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Abstract

It is well known that the price and consumption paths of most nonrenewable
resources, including the fossil primary energies, do not follow the paths pre-
dicted by the standard Hotelling rule (Krautkraemer,1998, Gaudet, 2007).
We develop a model in which a dedicated capital together with the fossil
fuel are both required to produce useful energy. Starting from a state of
the economy in which the fossil fuel is not yet exploited, we characterize the
optimal path of the double transition: The first transition from the initial
renewable energy regime to a mixed or full fossil fuel regime and later the sec-
ond transition from the fossil fuel regime back to a renewable energy regime
when the available stock of the fossil fuel becomes more and more rare. We
show that, absent any technical progress, the useful energy price must first
decrease, next be constant during the phase of maximum expansion of the
fossil fuel energy consumption before entering the phase of decreasing use of
the fossil energy. Only this third phase of decreasing fossil fuel consumption
looks like a standard Hotelling path.

Keywords:Nonrenewable resources, Renewable resources, Energy tran-
sition, Hotelling rule.

JEL Classification: Q00, Q32, Q43, Q54.



Abstract

Il est bien connu que les sentiers de prix et de consommation de la plupart
des resources non renouvelables, y compris les ressources énergétiques pri-
maires, diffèrent des sentiers prédits par la règle d’Hotelling (Krautkramer,
1998; Gaudet, 2007). Nous proposons un modèle dans lequel, pour produire
de l’énergie utile deux facteurs sont nécessaires, une ressource primaire et des
biens capitaux dédiés. Partant d’un état de la société dans lequel l’énergie
fossile n’est pas encore exploitée, nous caractérisons le sentier optimal d’une
double transition. La première au cours de laquelle l’énergie fossile se sub-
stitue énergie renouvelable, la seconde au cours de laquelle l’énergie fossile est
progressivement abandonnée au profit de l’énergie renouvelable. Nous mon-
trons qu’il existe un plateau d’exploitation maximale de la ressource fossile
plutôt qu’un pic et que le sentier ne suit ce que prédit la règle d’Hotelling
qu’au cours de la phase de régression de l’utilisation de la ressource non
renouvelable.

Keywords: Ressources non renouvelables, Ressources renouvelables, Tran-
sition énergétique, Règle d’Hotelling.

JEL Classification: Q00, Q32, Q43, Q54.



1 Introduction

A recurrent theme in the nonrenewable resource literature is that the price
and the consumption paths of most non renewable resources, including the
fossil energy primary resources, do not follow the paths predicted by the most
simple formulations of the Hotelling rule (Hotelling, 1931). A large sample of
resources the price paths of which do not apparently comply with the rule is
given in Krautkraemer, (1998) and Gaudet, (2007), for instance, and differ-
ent possible explanations of the divergence are listed (see also Farzin, (1992),
and Livernois, (2009)). Amongst the sources of divergence or the reasons
justifying a reformulation of the arbitrage conditions underlying the rule, is
the necessity to take into account the heavy investments required in many
mining industries (Puu, (1977), Crémer, (1979), Campbell, (1980), Lasserre,
(1982), (1985-a) and (1985-b), Cairns and Lasserre, (1986), Olsen, (1989),
Cairns and Lasserre, (1991), Lozada, (1993), Cairns (1998) and (2001), Hol-
land (2003-a)). A related literature is the literature on the set-up costs
which can be seen as necessary investment costs, and the corresponding ex-
istence problems of competitive equilibria in nonrenewable resource markets
(Hartwick et al. (1986), Holland, (2003-b), Vu and Im, (2011), Bommier et
al. (2018)).1

Whatever the kind of marginal extraction cost modelling to be chosen for
a right reformulation of the Hotelling rule, a closely linked problem is the way
how the primary resource Hotelling rule translates into prices paths of goods
whose the primary resource is a substantial input. Amongst these resources
a special attention must be devoted to the primary energy resources. In the
transformation process of underground fossil energy into useful energy, that is
the energy consumed by the final users, the main part of the necessary capital
is not in the mining industry. For example to transform underground oil
into useful transportation energy services, the extracted petroleum must be
refined, in some cases the output of the refinery industry is transformed into
another form of energy like electricity and maybe one time more transformed
in between, like hydrogen to feed fuel cells, and next used together with
cars, buses, trucks, trains, ships or planes and the necessary infrastructures
allowing to put into operation these transportation devices and finally obtain

1A larger acceptation of the capital concept would lead to also include the literature
on the exploration and R&D costs.



useful mechanical energy. 2

A characteristic of a large part of these capital goods is that they are
strongly adapted to the use of fossil fuels although some of which could be
retrofitted for the use of renewable energy but at some cost.

