surface temperature. These 

trigger storm surges and floods that will put coastal settlements especially at risk.  Indirectly, 

through “ecological disturbance” high temperature and changes in patterns of precipitation 
(stressors) will alter the global pattern of infectious diseases. Global warming will create a 

suitable environment for disease vectors and pathogens to thrive and enhance the frequency of 

human contact in most parts of the world. Climate change is also expected to induce tertiary 

feedbacks through conflicts and displaced population who are likely to increase the pressure on 

social amenities such as public health services in host communities and/or increase cross 

infections as well as the outbreak of new diseases. These events could lead to morbidity and/or 

mortality.   
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Figure 2: Climate change and health nexus, Source: Adapted from Haines and Patz (2004) 
(2004) 
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The tertiary effects are broadly captured as social and economic disruptions by IPCC (2007). 

From the framework (see Figure 2), health outcomes of climate change will be conditioned by 

the interplay of modulating and adaptation measures. Modulating factors are exogenous of 

climate change. Adaptive measures, however, are implemented in response to or in anticipation 

of climate change (IPCC TAR, 2001).  

We develop a formal theoretical model following the work of Zivin and Neidell (2013) to relate 

climate change to health. Based on Grossman’s (1972) postulation which characterizes health as 
an investment good, Zivin and Neidell (2013) extended how health can influence productivity 

through the extensive margin (that is, a process where illness reduces labour supply hence 

affecting productivity) to an intensive margin. The intensive margin is when productivity is 

affected assuming a fixed labour supply. Through the intensive margin the theoretical model is 

able to capture more precise health effects. Zivin and Neidell (2013) modelled the representative 

individual’s health production function as a function of ambient pollution levels, mitigation 
activities to pollution exposure in the form of avoidance behaviour and medical care that reduces 

the negative health consequences from pollution exposure. Based on this, we redefine the health 

production function to examine the role of climate change on health. Thus, our health 

production function depends on climate variability (CV), carbon dioxide (CO2) emissions, 

mitigation of the harmful effect of climate change by avoidance behaviour (A) and medical care 

(M). This is expressed as; 

� �2, , ,H f CV CO A M                                                                                     (1) 

Both avoidance behaviour (A) and consumption of medical care (M) reduces the health burden 

from climate variability and carbon dioxide emissions. There is however distinction in timing and 

cost associated with avoidance behaviour medical care consumption. The climate variability and 

carbon dioxide emission variables in equation (1) constitute climate change (CC). As a result, 

equation (1) turns equation (1a) below; 

� �, ,H f CC A M                                                                                            (1a) 

Following Zivin and Neidell (2013), we rewrite equation (1a) in order to better examine how 

environment variables affect health. Thus, we create a distinction between individual’s health (H) 
and illness incidence (I ). Therefore, the health production function is given as; 

� � � �, ,H f M CC AI Iª º ¬ ¼                                                                                 (2)  

From equation (2), climate change and avoidance behaviour jointly determine the incidence of 

illness attributed to climate change. Also, medical expenditure in turn depends on these illness 

incidences. Moreover, health of the individual depends on medical expenditure and incidence of 

illness. Medical expenditure is assumed to reduce severity of illness. In our analysis we impose 

the normal concavity assumption on the health production function and its subparts shown in 

equation (2). The utility function of a representative individual is assumed to be a function of 

health (H), consumption goods (X) and leisure (L). That is; 
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� �, ,U u H X L                                                                                                                  (3) 

Also, the individual allocates his/her wage and non-wage income on consumption goods, 

mitigation activities through avoidance behaviour and medical expenditure. Thus, the budget 

constraint is given as; 

> @( ) X A MI w H T L P X P A P M� �  � �                                                                                 (4) 

Where I is non-wage income, w(H) is wage income which is dependent on H, T is time, L is 

leisure, and PX, PA and PM are prices of X, A and M, respectively. 

The individual’s utility problem is to maximize the utility function in equation (3) subject to the 
budget constraint presented in equation (4). Thus, the lagrangian expression for this 

maximization problem is given as; 

� � > @
, , ,

, , ( ) X A MX A L M
Max u H X L I w H T L P X P A P MO ª º � � � � � �¬ ¼                                       (5) 

The first order conditions by finding the partial derivatives of equation (5) with respect to X, A, 

L and M are as follows: 

0X X
U P

X X
Ow w

  �  
w w

                                                                                                      (6) 

0L
U w

L L
Ow w

  �  
w w

                                                                                                          (7) 

� � 0A A
U H M H w H M HP T L

A H M A A H M A A
I I I IO

I I I I
§ ·§ · § ·w w w w w w w w w w w w w

  � � � � �  ¨ ¸¨ ¸ ¨ ¸w w w w w w w w w w w w w© ¹ © ¹© ¹
  (8) 

� � 0M M
U H w HP T L

M H M H M
Ow w w w w§ ·  � � �  ¨ ¸w w w w w© ¹

                                                              (9) 

The standard trade-off between labour and leisure can be derived from solving equations (6) and 

(7). Our interest is in equations (8) and (9), which gives us the equilibrium condition for 

avoidance behaviour and medical treatment. Thus, solving equations (8) and (9) gives the 

intuitive expression that the ratio of marginal productivity of avoidance behaviour and the 

marginal productivity of medical care should equal the ratio of their prices. That is, 

A

M

PdH dA
dH dM P

                                                                                                                     (10) 

While the left-hand side of equation (10) is the ratio of marginal productivity of avoidance 

behaviour and marginal productivity of medical care when health stock increases by a unit, the 

right-hand side is the price ratio of avoidance behaviour and medical treatment. Solving the 

system of equations (6 to 9) together with the budget constraint gives us the optimal avoidance 

and medical treatment which are functions of climate change (CC), the function that translate 
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climate change into illness incidence (I ) and the costs of avoidance behaviour (PA), medical 

cares (PM) and all other consumption goods (PX).  Thus, the optimal avoidance behaviour and 

medical treatment is expressed as: 

� �, , , ,M A XM g CC P P PI                                                                                                  (11) 

� �, , , ,M A XA h CC P P PI                                                                                                    (12) 

From equations (11) and (12), the optimal avoidance behaviour and medical treatment depends 

on climate change. As a result, we can derive an expression for the relationship between climate 

change and health by finding the total derivative of equation (2). That is; 

ddH
dCCd

dH H M H A
dCC M CC A CC

I
I

I I
I I

§ ·w w w w w w§ · � x �¨ ¸ ¨ ¸w w w w w w© ¹© ¹
                                                                  (13) 

From equation (13) it is obvious that the effect of climate change on health has two parts, which 

are the relationship between climate change and illness (that is, d d CCI ), and the degree to 

which illness is translated into health status (that is, dH dI ).  