In this paper we explore the way how starting from a pure renewable
energy system, the fossil fuel industry should expand and finally decline,
and the energy sector come back to a pure renewable system, when the
production of the fossil useful energy requires both a nonrenewable resource
and dedicated capital, what we call the fossil fuel interlude or the twofold
energy transition. Equivalently we explore the way how the price or full
marginal cost of the primary nonrenewable energy and the price of the useful
energy are linked together through time assuming that they are optimally
exploited and produced.

To keep the analysis tractable we assume that there exist only two pri-
mary resources, a nonrenewable one that we call ’coal’ and a renewable one
that we call ’solar’, both from which can be produced a unique kind of useful
energy. To produce useful energy from coal both coal and a dedicated capital
are required. We do not model the capital in the mining sector. Coal is ex-
tracted at a constant marginal cost, without fixed cost, so that the optimal
price path of the extracted coal is the most simple form of an Hotelling path.
The production function of useful energy from coal is a three inputs Leontief
function: coal, capital services and another input, e.g labor. Although capi-
tal services and coal are strictly complementary inputs at each date, this is
not the case in the long run for coal and capital itself. For example with a
constant operating capital stock, more or less coal can be processed accord-
ing to the length of the period during which the capital is maintained into
operation at some maintenance cost. The same holds during the period of
capital building since for a given capacity to be erected at the end of the
investment period, more or less coal can be processed depending upon the
speed at which the capital is accumulated. Last the same holds also during
the decline period. From the same capital at the beginning of the decline
period more or less coal can be processed according to the speed at which
the capital is scraped, the scraping rate being a command variable in our

2See Fouquet (2008) for a well documented record over several centuries of the price
paths of the main useful energies, what Fouquet calls “energy services”.
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model. Thus although strictly complementary at each point of time, capital
and coal may be seen as inter-temporal substitutes. As for the useful energy
produced from the solar primary resource, we do not detail the production
process and assume that the useful energy is produced from the solar energy
at an increasing marginal cost.

Assuming an increasing marginal cost of investment, a constant unitary
capital maintenance cost and absent any technical progress, we show that,
facing a stationary useful energy demand, the optimal production path should
be a four phases path, first develop the coal useful energy industry, the first
transition phase or decline phase of the solar useful energy production, next
maintain the coal useful energy production rate at its maximum level during
a second phase before entering the third phase of coal useful energy decline,
the second transition now from nonrenewable energy back to renewable en-
ergy, the fourth and last phase being the restoration of the initial pure solar
energy regime. Thus there does not exist a peak of fossil fuel extraction at
some date but rather a plateau of maximum production. The reason is that
the cost of the capital invested in the production of useful energy must be
recovered and this is not feasible along a single peaked production path since
the operational lifetime of the last built pieces of equipment would be too
short. Thus the result should hold under more general assumptions on the
demand and production sides.

During the three first phases of coal exploitation, the total production of
useful energy from both the coal and solar sectors, is larger than the pro-
duction under the pure solar regime. The price path of useful energy is first
decreasing during the first phase, next constant during the second phase and
increasing during the third one to come back to its initial level. But the
price path of the extracted coal, the full marginal cost path of the resource
(marginal cost + mining rent) is a standard Hotelling path along which the
mining rent increases at a proportional rate equal to the social discount
rate. Thus during the two first phases the two price paths are negatively
correlated, the decreasing discrepancy corresponding to the decrease of the
marginal shadow value of the capital. As time goes on the resource is more
and more rare while the accumulated capital is less and less rare, hence the
contrasted moves of the two shadow marginal values up to the time at which
the accumulated capital is no more rare. Initially, during the investment
phase of capital expansion, the decrease of the shadow value of capital domi-
nates the increase of the shadow value of the resource, the mining rent, hence
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the decrease of the price of the useful energy. During the second phase at the
maximum expansion of the coal sector both moves annihilate each other, the
increase of the mining rent exactly balancing the decrease of the rental value
of capital and the price of useful energy is constant. At the end of this phase
the marginal shadow value of capital is nil and this is the time at which be-
gins the decline of the coal exploitation. Then while the coal continues to be
more and more rare the accumulated capital is potentially in excess so that
its shadow marginal value will stay nil. However to exploit this contracting
stock of coal some part of the initially available capital must be kept into
operation at a marginal cost equal to the marginal maintenance cost. Then
the discrepancy between the useful energy price and the extracted coal price
is no more no less than the marginal maintenance cost and now both prices
are positively correlated. Under the constant unitary maintenance cost as-
sumption the useful energy price path mimics the Hotelling price path of the
extracted coal.

The paper is organized as follows. The model in laid down in the next
section 2. In section 3 we formulate the optimality problem and define some
auxiliary functions allowing to facilitate the subsequent proofs of the paper.
The qualitative properties of the optimal paths are determined in section 4.
We conclude in section 5.

2 The model

We consider an economy producing useful energy (U.E) from either a nonre-
newable primary energy resource (coal) or from a renewable resource (solar).
Coal useful energy (C.U.E) and solar useful energy (S.U.E) are perfect sub-
stitutes for the final users. We denote by qx the instantaneous production
rate of C.U.E, by qy the instantaneous production rate of S.U.E and by q

the instantaneous production rate of U.E. Under the perfect substitutabil-
ity assumption q(t) = qx(t) + qy(y), t � 0. Without useful energy storage
possibilities, q(t) is also the U.E consumption rate.

User surplus
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Let u(q(t)) denote the instantaneous gross surplus of the U.E users. The
function u is assumed to satisfy the below standard assumption.3

Assumption A. 1 u : R++ ! R is twice continuously differentiable, strictly
increasing and strictly concave with u

0(0+) = +1 and u
0(1) = 0. 4

We sometimes denote by p(q) the marginal surplus function u
0(q), the

inverse demand function, and by q
d(p) the direct demand function, the inverse

of p(q), where p is the U.E price.

Coal U.E production

Producing U.E from coal requires capital and other inputs together with
coal. We assume that the C.U.E production function is a Leontief one and
without loss of generality that there is only one input other than capital and
coal, hence the following Assumption A.2.

Assumption A. 2 The C.U.E production function reads:

qx = min{K, v, r̄x}, K, v, x � 0 and 1 > r̄ > 0 , (2.1)

where x,K, v are respectively the coal, the capital and the other input, all
measured in energy units.

The assumption r̄ < 1 means that some energy is lost in the transforma-
tion of coal into U.E. In what follows we mainly use its inverse r = 1/r̄ > 1,
the quantity of coal energy required to produce one unit of U.E.5

3For any function f(x) defined on X ✓ R we denote by f(x̄+) and f(x̄�), x̄ 2 X,
respectively, the limits limx#x̄ f(x) and limx"x̄ f(x) when such limits exist.

4Admittedly we need only that u0(0+) be "sufficiently" high.
5It is well known that the energy is constant. Thus by energy loss we mean that some

part of the chemical energy of coal is transformed into energy improving the surplus of
the final users the remaining being mostly dissipated in useless heat.
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We denote by cv the unitary cost of the input v, assumed to be constant
through time. The capital K is dedicated to the production of C.U.E without
valuable use outside the C.U.E industry and requires an unitary maintenance
cost m assumed to be constant through time. This capital dies by lack of
maintenance and cost-free scraping. Let k(t) be the production rate of new
capital, then absent any "abrupt" reduction of the installed capacity K(t),
the capital stock dynamics satisfies the following condition:6

K̇(t) = k(t)� �(t)K(t), �(t) � 0, t > 0 , (2.2)

where �(t) is the instantaneous proportional scraping rate.

Let ck(k) be the production cost function of new capital. This function
satisfies the following standard Assumption A.3 where c

0
k
(k) and ack(k) de-

note respectively the marginal and the average cost functions.

Assumption A. 3 ck : R+ ! R+ is a twice continuously differentiable func-
tion, strictly increasing and strictly convex, with ck(0) = 0 and c

0
k
(0+) =

ack(0+) > 0.

The assumption c
0
k
(0+) > 0 means that nothing can be built without

some costly input. In what follows we use the more compact notation c
0
k

for
c
0
k
(0+).