The second expression of equation (13) describes the net effect of climate change on illness 

incidence based on individuals’ exposure level. The expression has two components: the first 
term ( CCIw w ) and the second term � �� �� �A A CCIw w w w . The first term ( CCIw w ) 

represents the pure biological effect of climate change whereas the second term 

� �� �� �A A CCIw w w w shows the role of avoidance behaviour in averting illness incidence by 

putting in place mitigation measures against the harmful effect of climate change. From the net 

effect of climate change (that is, d d CCI ), there is the possibility of observing no change in 

illness despite the existence of biological effect if the avoidance behaviour is very productive in 

mitigating the harmful effect of climate change. However, if the avoidance behaviour is 

impossible or ineffective, then the biological effect and the reduced form effects (that is, 

d d CCI ) will be identical (Zivin and Neidell, 2013). 

Similarly, the first expression in equation (13) has two components: the first term 

� �� �� �H M M Iw w w w  and second term � �H Iw w . The term � �� �� �H M M Iw w w w  shows the 

degree to which medical treatment, which is a post-exposure intervention, reduces the negative 

effects of climate change on health. Also, the term  � �H Iw w  represents how health responds to 

illness, which reflects the degree to which climate-induced illness incidence are not treated, either 

due to the illness being untreatable or individuals do not seek treatment.    
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4. Methodology and data 

4.1 Empirical model and variable description 

In estimating an empirical model to examine the effect of climate change on health, we modify 

the optimal medical treatment function in equation (11). The focus here is to investigate the 

effect of climate change in explaining infectious and parasitic diseases. Thus, we consider how 

climate change together with socio-economic variables explains the incidence of infectious and 

parasitic diseases in Sweden. This study relies on panel data from 21 counties in Sweden from 

2005 to 2012. Our empirical model from equation (11) is given as; 

� �2, ,DM g CV CO                                                                                                        (14) 

where M is the number of individuals who seek medical treatment due to incidence of infectious 

and parasitic diseases, CV is climate variables (that is, temperature and precipitation), CO2 is 

carbon dioxide emissions and D is a vector of socio-economic and control variables which 

include income, education, number of healthcare personnel, population density and 

immigration1. For the dependant variable we consider the number of admissions per 100,000 

inhabitants and number of patients per 100,000 inhabitants. Whereas the number of patients’ 
variable is used as our main dependent variable of interest, the number of admissions is used as a 

sensitivity check. Infectious and parasitic diseases in this study relate to all diseases classified as 

infectious and parasitic by the National Board of Health and Welfare in Sweden. The list of such 

diseases is shown in the appendix. All the data on the health variables is based on in-patient care 

diagnoses. In our analysis, we express the dependant variable as non-linear in income, that is, the 

dependant variable is a quadratic function of income. Income (that is, GDP per capita) is a proxy 

for the capacity of the county to detect infectious diseases.  

We estimate equation (14) under three different assumptions. First, we assume carbon dioxide is 

exogenous and estimate how current numbers of individual who seek medical treatment are 

driven by climate variability, carbon dioxide emission and socio-economic variables (including 

immigration). That is: 

 
1

0 1 3 4 2 5
0

Pr Im itDit j it j it it it i it
j

M Temp ecip CO migrantsE E E E E K H� �
 

c � � � � � � �¦ G        (15) 

Each variable in equation (15) is a panel data set for county i in time period t. The term itDcG  in 

equation (15) is the product of the vector of socio-economic and control variables and their 

corresponding parameter, and iK  is the county fixed effect variable. In estimating equation (15), 

we utilize fixed effect (FE) panel estimation technique to account for county-fixed effects 

capturing any county differences which may have effect on the dependent variable. 

                                                           
1 Immigration is based on the definition by the Swedish Statistics board. We do acknowledge the limitation of this 
variable in our study. For instance, considering immigrants as potentially bringing new pathogens when immigrants 
are from developed countries, is less relevant than considering Swedish residents coming back from poor countries 
as potentially bringing these new pathogens. 
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Secondly, we assume carbon dioxide emissions to be endogenous since there is the possibility of 

carbon dioxide emissions in each county to be dependent on economic activities. As such we 

also estimate equation (15) again by using fixed effect instrumental variable (FEIV) technique. 

This is to address the endogeneity problem of carbon dioxide emissions and also account for 

county-fixed effects. We use energy consumption as an instrument for carbon dioxide emissions. 

This is based on the premise that energy consumption may have a strong correlation with carbon 

dioxide emission hence satisfying the relevance assumption. Also, there is a weak or no direct 

relationship between energy consumption and how individuals seek for medical treatment from 

infectious diseases. Thus, this provides a justification for fulfilling the excludability assumption.  

Since it is difficult to have a valid instrument in reality and there is also the possibility of 

infectious and parasitic diseases to portray persistence, we consider a dynamic model in our third 

scenario and assume carbon dioxide emission to be endogenous. We use the lag of carbon 

dioxide emission as an instrument for itself since the lags of a variable is a valid instrument for 

itself. In this case, we estimate equation (16) below; 

1

0 1 1 3 4 2 5
0

Pr Im itDit it j it j it it it i it
j

M M Temp ecip CO migrantsE N E E E E K H� � �
 

c � � � � � � � �¦ G    

(16) 

where CO2 emission is endogenous and we use its lag as an instrument, N  is the coefficient of 

the lag of medical treatment. All the other variables maintain their initial definitions. A two-step 

system generalised method of moment (GMM) is used to estimate equation (16). In all three 

scenarios, we estimate the models using three different temperature variables. Specifically, we 

consider mean annualized winter, summer and average temperatures. However, for the 

precipitation variable, we consider only annualized average precipitation. With regard to the 

control variables we consider GDP per capita, number of the population with post-secondary 

education three years or more, population density and number of medical personnel. We also 

consider the number of immigrants since it is a variable of interest.  

The variables considered in our analysis are in line with the argument that transmission of 

infectious diseases is determined by many factors which includes; social, economic and ecological 

conditions, access to health care, and intrinsic human immunity (Semenza and Menne, 2009; 

Jones et al., 2008). With the exception of temperature and precipitation, we transform all the 

variables by taking the natural logarithm. We present the variable description and summary 

statistics in Table 2. From the summary statistics, we observe great variations in the climate 

variables (that is, temperature and precipitation) across counties over the years. For example, the 

average annual mean temperature deviation from the normal for winter is about 1.40C with a 

standard deviation of about 2.50C. Also, the average annual mean precipitation deviation from 

the normal is about 12.4mm with a standard deviation of about 12.9mm. 
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Table 2: Variable description, data sources and descriptive statistics 

Variable Description Source Obs Mean Std. Dev. Min Max 

Lnadmission 
natural log of the number of admissions per 
100,000 inhabitants 

NBHW 168 6.213 0.132 5.867 6.616 

Lnpatients 
natural log of the number of patients per 100,000 
inhabitants 

NBHW 168 6.068 0.130 5.722 6.437 

lnco2 
natural log of carbon dioxide emissions per capita 
in thousand tons 

RUS & SCB 168 1.765 0.594 0.788 3.752 

Lngdppc natural log of GDP per capita SCB 168 5.761 0.141 5.509 6.306 
Lngdppcsq lngdppc squared 