Coal mining

Let X0 be the initial coal endowment and X(t) what has not yet been ex-
tracted at time t, measured in energy units. Denoting by x(t) the extraction
rate at time t, the dynamics of X(t) reads:

Ẋ(t) = �x(t) = �rqx(t) . (2.3)

To simplify we assume that the coal extraction and delivery costs to the
C.U.E industry, cx(x), are linear, hence:

6By "abrupt" reduction at a time t we mean that K(t�) > K(t+).
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Assumption A. 4 cx : R+ ! R+ is the linear function cx(x) = c
x
x, c

x
> 0.

Solar U.E production

The sites devoted to the production of solar U.E are exploited by merit
order that is by increasing marginal opportunity costs including the loss in net
surplus generated by their allocation to the S.U.E production rather than to
other net surplus generating uses, for example food production when S.U.E
is biofuel. However for some S.U.E production processes the opportunity
cost is nil, for example the S.U.E production via photovoltaic cells in desert
land. Taking care that other costs than the pure opportunity loss must be
supported, we assume, denoting by cy(qy) the full cost of S.U.E and by c

0
y
(qy)

and acy(qy) respectively the marginal and average costs, that:

Assumption A. 5 cy : R+ ! R+ is a twice continuously differentiable func-
tion, strictly increasing and strictly convex, with cy(0) = 0 and c

0
y
(0+) =

acy(0+) > 0.

The rationale for c
0
y
(0+) > 0 is the same as for c

0
k
(0+) > 0, and we use

from now the more compact notation c
0
y

for c
0
y
(0+).

When the S.U.E industry is the only supplier of U.E, then the marginal
surplus u

0(qy) must be equal to its marginal cost c
0
y
(qy). Under A.1 and A.5

the solution of u0(qy) = c
0
y
(qy) is unique and strictly positive. We denote by

q̃y, equivalently by q̃, this solution and by p̃ the corresponding U.E price:
p̃ = u

0(q̃). This is the state of the energy sector at the beginning and at the
end of the fossil fuel interlude.

In order that the C.U.E production be a competitive option we must
assume that its lowest marginal cost be lower than the marginal cost of the
S.U.E production when S.U.E is the only supplier of U.E, hence:

Assumption A. 6 cv+rc
x
+⇢c

0
k
+m < c

0
y
(q̃), where ⇢c

0
k

is the rental cost of
the least costly piece of C.U.E equipment valued at the social rate of discount
⇢.
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Discounting and Welfare

The welfare W is the sum of the net surplus discounted at a social rate
of discount ⇢ > 0, constant through time.

3 The social planner problem and preliminary

results

The social planner determines a path {(qx(t), qy(t), k (t), �(t))}1t=0 maximizing
the social welfare, that is solves the following problem (S.P):

(S.P) max
qx,qy ,k,�

1Z

0

{u(qx(t) + qy(t))� (cv + rc
x
)qx(t)�mK(t)

� ck(k(t))� cy(qy(t))}e
�⇢t

dt (3.1)

s.t. Ẋ(t) = �rqx(t), X(0) = X0 > 0 given, X(t) � 0 (3.2)
K̇(t) = k(t)� �(t)K(t), K(0) = 0, K(t) � 0 (3.3)
K(t) � qx(t), qx(t) � 0, qy(t) � 0, k(t) � 0, �(t) � 0. (3.4)

3.1 Optimality conditions

For the dual variables we denote by �
0
s the co-state variables, by ⌫

0
s the

Lagrange multipliers associated to the constraints on the state variables, by
�
0
s the multipliers associated to the constraints on the command variables

and by ⌘ the multiplier associated to the constraint involving both a state
and a command variable.
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The current value Hamiltonian, H, and Lagrangian, L, read:7

H=u(qx + qy)� (cv + rc
x
)qx �mK � ck(k)� cy(qy)� �Xrqx

+ �K(k � �K);

L=H + ⌫XX + ⌫KK + ⌘(K � qx) + �xqx + �yqy + �kk + ���.

The F.O.C’s are:
@L

@qx
= 0 =) u

0(qx + qy) = cv + r(c
x
+ �X) + ⌘ � �x (3.5)

@L

@qy
= 0 =) u

0(qx + qy) = c
0
y
(qy)� �y (3.6)

@L

@k
= 0 =) �K = c

0
k
(k)� �k (3.7)

@L

@�
= 0 =) �KK = �� , (3.8)

together with the usual complementary slackness conditions.

The co-state variables satisfy the following conditions when time differ-
entiable:

�̇X = ⇢�X �
@L

@X
=) �̇X = ⇢�X � ⌫X , ⌫X � 0 and ⌫XX = 0, (3.9)

�̇K = ⇢�K �
@L

@K
=) �̇K = (⇢+ �)�K +m� ⌘ � ⌫K , ⌫K � 0 and ⌫KK = 0 .

(3.10)

The transversality condition at infinity is:

lim
t"1

e
�⇢t[�X(t)X(t) + �K(t)K(t)] = 0 . (3.11)

3.2 Some properties of the optimal plans

Mining rent

Under the constant average extraction cost assumption A.4 and the C.U.E
industry competitiveness assumption A.6 the coal initial endowment X0 must

7We drop the time argument as far as no confusion is possible.
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be exhausted in finite time.8 Then (3.9) with ⌫X = 0 is the standard Hotelling
rule under constant marginal extraction cost prevailing up to the exhaustion
date tX :

�X(t) = �X0e
⇢t
, �X0 = �X(0), t  tX (3.12)

Gross and net margins of the C.U.E industry and shadow value of the
C.U.E production capacity

The multiplier ⌘ is the shadow marginal current value of the C.U.E
production capacity. At any time t at which the C.U.E industry is active
qx(t) > 0 and �x(t) = 0 so that, from (3.5):

qx(t) > 0 =) ⌘(t) = u
0(q(t))� [cv + r(c

x
+ �X(t))] . (3.13)

Since u
0(q(t)) = p(t), then ⌘(t) appears as the current gross margin of the

C.U.E industry when the price of the coal input is equal to its full marginal
cost c

x
+ �X .

Deducing the unitary maintenance cost of capital from the gross margin
we get the net operation margin, �(t) ⌘ ⌘(t)�m. Then for any time period
during which the C.U.E industry does not scrap production capacity, �(t) = 0
and (3.10) may be rewritten as follows:

�̇K(t) = ⇢�K(t)� �(t) , (3.14)

where ⇢�K is the rental price of a piece of equipment valued at �K . What
(3.14) states is that the shadow marginal value of the installed capacity
increases or decreases according to its rental cost be higher or lower than the
net margin.

C.U.E production capital ends its active life when coal is exhausted.
Hence at the time tX , �K(tX) = 0 since now this dedicated capital is use-
less. However as shown in Section 4, C.U.E production capacity begins to
be scraped before the exhaustion of coal. During the scraping phase �(t) > 0
and �� = 0, and because K(t) > 0 ( scraping requires that there exist equip-
ments to be scraped), (3.8) can be satisfied if and only if �K(t) = 0. Thus

8See Appendix A.3 for a proof in the present context. The proof uses properties of the
optimal paths proven in Section 4.
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denoting by t� the time at which the scraping phase begins and integrating
(3.14) over [t, t�], 0  t  t�, results in :

�K(t) =

t�Z

t

�(⌧)e�⇢(⌧�t)
d⌧ . (3.15)

The shadow marginal value of equipment is equal to the sum of the discounted
future net margins of the C.U.E industry.

Full marginal cost of C.U.E and marginal cost of capital

In (3.5) the full cost of C.U.E appears as the sum of monetary costs
cv + rc

x
in both C.U.E and mining industries, the shadow marginal cost

or mining rent of the coal input, r�X , and the multiplier associated to the
capacity constraint, ⌘. The alternative expression of ⌘ given by (3.10) allows
to interpret ⌘ as the shadow marginal cost of the capital use.

Using (3.10) for the time t
0
s at which the capital is not scraped, �(t) = 0,

we get ⌘ = ⇢�K � �̇K +m. Substituting for ⌘ in (3.10) results into:

u
0(qx + qy) = cv + r(c

x
+ �X) +m+ ⇢�K � �̇K ,

where m + ⇢�K � �̇K is the full marginal cost of capital use. Using the
capital requires that it must be maintained at the marginal cost m. To this
maintenance cost must be added its rental cost ⇢�K from which must be
deduced its instantaneous variation �̇K . This is a local arbitrage condition
as far as the price of equipment is equal to �K and ⇢ is the interest rate to
take into account. Assuming that the maintenance cost m is supported by
the user, would the rental price paid at t+dt, dt > 0, for the use of a piece of
equipment during the time interval [t, t+dt], be some amount g(t+dt) lower
than [⇢�K��̇K ]dt , then the best would be for the owner to sell the equipment
at time t for the price �K(t) and obtain a return ⇢�Kdt. With the first option
the owner asset profit would amount to �K + �̇Kdt+ g(t+ dt) at time t+ dt

and with the second one to (1 + ⇢)�K(t), and if g(t+ dt) < (⇢�K � �̇K)dt, a
price higher than �K(t) could be asked from selling the equipment at time t.