 
168 33.211 1.656 30.353 39.769 

Lneducation 
natural log of the number of the population with 
post-secondary education three years or more 

SCB 168 3.499 0.903 1.656 5.986 

Lnpersonel natural log of the number of health personnel NBHW 168 7.409 0.092 7.226 7.642 

Lnpopuladen natural log of population density SCB 168 3.198 1.141 0.916 5.787 

Tempav 
annual average temperature deviation from the 
normal (0C) 

SMHI 168 1.052 0.880 -1.600 2.400 

Tempwint 
annual winter mean temperature deviation from 
the normal (0C) 

SMHI 168 1.407 2.525 -3.300 6.300 

Tempsum 
annual summer mean temperature deviation from 
the normal (0C) 

SMHI 168 0.858 0.791 -0.700 2.600 

Precipiav 
annual average precipitation deviation from the 
normal (mm) 

SMHI 168 12.373 12.937 -13.800 45.900 

Lnimmigration natural log of the number of immigrants SCB 168 7.802 1.022 5.056 10.406 
Lnenergyconsum natural log of energy consumption SCB 126 9.570 0.754 8.156 11.120 

NB: where NBHW, SMHI, SCB and RUS are National Board of Health and Welfare (http://www.socialstyrelsen.se/statistics/statisticaldatabase/inpatientcarediagnoses), Swedish 

Meteorological and Hydrological Institute (http://www.smhi.se/klimatdata/framtidens-klimat/ladda-ner-scenariodata?area=swe&sc=rcp85&var=n&seas=ar&sp=en), Statistics 

Sweden (http://scb.se/en_/) and National emission database (http://projektwebbar.lansstyrelsen.se/rus/Sv/statistik-och-data/nationell-emissionsdatabas/Pages/default.aspx) 

respectively. 

  

http://www.socialstyrelsen.se/statistics/statisticaldatabase/inpatientcarediagnoses
http://www.smhi.se/klimatdata/framtidens-klimat/ladda-ner-scenariodata?area=swe&sc=rcp85&var=n&seas=ar&sp=en
http://scb.se/en_/
http://projektwebbar.lansstyrelsen.se/rus/Sv/statistik-och-data/nationell-emissionsdatabas/Pages/default.aspx
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4.2 Model Estimation  
As mentioned earlier, the study makes use of FE, FEIV and two step system GMM estimation 
techniques. The use of the FE panel estimation technique is to provide more consistent 
estimator, while the FEIV is to correct the problem of endogeneity in the case of carbon dioxide 
emissions which is a regressor in our model. Also, the two-step system GMM is used to estimate 
equation (16). This method unlike the Arellano-Bond (1991) estimation technique addresses 
both the problem of individual fixed effects in addition to the problem of endogenous variable 
arising from the use of lag dependent variable as a regressor. Thus, the Arellano-Bover(1995)/ 
Blundell-Bond (1998) technique or the system GMM augment that of Arellano-Bond by making 
additional assumption that the first differences of the instrumental variables are uncorrelated 
with the fixed effects.  
 
The estimation of the fixed effect model is analysed by considering the basic regression model of 
the form (Wooldridge, 20l0): 
 

it it i ity x zE D Hc c � �                                                                                                     (17) 

 
From equation (17), the vector xit contains K regressors which do not include a constant term. 
The heterogeneity or individual effect is represented by z’iα where the vector zi contains a 
constant term and a set of individual or group specific variables which may be observed or 
unobserved, all of which are taken to be constant over time t. With regard to the fixed effect 
model, if zi in equation (17) is unobserved though correlated with xit, then the least squares 
estimator of β (vector) will be biased and inconsistent due to an omitted variable. In such a case 
the model from equation (17) will now be;  
 

it it i ity x E K Hc � �                                                                                                       (17a) 

 

where  ii zK Dc , which represents all observable effects and specifies an estimable conditional 

mean. The fixed2 effect approach takes  iK  to be a group-specific constant term in the regression 
model. By using the fixed effect estimation technique we account for average differences across 
counties in any observable or unobservable predictors, such as differences in climate conditions, 
economic activities, etc. The fixed effect coefficients soak up all the across-group action and as 
such provide consistent estimates.  
 
In relation to the fixed effect instrumental variable technique, there is the tendency for carbon 
emissions to be endogenous since carbon dioxide emissions may be affected by economic 
activities and other unobserved variables which affect the likelihood of individuals to seek 
medical treatment from infectious disease. Thus, we use energy consumption as an instrument 
for carbon dioxide emissions. There is a strong correlation between carbon dioxide emissions 
and energy consumption since energy consumption is dependent on the amount of energy 
produced which in turn affects the level of emissions. With the relationship between carbon 
dioxide emissions and energy consumption, the relevance assumption characterising the selection 
of an instrument is met. Our first-stage estimation shows a significant positive effect of energy 
consumption on carbon dioxide emission, we however do not show the results of the first-stage 
estimation because of space. With regard to the excludability restriction, the energy level 

                                                           
2 It should be noted that the term “fixed” as used here signifies the correlation of  iK  and xit, not that  iK  is non-
stochastic 
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consumed may have weak or no direct relationship with the likelihood of an individual seeking 
treatment from infectious disease. 
 
However, in reality it is very difficult to have a valid instrument. As such system GMM becomes 
handy in addressing the endogeneity problem. Also, given the fact that infectious diseases exhibit 
persistence, the endogeneity problem attributed to the presence of the lag of the dependent 
variables (in this case infectious diseases) as a regressor in equation (16) can be addressed by 
using system GMM. The general model within the system GMM framework which considers 
individual effects is given by equation (18).  

,
1

itx
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it k i t k it
k

it i it

y yJ H

H K P

�
 

c � �

 �

¦ E
  � �1,..., ; 1,...,t p T i N �                                                 (18) 

Where the error term ( itH ) comprises of the fixed effect ( iK ) and the idiosyncratic stock ( itP ),

itx  is the vector of explanatory variables, E  represents a vector of the associated estimators and 

p is the maximum lag length in the model. From equation (18), T is the number of time periods 
available to each individual i. In order for the model to be identified, there should be a restriction 

on the serial correlation properties of the error term ( itP ) and/or the properties of the 

explanatory variables itx . In the model, the error terms are assumed to be independently 

distributed across individuals with a mean of zero, however arbitrary form of heteroskedasticity 

across each i and time are possible. Also, the explanatory variable itx  may or may not be 

correlated with the individual effects ( iK ).  Thus, for each of these cases the effects may be 

strictly exogenous, predetermined, or endogenous variables with respect to the error term ( itP ).     