We prove in the next section that �̇K(t) is initially negative up to the time
at which begins the decline of the C.U.E industry. Thus the full marginal
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cost of the capital use is first larger than m+⇢�K(t). The capital is relatively
rare, given the coal stock not yet exploited and having to be transformed into
U.E, but less and less. Once the underground coal stock is sufficiently low,
then the capital is no more rare, hence its shadow price, �K , must be nil and
the marginal cost of its use reduces to its maintenance cost m.

Benchmarks and useful auxiliary functions

The following functions summarize some necessary relations between the
C.U.E industry capacity, K, the production of S.U.E, qy, the total produc-
tion, q, and the sum of the shadow value components of the C.U.E industry
marginal cost that we denote by µ : µ ⌘ r�X + ⌘. They will be repeatedly
used to characterize the optimal paths.

First note that there exists a critical level of the C.U.E production capac-
ity below which the S.U.E industry is active and above which it is no more
competitive. Let us denote by Ky this critical level defined as the solution of
u
0(K) = c

0
y
, hence Ky > q̃y.

Let us denote by q̂y(K) and q̂(K) respectively the optimal production of
the S.U.E industry and the total U.E production as functions of the C.U.E
production qx = K : q̂(K) = K + q̂y(K). From the above definition of Ky

and the F.O.C (3.6) relative to qy, we get:

q̂y(K) :

8
>>>><

>>>>:

= q̃y, K = 0

2 (0, q̃y), 0 < K < Ky

= 0, Ky  K

,
dq̂y

dK
=

8
<

:

u
00

c00y�u00 2 (�1, 0), 0 < K < Ky

0, Ky  K .

.

(3.16)

q̂(K) :

8
>>>><

>>>>:

= q̃y, K = 0

2 (q̃y, Ky), 0 < K < Ky

= K, Ky  K

,
dq̂

dK
=

8
><

>:

c
00
y

c00y�u00 2 (0, 1), 0 < K < Ky

1, Ky  K .

(3.17)

Consider now the critical level of K denoted by Kµ for which the F.O.C
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(3.5) relative to qx is satisfied with µ = 0 given that qy is optimal, that is
qy = q̂y(K). Then Kµ solves u0(K + q̂y(K)) = cv + rc

x
. Since µ must be non-

negative, the function µ̂(K), the value of µ satisfying (3.5), is a decreasing
function of K on [0, Kµ):

i) either cv + rc
x
> c

0
y
, that is Kµ < Ky and

µ̂(K) > 0, 0  K < Kµ and
dµ̂

dK
=

u
00
c
00
y

c00
y
� u00 < 0 ; (3.18)

ii) or c
0
y
> cv + rc

x
, that is Ky < Kµ and

µ̂(K) > 0, 0  K < Kµ and
dµ̂

dK
=

8
><

>:

u
00
c
00
y

c00y�u00 < 0, 0 < K < Ky

u
00
< 0, Ky < K < Kµ .

(3.19)

Note that q̂y(K), q̂(K) and µ̂(K) if Ky < Kµ, are not differentiable at Ky

(see Appendix A.1):

dq̂y

dK
|
K=K

�
y

<
dq̂y

dK
|
K=K

+
y

and
dq̂

dK
|
K=K

�
y

<
dq̂

dK
|
K=K

+
y

(3.20)

dµ̂

dK
|
K=K

�
y

>
dµ̂

dK
|
K=K

+
y

. (3.21)

Let us show now how to use these functions to determine the qualitative
properties of the optimal paths.

4 Optimal paths

All the optimal paths include four main phases: An initial phase of C.U.E
production capacity building up to some maximum K̄, followed by a phase of
constant C.U.E capacity at this maximum K̄ before entering a third phase of
scraping induced by the increasing scarcity of the coal resource, ending when
coal is exhausted and the energy system comes back to its initial regime, the
fourth and the last phase of the path. According to K̄ be larger or smaller
than Ky, the S.U.E sector must be either temporarily closed or permanently
kept active when the C.U.E sector is at its maximum development. In the
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former alternative the initial phase of C.U.E industry expansion includes
two sub-phases, a first one during which the S.U.E industry is active but
declining and a second one during which the S.U.E production rate is nil.
Symmetrically the third phase, the scraping phase, includes also two sub-
phases, a first one during which the S.U.E sector is still at rest and a second
one of S.U.E production revival. The sequence of phases and sub-phases and
the date notations are summarized in the below Figure 1.

Figure 1 here.

We first characterize the three phases of active C.U.E industry and next
we determine the way they succeed in the (K,X)-plane and show how the
paths depend upon the coal initial endowment.

4.1 Expansion, stabilization and decline phases of the
C.U.E industry

Under the assumption A.6 relative to the competitiveness of the C.U.E in-
dustry the initial phase must be a phase of investment in C.U.E production
capital.9Proposition 1 states that this phase is a phase of decreasing invest-
ment rate which must be followed by a phase of constant capacity. Propo-
sition 2 states that the second phase of constant C.U.E production capacity
must extend up to the time at which �K(t) = 0 when there is no new phase
of capacity investment. Proposition 3 characterizes the decline of the pro-
duction capacity of the C.U.E industry during the C.U.E industry capital
scraping phase.

Proposition P. 1 Expansion phase of the C.U.E industry

Let [0, tk) be the initial time interval of investment in C.U.E production
capacity: k(t) > 0, t 2 [0, tk) and k(t) = 0, t 2 [tk, tk + �) for some � > 0.

9If not, given the stationarity assumption of the model, the C.U.E industry would never
be developed, a contradiction since it is assumed to be competitive.
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Then:
�̇K(t) < 0, t 2 (0, tk) and lim

t"tk
�K(t) = c

0
k
. (4.1)

Furthermore this initial phase is followed by a phase [tk, tk +�), � > 0, of
constant industry capacity:

K(t) = K(tk), t 2 [tk, tk +�]. (4.2)

Proof: Assume that [0, tk) is followed by a scraping phase during which
�(t) > 0. Then some part of the last investment built at time tk � ✓, ✓ > 0
and sufficiently small, at a marginal cost at least equal to c

0
k
> 0 would have

an infinitely short operation life and its cost could never be recovered.

Consider first the case K(tk) < Ky so that dµ̂/dK is continuous over
[0, K(tk)] and assume that �̇K(t1) � 0 at some t1 2 (0, tk), then we first show
that �̇K(t) � 0 for all t 2 (t1, tk) and next that such an inequality implies a
contradiction.

At time t1, because �(t1) = 0, then since (3.14) holds: �̇K(t1) = ⇢�K(t1)�
�(t1) � 0. Since �(t1) = ⌘(t1)�m, then �̇(t1) = ⌘̇(t1).

Because ⌘(t) = µ(t) � r�X0e
⇢t, then ⌘̇(t) = µ̇(t) � r⇢�X0e

⇢t, and since
K̇(t1) = k (t1) > 0, then (dµ̂/dK) K̇(t1) < 0 by (3.18), implying that µ̇(t1) =
(dµ̂/dK) K̇(t1) < 0 and in turn also that �̇(t1) = ⌘̇(t1) < 0. Thus for dt > 0 :

�K(t1 + dt) = �K(t1) + �̇K(t1)dt � �K(t1) (4.3)
�(t1 + dt) = �(t1) + �̇(t1)dt  �(t1) . (4.4)

Hence
⇢�K(t1 + dt) � �(t1) + �̇(t1)dt =) �̇K(t1 + dt) � 0 .

Repeating the argument we conclude that �̇K(t) � 0 for all t 2 (t1, tk)
implying together with k(t1) > 0 and (3.7) hence �K(t1) = c

0
k
(k(t1)) > c

0
k
,

that:
lim
t"tk

�K(t) > c
0
k
.

However, because k(t) = 0, t 2 (tk, tk + �), then by (3.7), �K(t)  c
0
k
, t 2

(tk, tk + �) and �K(t) should jump downward at t = tk, a contradiction
since �K(t) must be continuous (Seierstad and Sydsaeter, 1987, chapter 3,
Theorem 16, p 244).
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Consider now the case Ky < K(tk) and let t
y

be the time at which
K(t) = Ky, 0 < t

y
< tk. At time t

y
, dµ̂/dK jumps downwards (c.f (3.21)).