We can write the T time periods for a random draw i based on equation (18) as; 

i i i i iy WT LK P � �                                                                                                                (19) 

From equation (19), T  is a parameter vector which contains the 'k sJ and the 'sE , and iW  is a 

data matrix containing the time series of the lagged dependent variable and the x’s. Also iL  

represents the Tx1 vectors of unity. We use dynamic panel data to compute various linear GMM 
estimators of T  with the general form shown in equation (20): 

1
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© ¹
¦                                                                                                         (21) 

and *iW and *iy  denote some transformation of iW  and iy , iZ  represents a matrix of 

instrumental variables which may or may not be entirely internal. Also iH  is individual specific 

weighting matrix.  
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In order to estimate the dynamic model, the instrument used is mostly a transformation of the 
lagged endogenous (or predetermined) variables. In situations where there is no instrument that 
is uncorrelated with the individual effect, the transformation we make should be able to eliminate 
the component of correlation from the error term. To estimate consistent estimators for the 
instruments that are the lagged dependent variable with further lags of the same variable, the 

assumption of no serial correlation in the error term is very relevant. In essence, if itP is serially 

uncorrelated then itP'  is correlated with , 1i tP �' , however itP'  will not be correlated with 

,i t kP �'  for 2k t . In testing this assumption of no serial autocorrelation, the null hypothesis of 

no autocorrelation is rejected for the first lag but accepted for the higher lags. In our study we 
use a significance level of 5% for the test of no serial correlation. We further carry out the Sargan 
test to examine the over-identification restriction. This test has a chi square distribution and the 
null hypothesis is that over-identifying restrictions are valid. The acceptance of the null 
hypothesis implies that the population moment conditions are correct, thus the over-identifying 
restrictions are valid.  

Unbiased estimates of the parameters in equation (18) cannot be obtained using the within group 
or first difference technique in a static panel data model since the transformed lagged dependent 
variable will be correlated with the transformed error term. The appropriate technique to 
estimate consistent and efficient estimates of the parameters is the use of a system GMM 
technique; this is the technique we use in our estimations. Since the unobserved individual 

effects ( iK ) may be correlated with other explanatory variables, expressing equation (18) in first-

order difference helps to remove the correlation between the individual effect and the 
explanatory variables hence avoiding biases in the estimates. In other words, the first differences 
of the instrumental variables are uncorrelated with the fixed individual effects. We treat the lag of 
number of infectious disease patients (i.e. the dependent variable) as endogenous and the 
instruments we use for it are the same variables lagged enough periods to avoid higher order 
autocorrelation in the residuals. Also, carbon dioxide emission is endogenous and its lag is used 
as an instrument. The other explanatory variables in equation (16) are treated as exogenous in the 
estimation. The system automatically uses different forms of the exogenous variables as 
instruments in addition to the lags of the dependent variable and that of carbon dioxide 
emissions in generating the consistent and unbiased estimates.  

 
5. Empirical results and discussion 

5.1 Results 

The results from the empirical estimations are shown in Tables 3 and 4. Whereas Table 3 is the 

main result of interest, Table 4 is used as a sensitivity check. All the estimated models satisfy the 

fitness tests. Also, the system GMM estimations satisfy the over-identification and no serial 

correlation tests. Thus, using a significance level of 5%, the population moment condition which 

shows the validity of the instruments used, are correct for all models shown in Tables 3 and 4, 

since the null hypothesis for the Sargan’s test are not rejected. On the no serial correlation test, it 

can be seen from both tables  that all the results for the variant system GMM models fulfil the 

no serial correlation assumption as autocorrelation is significant at the first order but not 

significant for the second order autocorrelation. These guarantee the consistency of the 

estimators and the validity of the instruments used.      
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From the FE model in Table 3, the results show generally that the number of infectious disease 

patients are significantly affected by climate variables, income per capita, the squared of income 

per capita and immigration with variations based on whether winter, summer or average 

temperature values are used. In the case where winter temperature is used, the lag of winter 

temperature, income per capita and immigration positively drive the number of infectious disease 

patients. However, current period’s winter temperature and income per capita squared have 

negative effect on the number of infectious disease patients (see column 1 of Table 3). When 

summer temperature is used, however, we find lagged summer temperature and current year’s 
precipitation have a negative effect on the number of infectious disease patients (see column 2 of 

Table 3). Similarly, using average temperature in the estimation, current year’s temperature and 
its lag have a negative effect on the number of infectious disease patients. The effect of income 

per capita, income per capita squared and immigration in columns 2 and 3 have the same sign as 

discussed earlier (see column 1 of Table 3). 

The results from the FEIV estimation are similar to the FE case with slight differences in the 

case where winter temperature is used. From column 4 of Table 3, we find that the number of 

infected patients is significantly caused by current winter temperature, income per capita and its 

squared. However, in the case of the FE model we observe these variables in column 4 together 

with the lag of winter temperature and number of immigrants to significantly cause the number 

of infectious disease patients. In the case where summer and average temperature values are used 

in estimating the FEIV model in columns 5 and 6 respectively, we find the factors affecting the 

number of infectious diseases patients to be the same as the case discussed earlier for the FE 

case (see columns 2 and 3 of Table 3). The signs of the significant variables which affect the 

number of infectious disease patients when we estimate our model using FEIV are the same as 

when we used FE.      

From the system GMM results where we include the lag of the number of infectious disease 

patients as a regressor, our results show that the number of infectious disease patients is 

significantly affected by lag of the number of infectious disease patients, current winter 

temperature and its lag, income per capita and its squared, when we use winter temperature in 

the estimation (see column 7 of Table 3). Here, we find the number of immigrants do not affect 

the number of infectious disease patients unlike in the FE model. The positive effect of previous 

period’s infectious disease patient on current ones in winter implies that current period’s patients 
have the tendency of increasing infection in the next period, especially during winter. This is 

because most people are indoors during winter and any spring of infectious disease in a place has 

the tendency of infecting other persons hence increasing the number of infectious disease 

patients. For example, an influenza which is most common in Sweden in winter, when it is 

caught up by one person, it has the greater tendency of infecting other persons within the same 

household, neighbourhood or environment.  

In the case of column 8 of Table 3 where summer temperature is used, we find the number of 

infectious disease patients to be significantly affected by carbon dioxide emissions, lag of 

summer temperature, current year’s precipitation, income per capita and the number of health 
personnel. Unlike the previous results, the number of health personnel and carbon dioxide 

emission are key variables in explaining the number of infectious disease patients. The results 

suggest that the number of health personnel and carbon dioxide emissions have positive effect 
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on the number of infectious disease patients. The positive effect of health personnel on the 

number of infectious disease patients when summer temperature is used (see column 8) implies 

that as the number of health personnel increases the number of infectious disease patients also 

increase. This result is quiet surprising. However, it can be explained as, the number of health 

personnel will enhance the health facility’s capacity to attend to more patients at a given time. 

Also, many more patients are likely to report to health facilities with adequate personnel to 

attend to their needs, especially during summer. As such there will be more reported cases of 

diseases. In relation to the positive effect of carbon dioxide emissions on the number of 

infectious disease patients, it means that during summer an increase in carbon emissions will 

increase the number of infectious disease patients. Ambient pollution which includes carbon 

dioxide emissions has the tendency of increasing respiratory tract diseases which are infectious 

hence higher emissions of such pollutants will increase the number of patients. On the contrary, 

when average temperature is used (see the system GMM results), we observe the number of 

infectious disease patients to be significantly affected by current and previous temperature, 

income per capita and its squared (see column 9 of table 3). 

 

5.2 Discussions 

Generally, we observe current winter temperature values to have negative effect on the number 

of infectious disease patients. This means that a reduction in winter temperature increases the 

incidence of infectious diseases. Also, we observe the lag of summer temperature, average 

temperature and its lag to have negative effect on the number of infectious disease patients. 

Thus, a lower temperature especially in winter may increase the incidence of infectious disease 

like influenza and others. However, the lag of winter temperature has a positive impact on the 

number of infectious disease patients. Infectious diseases like vector-borne and tick-borne 

diseases are mostly affected by temperature. Thus, temperature affects the survival and 

reproduction rate of the vector and the ticks, which in turn affect the habitat suitability, 

distribution, intensity and the pattern of their activities like biting rate. Whereas some of the 

vectors develop and reproduce during lower temperature, others develop and reproduce in 

higher temperature. As suggested by Semenza and Menne (2009) and Lindgren et al. (2000), 

since the late 1950s all cases of encephalitis admitted in the Stockholm County in Sweden have 

been serologically tested for tick-borne diseases. These have been attributed to milder and 

shorter winters, which results in longer tick-activity seasons. On the other hand, higher 

temperature also prevents the development and activities of some disease vectors which reduces 

the incidence of infectious diseases. From our results, the current projection of climate change of 

high temperature has the tendency of reducing the number of infectious disease patients in 

Sweden. The negative effect of precipitation on the number of infectious disease patient is 

contrary to our expectation.    
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Table 3: Determinants of the number of infectious disease patients 

 Fixed Effect Model Fixed Effect Instrumental Variable  Model System Generalised Method of Moment 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

VARIABLES Winter Summer Average Winter Summer Average Winter Summer Average 
          
Lnpatients (-1)       0.197** 0.135 0.195 
       (0.0935) (0.0905) (0.124) 
LnCO2 0.0164 0.0406 -0.0133 -0.410 -0.338 -0.408 0.157 0.165* -0.0863 
 (0.0949) (0.0971) (0.0975) (0.324) (0.321) (0.329) (0.107) (0.0960) (0.141) 
Winter Temp.  -0.00838***   -0.0103**   -0.0054***   
 (0.00277)   (0.00411)   (0.00164)   
Winter Temp.(-1)  0.00650*   0.00690   0.0100***   
 (0.00335)   (0.00427)   (0.00226)   
Summer Temp.   0.00681   0.00601   -0.000944  
  (0.00911)   (0.0123)   (0.00674)  
SummerTemp(-1)   -0.0191**   -0.0260**   -0.0272***  
  (0.00886)   (0.0116)   (0.00661)  
Average Temp.    -0.0228***   -0.0336***   -0.0309*** 
   (0.00775)   (0.0124)   (0.00483) 
Avera. Temp(-1)    -0.0208**   -0.0231**   -0.0185*** 
   (0.00811)   (0.0117)   (0.00431) 
Precipitation -0.000383 -0.001000* -0.000557 0.000136 -0.000545 0.0000178 -0.000198 -0.00111*** -0.000382 
 (0.000557) (0.000545) (0.000546) (0.000737) (0.000728) (0.000703) (0.000354) (0.000383) (0.000350) 
Precipitation (-1) 0.000258 0.000110 0.000066 0.000279 -0.000091 0.000029 0.000035 0.000577 0.0000175 
 (0.000493) (0.000520) (0.000482) (0.000642) (0.000655) (0.000608) (0.000377) (0.000440) (0.000370) 
LnGDP per cap.  13.46*** 13.98*** 14.01*** 16.15** 17.29** 16.47** 33.23*** 16.30* 18.00** 
 (4.570) (4.809) (4.586) (6.861) (6.971) (6.779) (12.51) (9.871) (8.861) 
LnGDPpercap. sq  -1.143*** -1.194*** -1.209*** -1.354** -1.458** -1.399** -2.836*** -1.393 -1.551** 
 (0.394) (0.414) (0.396) (0.586) (0.595) (0.580) (1.089) (0.861) (0.766) 
LnEducation 0.251 0.322 0.0963 -0.170 -0.0546 -0.289 0.209 -0.0939 -0.104 
 (0.223) (0.222) (0.231) (0.538) (0.505) (0.568) (0.142) (0.139) (0.149) 
LnHealthpersonn. -0.0331 0.0481 -0.105 -0.0836 0.0616 -0.209 0.479 1.239* -0.216 
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 (0.441) (0.448) (0.442) (0.565) (0.567) (0.548) (0.365) (0.654) (0.493) 
LnPopulationden -0.00350 0.0786 0.145 -0.0806 -0.00843 0.0840 0.00413 0.0597 -0.00284 
 (0.346) (0.356) (0.348) (0.659) (0.659) (0.672) (0.0260) (0.0443) (0.0252) 
LnImmigration  0.0991* 0.162*** 0.217*** 0.0311 0.111* 0.164** -0.0424 0.0697 0.0182 
 (0.0577) (0.0504) (0.0560) (0.0734) (0.0651) (0.0695) (0.116) (0.127) (0.0693) 
Constant -34.89*** -37.87*** -36.15*** -40.05** -45.60** -40.51** -96.61*** -52.25* -45.26* 
 (12.87) (13.62) (12.91) (19.87) (20.47) (19.61) (37.44) (30.82) (26.06) 
          
Observations 167 167 167 125 125 125 147 147 147 
R-squared 0.405 0.382 0.405 0.346 0.355 0.375    
No. of counties 21 21 21 21 21 21 21 21 21 
Sargan’s test        9.80 (32) 13.44 (32) 14.74 (32) 
1st order autocorr.       -1.998** -1.73* -1.867* 
2nd order autocor       -0.958 -1.16 -0.668 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.In the Sargan’s test we presented the 2F  values and the degree of freedom are in parentheses. We presented the z 

values for the autocorrelation test. For the fixed effect instrumental variable estimations, we assume carbon dioxide emission is endogenous so we use energy consumption as an 
instrument together with other regressors used in the second step. Also, in the system GMM the lag of carbon dioxide emission is used as an instrument for carbon dioxide 

emission since lags of a variable is a better instrument for itself. 
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This is only observed in the situation when summer temperature is used in the model, and may 

explain the negative relationship between precipitation and the number of infectious disease 

patients. According to Martens et al., (1995) and NRC (2001), the suitability of vector habitats is 

determined by minimum precipitation levels. Thus, a reduction in precipitation will create 

conducive environment for vectors which will in turn increase infection of diseases hence more 

patients.  

The positive effect of income per capita and the negative effect of the squared of the income per 

capita imply that the relationship between the number of infectious disease patients and income 

per capita is an inverted-U shape. This means that as the income per capita in Swedish counties 

increase, there is more coverage to track individuals with infectious diseases hence the number of 

infectious patients increases. However, beyond a certain income level the number of infectious 

disease patients decreases as income increases. This result is intuitive since during any epidemic 

outbreak, investment or higher income in the region implies more income will be channelled into 

the health sector and this will help access individuals with the disease so the number of recorded 

cases will definitely increase. As the investment or income increases, complemented with the 

necessary treatment, the number of cases starts decreasing. Thus, increase in income per capita 

may imply higher resources for public health services which significantly affect the distribution 

of diseases, since the very purpose of such services is to stem the spread of disease in 

populations. Through the activities of public health such as vaccination which is a specific 

intervention aimed at preventing the occurrence of diseases in individuals, the incidence of 

infectious diseases would be reduced among the population.  Also, an increase in income per 

capita in the county goes a long way to help in the development of antimicrobial agents which 

has the tendency of altering the pattern of infectious disease.  

In relation to the positive effect of immigration on the number of infectious disease patients, the 

results imply that the spread of infectious disease agents is greatly affected by human travel 

patterns and the inflow of migrants. Thus, the inflow of immigrants into Sweden is one of the 

means by which diseases spread, either because migrants bring new pathogens with them to their 

destinations or because the migrants themselves constitute susceptible populations and lack 

immunity to endemic diseases in their areas of settlement. The positive effect of migration on 

infectious diseases brings to mind the concept of “airport malaria” which arose from numerous 
reports of limited malaria outbreaks among populations surrounding airports in temperate non-

endemic areas such as the United States, England, and Northern Europe (NRC, 2001).  

 

5.3 Sensitivity Analysis 

In Table 4 we use the number of infectious disease individuals admitted as the dependent 

variable in the estimation. As argued earlier, we use this to check how sensitive our results are. 

From the FE results in Table 4, we find factors that significantly affect the number of infectious 

disease admissions to be the same as that of the number of infectious disease patients in Table 3 

if average temperature is considered in the model. However, we observe slight variations in the 

factors when winter and summer temperature values are used. In the case where winter 

temperature is alternatively included in the estimated model, we find the number of infectious 
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disease admissions is mainly driven by current and previous temperature in winter, income per 

capita and its squared, and education. Unlike the evidence shown in Table 3, where the number 

of infectious disease patients is significantly explained by immigrants when winter temperature is 

controlled for, the situation in column 1 of Table 4 is different. Also, from column 2 of Table 4 

we find all the factors affecting the number of infectious disease patients in column 2 of Table 3 

also affect the number of infectious disease admissions. However, education explains the 

number of infectious disease admission in the case where summer temperature is used (see 

column 2 of Table 4).  

The direction of the effect of the factors affecting the number of infectious disease admissions is 

the same as that of the number of infectious disease patients discussed earlier. In the case of 

education, we find a positive effect on the number of infectious disease admission. This means 

that as the number of individuals having post-secondary education increases the higher the 

number of infectious disease admissions. This is however contrary to our expectation. It might 

be that the more educated would seek for more medical services and opt for admission when 

he/she is infected by infectious disease in order not to spread it to close relatives and friends. In 

the case of the FEIV results, we find the number of infectious disease admissions to be affected 

by the same factors as that of the number of infectious disease patients when winter, summer 

and average temperature variables are used.  

Similar to the case of FE in Table 4, results for the system GMM estimation show minor 

differences to that shown in Table 3. Whereas previous infectious disease patients affect current 

ones in the case of Table 3 (see column 7), previous infectious disease admissions do not affect 

current ones in the case of Table 4 (see column 7), when winter temperature value is used. 

However, the number of health personnel significantly explains infectious disease admissions but 

not patients when winter temperature value is considered. In the case where summer 

temperature is used for the system GMM estimation in Table 4, we find the number of 

infectious disease admission to be affected by previous admissions, income per capita squared, 

population density in addition to factors which drive infectious disease patients (see results in 

Table 3). We observe population density to have positive effect on infectious disease admissions 

after controlling for summer temperature. This means that infection is facilitated by population 

concentration because infected individuals have a higher probability of contact with susceptible 

members of the population. In the literature (see NRC, 2001), population density has been linked 

with increasing ease of transmission of airborne infections, waterborne diseases, and sexually 

transmitted infections.      
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Table 4: Determinants of the number of infectious disease admissions 

 Fixed Effect Model Fixed Effect Instrumental Variable  Model System Generalised Method of Moment 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
VARIABLES Winter Summer Average Winter Summer Average Winter Summer Average 
          
Lnadmission (-1)       0.154 0.111* 0.208** 
       (0.128) (0.0669) (0.105) 
LnCO2 0.0473 0.0748 0.00824 -0.352 -0.262 -0.373 0.157 0.195*** -0.00922 
 (0.0994) (0.101) (0.102) (0.334) (0.330) (0.341) (0.114) (0.0752) (0.109) 
Winter Temp.  -0.00763***   -0.00979**   -0.00521***   
 (0.00290)   (0.00424)   (0.00201)   
Winter Temp.(-1)  0.00841**   0.00844*   0.0113***   
 (0.00350)   (0.00441)   (0.00181)   
Summer Temp.   0.00107   0.000690   -0.0113  
  (0.00950)   (0.0126)   (0.00739)  
SummerTemp(-1)   -0.0235**   -0.0295**   -0.0353***  
  (0.00924)   (0.0119)   (0.00767)  
Average Temp.    -0.0243***   -0.0359***   -0.0335*** 
   (0.00812)   (0.0129)   (0.00605) 
Avera. Temp(-1)    -0.0192**   -0.0202*   -0.0200*** 
   (0.00850)   (0.0122)   (0.00563) 
Precipitation -0.000546 -0.00121** -0.000734 0.000115 -0.000590 -0.000022 -0.000434 -0.00151*** -0.000753* 
 (0.000583) (0.000569) (0.000572) (0.000761) (0.000747) (0.000730) (0.000426) (0.000450) (0.000410) 
Precipitation (-1) 0.000107 -0.000099 -0.000057 0.000255 -0.000186 0.0000186 -0.000214 0.000450 0.000025 
 (0.000517) (0.000543) (0.000506) (0.000663) (0.000672) (0.000631) (0.000351) (0.000341) (0.000327) 
LnGDP per cap.  13.25*** 14.74*** 13.97*** 14.13** 16.19** 14.61** 29.42** 17.88* 10.86 
 (4.784) (5.015) (4.807) (7.085) (7.156) (7.035) (14.15) (9.321) (9.792) 
LnGDPpercap. sq  -1.123*** -1.258*** -1.206*** -1.180* -1.366** -1.240** -2.500** -1.524* -0.940 
 (0.413) (0.432) (0.415) (0.606) (0.611) (0.602) (1.232) (0.807) (0.844) 
LnEducation 0.416* 0.416* 0.210 0.0469 0.131 -0.136 0.154 -0.0657 -0.160 
 (0.234) (0.231) (0.242) (0.556) (0.519) (0.589) (0.119) (0.105) (0.160) 
LnHealthpersonn. -0.000776 0.0493 -0.0890 -0.0668 0.0525 -0.194 1.054* 1.254** 0.395 
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 (0.462) (0.467) (0.463) (0.584) (0.582) (0.568) (0.587) (0.531) (0.453) 
LnPopulationden -0.181 -0.0470 -0.00919 -0.333 -0.225 -0.120 0.0220 0.0693** 0.00137 
 (0.362) (0.372) (0.365) (0.681) (0.676) (0.698) (0.0303) (0.0349) (0.0291) 
LnImmigration  0.0875 0.178*** 0.220*** 0.0199 0.123* 0.157** 0.00796 0.0227 0.112** 
 (0.0604) (0.0525) (0.0587) (0.0758) (0.0668) (0.0721) (0.107) (0.0595) (0.0546) 
Constant -34.46** -40.05*** -35.95*** -34.10* -42.26** -34.97* -89.98** -56.62** -29.55 
 (13.48) (14.21) (13.54) (20.52) (21.02) (20.35) (43.50) (27.05) (27.23) 
          
Observations 167 167 167 125 125 125 147 147 147 
R-squared 0.433 0.416 0.431 0.3897 0.405 0.411    
No. of counties 21 21 21 21 21 21 21 21 21 
Sargan’s test        10.54 (32) 14.60 (32) 17.34 (32) 
1st order autocorr.       -1.702* -1.732* -1.676* 
2nd order autocor       -0.944 -1.227 -0.782 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.In the Sargan’s test we presented the 2F  values and the degree of freedom are in parentheses. We presented the z 

values for the autocorrelation test. For the fixed effect instrumental variable estimations, we assume carbon dioxide emission is endogenous so we use energy consumption as an 
instrument together with other regressors used in the second step. Also, in the system GMM the lag of carbon dioxide emission is used as an instrument for carbon dioxide 

emission since lags of a variable is a better instrument for itself. 
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We find much difference in the factors which affect the number of infectious disease patients 

and admissions when average temperature values are used (see column 9 of Tables 3 and 4). 

With regard to the number of infectious disease admissions, we find previous admissions, 

average temperature and its lag, precipitation and the number of immigrants to significantly 

cause the number of infectious disease admissions. Conversely, the number of infectious disease 

patients is significantly caused by increases in average temperature and its lag, as well as income 

per capita and its squared. 

 

6.0 Conclusions 

In this study, we examine the effect of climate variability, carbon dioxide emissions, migration 

and other socio-economic variables on the incidence of infectious diseases using on panel data 

for the period 2005-2012 for all Swedish 21 counties. We consider the number of patients and 

admissions from infectious diseases as the outcome variables in this paper. By developing a  

theoretical model based on Zivin and Neidell (2013) to analyse how climate change affects 

health, we observe that medical treatment is a function of climate change, the function that 

translate climate change into illness incidence and the costs of avoidance behaviour, medical care 

and all other consumption goods. Also, the effect of climate change on health can be 

decomposed into the relationship between climate change and illness, and the degree to which 

illness is translated into health status. The relationship between climate change and illness is 

described as the net effect of climate change on illness incidence based on individuals’ exposure 
level.  

In order to empirically estimate our theoretical model, we employ three different estimation 

techniques (FE, FEIV and system GMM) in order to check for the robustness of our results.  

From the empirical results, we generally observe the number of infectious disease patients and 

admissions are caused by temperature, income per capita and the number of immigrants. We 

find mixed effect of temperature on the number of infectious disease patients and admissions 

depending on whether winter, summer and average temperature are separately included in the 

estimated model.  The relationship between infectious disease proxies (i.e. patients and 

admissions) and income per capita portray an inverted-U shape. Further, in most cases, the 

number of immigrants is found to have a positive effect on the number of infectious disease 

patients and admissions. When summer temperature value is used, we find precipitation to have 

negative effect on the number of infectious disease patients and admissions.  

In few cases we find that the number of infectious disease admissions is caused by education, 

number of health personnel and population density. Also, carbon dioxide emissions significantly 

impact on the number of infectious disease patients and admissions in summer (evidence based 

on the system GMM). In summary, our results show that infectious diseases in Sweden are 

significantly caused by climate change and socio-economic variables (such as income, number of 

immigrants, among others). This suggests that investment into public health services in the long 

run will have negative impact on the number of infectious disease patients and admissions. There 

should therefore be adaptation and mitigation strategies to address the impact on climate change 

on health. Further, inclusion of climate sensitive infectious diseases on the list of notifiable 
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diseases should be paramount. Migration policies are also very critical in addressing infectious 

diseases in Sweden and should engage the attention of the Swedish Migration Board and public 

health authorities. Relevant routine screening for potential introduction of targeted infectious 

diseases at the various points of entry into Sweden should be considered and implemented with 

regard to appropriate legal frameworks (local, regional and international) that ensures respect for 

individual rights and freedoms while safeguarding the general interest of the larger population.    
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Appendix 

A00-B99: Infectious and parasitic diseases from National Board of Health and Welfare in Sweden 
database (http://www.socialstyrelsen.se/statistics/statisticaldatabase/inpatientcarediagnoses)  

A00-A09 Intestinal infectious diseases 

A00 Cholera; A01 Typhoid and paratyphoid fevers; A02 Other salmonella infections; A03 
Shigellosis; A04 Other bacterial intestinal infections; A05 Other bacterial foodborne 
intoxications; A06 Amoebiasis; A07 Other protozoal intestinal diseases; A08 Viral and other 
specified intestinal infections; A09 Diarrhoea and gastroenteritis of presumed infectious 
originshow/hide subcategories 

A15-A19 Tuberculosis 

A15 Respiratory tuberculosis, bacteriologically and histologically confirmed; A16 Respiratory 
tuberculosis, not confirmed bacteriologically or histologically; A17 Tuberculosis of nervous 
system; A18 Tuberculosis of other organsA19 Miliary tuberculosisshow/hide subcategories  

A20-A28 Certain zoonotic bacterial diseases 

A20 Plague; A21 Tularaemia; A22 Anthrax; A23 Brucellosis; A24 Glanders and melioidosis; A25 
Rat-bite fevers; A26 Erysipeloid; A27 Leptospirosis; A28 Other zoonotic bacterial diseases, not 
elsewhere classifiedshow/hide subcategories 

A30-A49 Other bacterial diseases 

A30 Leprosy [Hansen's disease]; A31 Infection due to other mycobacteria; A32 Listeriosis; A34 
Obstetrical tetanus; A35 Other tetanus; A36 Diphtheria; A37 Whooping cough; A38 Scarlet 
fever; A39 Meningococcal infection; A40 Streptococcal septicaemia; A41 Other septicaemia; A42 
Actinomycosis; A43 Nocardiosis; A44 Bartonellosis; A46 Erysipelas; A48 Other bacterial 
diseases, not elsewhere classified; A49 Bacterial infection of unspecified siteshow/hide 
subcategories 

A50-A64 Infections with a predominantly sexual mode of transmission 

A50 Congenital syphilis; A51 Early syphilis; A52 Late syphilis; A53 Other and unspecified 
syphilis; A54 Gonococcal infection; A55 Chlamydial lymphogranuloma (venereum); A56 Other 
sexually transmitted chlamydial diseases; A57 Chancroid; A59 Trichomoniasis; A60 Anogenital 
herpesviral [herpes simplex] infection; A63 Other predominantly sexually transmitted diseases, 
not elsewhere classified; A64 Unspecified sexually transmitted diseaseshow/hide subcategories 

A65-A69 Other spirochaetal diseases 

A65 Nonvenereal syphilis; A66 Yaws; A67 Pinta [carate]; A68 Relapsing fevers; A69 Other 
spirochaetal infectionsshow/hide subcategories 

A70-A74 Other diseases caused by chlamydiae 

A70 Chlamydia psittaci infection; A71 Trachoma; A74 Other diseases caused by 
chlamydiaeshow/hide subcategories 

A75-A79 Rickettsioses 

A75 Typhus fever; A77 Spotted fever [tick-borne rickettsioses]; A78 Q fever; A79 Other 
rickettsiosesshow/hide subcategories 

A80-A89 Viral infections of the central nervous system 

A80 Acute poliomyelitis; A81 Slow virus infections of central nervous system; A82 Rabies; A83 
Mosquito-borne viral encephalitis; A84 Tick-borne viral encephalitis; A85 Other viral 
encephalitis, not elsewhere classified; A86 Unspecified viral encephalitis; A87 Viral meningitis; 
A88 Other viral infections of central nervous system, not elsewhere classified; A89 Unspecified 
viral infection of central nervous systemshow/hide subcategories 

 

javascript:cc('i_01_1')
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A90-A99 Arthropod-borne viral fevers and viral haemorrhagic fevers 

A90 Dengue fever [classical dengue]; A91 Dengue haemorrhagic fever; A92 Other mosquito-
borne viral fevers; A93 Other arthropod-borne viral fevers, not elsewhere classified; A94 
Unspecified arthropod-borne viral fever; A95 Yellow fever; A96 Arenaviral haemorrhagic fever; 
A98 Other viral haemorrhagic fevers, not elsewhere classified; A99 Unspecified viral 
haemorrhagic fevershow/hide subcategories 

B00-B09 Viral infections characterized by skin and mucous membrane lesions 

B00 Herpesviral [herpes simplex] infections; B01 Varicella [chickenpox]; B02 Zoster [herpes 
zoster]; B03 Smallpox; B04 Monkeypox; B05 Measles; B06 Rubella [German measles]; B07 Viral 
warts; B08 Other viral infections characterized by skin and mucous membrane lesions, not 
elsewhere classified; B09 Unspecified viral infection characterized by skin and mucous membrane 
lesionsshow/hide subcategories 

B15-B19 Viral hepatitis 

B15 Acute hepatitis A; B16 Acute hepatitis B; B17 Other acute viral hepatitis; B18 Chronic viral 
hepatitis; B19 Unspecified viral hepatitisshow/hide subcategories 

B20-B24 Human immunodeficiency virus [HIV] disease 

B20 Human immunodeficiency virus [HIV] disease resulting in infectious and parasitic diseases; 
B21 Human immunodeficiency virus [HIV] disease resulting in malignant neoplasms; B22 
Human immunodeficiency virus [HIV] disease resulting in other specified diseases; B23 Human 
immunodeficiency virus [HIV] disease resulting in other conditions; B24 Unspecified human 
immunodeficiency virus [HIV] diseaseshow/hide subcategories 

B25-B34 Other viral diseases 

B25 Cytomegaloviral disease; B26 Mumps; B27 Infectious mononucleosis; B30 Viral 
conjunctivitis; B33 Other viral diseases, not elsewhere classified; B34 Viral infection of 
unspecified siteshow/hide subcategories 

B35-B49 Mycoses 

B35 Dermatophytosis; B36 Other superficial mycoses; B37 Candidiasis; B38 Coccidioidomycosis; 
B39 Histoplasmosis; B40 Blastomycosis; B41 Paracoccidioidomycosis; B42 Sporotrichosis; B43 
Chromomycosis and phaeomycotic abscess; B44 Aspergillosis; B45 Cryptococcosis; B46 
Zygomycosis; B47 Mycetoma; B48 Other mycoses, not elsewhere classified; B49 Unspecified 
mycosisshow/hide subcategories 

B50-B64 Protozoal diseases 

B50 Plasmodium falciparum malaria; B51 Plasmodium vivax malaria; B52 Plasmodium malariae 
malaria; B53 Other parasitologically confirmed malaria; B54 Unspecified malaria; B55 
Leishmaniasis; B56 African trypanosomiasis; B57 Chagas' disease; B58 Toxoplasmosis; B59 
Pneumocystosis; B60 Other protozoal diseases, not elsewhere classified; B64 Unspecified 
protozoal diseaseshow/hide subcategories 

B65-B83 Helminthiases 

B65 Schistosomiasis [bilharziasis]; B66 Other fluke infections; B67 Echinococcosis; B68 
Taeniasis; B69 Cysticercosis; B70 Diphyllobothriasis and sparganosis; B71 Other cestode 
infections; B72 Dracunculiasis; B73 Onchocerciasis; B74 Filariasis; B75 Trichinellosis; B76 
Hookworm diseases; B77 Ascariasis; B78 Strongyloidiasis; B79 Trichuriasis; B80 Enterobiasis; 
B81 Other intestinal helminthiases, not elsewhere classified; B82 Unspecified intestinal 
parasitism; B83 Other helminthiasesshow/hide subcategories 

B85-B89 Pediculosis, acariasis and other infestations 

B85 Pediculosis and phthiriasis; B86 Scabies; B87 Myiasis; B88 Other infestations; B89 
Unspecified parasitic diseaseshow/hide subcategories 
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B90-B94 Sequelae of infectious and parasitic diseases 

B90 Sequelae of tuberculosis; B91 Sequelae of poliomyelitis; B92 Sequelae of leprosy; B94 
Sequelae of other and unspecified infectious and parasitic diseasesshow/hide subcategories 

B95-B97 Bacterial, viral and other infectious agents 

B95 Streptococcus and staphylococcus as the cause of diseases classified to other chapters; B96 
Other bacterial agents as the cause of diseases classified to other chapters; B97 Viral agents as the 
cause of diseases classified to other chaptersshow/hide subcategories 

B99-B99 Other infectious diseases 

B99 Other and unspecified infectious diseases 

 