Firstly if t1 2 (t
y
, tk) at which �̇K(t1) � 0, then the argument is exactly the

same since dµ̂/dK is continuous on (Ky, K(tk)). Secondly, if 0 < t1 < t
y
,

then by using the same argument over (t1, ty), clearly �K(t�y ) � �K(t1) and
�(t�

y
)  �(t1). Because both �K(t) and �(t) are continuous then �̇K(ty)

is well defined hence �̇K(ty) � 0 and the same argument may be repeated
over (t

y
, tk) resulting in �K(t

�
k
) � c

0
k
(k(t�

k
)) > c

0
k

and the same kind of
contradiction.10

Corollary 1 is a direct implication of Proposition 1.

Corollary 1 During the initial phase [0, tk) of investment in C.U.E produc-
tion capacity, the speed of capital accumulation, K̈(t) = k̇(t) < 0, decreases
from some initial positive level at the beginning of the phase down to 0 at the
end.

Let us turn now to the phase of maximal expansion of the C.U.E industry.

Proposition P. 2 Phase of maximal expansion and stabilization of
the C.U.E industry

There exists an extension [tk, t�) of the time interval [tk, tk + �) during
which K(t) = K(tk), such that the net operation margin �(t) decreases within
the interval, down to zero at t�. Provided that �(t) = 0, t 2 (t�, tX), �K(t)
decreases within the interval down to zero at time t�.

Proof: During the interval q(t) = q̂(K(tk)) and �(t) = ⌘(t) � m =
u
0(q̂(K(tk)) � [cv + r(c

x
+ �X0e

⇢t) +m]. Hence �̇(t) < 0 and there exists t�

such that �(t�) = 0. We now show that �̇K(t)/�K(t) < 0.
10The jump of dµ̂/dK at K = Ky implies a jump of �̈K(t) at t = t

y
, not a jump of

�̇K(t).
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Under the condition �(t) = 0, t > t�, then (3.15) holds within the interval
because �K(t�) = 0, and since �(t) decreases we get for all t 2 (tk, t�)

�K(t) =

t�Z

t

�(⌧)e�⇢(⌧�t)
d⌧ < �(t)

t�Z

t

e
�⇢(⌧�t)

d⌧

=
�(t)(1� e

�⇢(t��t))

⇢
⌘ h(t) > 0 .

Now from (3.14):

�̇K(t)

�K(t)
= ⇢�

�(t)

�K(t)
< ⇢�

�(t)

h(t)
= �

⇢e
�⇢(t��t)

1� e�⇢(t��t)
< 0. (4.5)

Therefore �̇K(t) < 0.

Last, for the Hotelling phase.

Proposition P. 3 Hotelling phase of capital scraping

If �(t) = 0, t 2 (t�, tX), then:

a. The last phase of C.U.E production is the Hotelling path corresponding
to a constant marginal extraction and transformation cost cv + rc

x
+m and

a coal endowment X(t�), hence a U.E price equal to its full marginal cost,
p(t) = cv + r(c

x
+ �X0e

⇢t) +m, with p(tX) = p̃;

b. The phase is a phase of scraping of the C.U.E production capacity, the
capacity K(t) decreasing from K(tk) at time t� down to zero at time tX , with
K̇(t) = q̇x(t). Thus K(tk) appears as the maximum capacity K̄ of the C.U.E
industry along the optimal path. Simultaneously the coal stock X(t) decreases
from X(t�) at time t� down to zero at time tX , with Ẋ(t) = �rqx(t).

Proof If �(t) = 0 then ⌘(t) = m and the F.O.C (3.5) reduces to

u
0(q(t)) ⌘ p(t) = cv + r(c

x
+ �X0e

⇢t) +m .

Time differentiating results in:

q̇(t) =
r⇢�X0e

⇢t

u
00(q(t))

< 0 , t 2 (t�, tX) . (4.6)
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From K(t) = qx(t) = q(t)� q̂y(K(t)) we get, taking (3.17) into account:

q̇x(t) = K̇(t) =

8
>><

>>:

q̇(t) < 0 , K(t) > Ky

q̇(t)

1 + dq̂y/dK
< 0 , K(t) < Ky

and �(t) = �
q̇x(t)

qx(t)
> 0

(4.7)

q̇y(t) =

8
><

>:

0 , K(t) > Ky

dq̂y

dK
K̇(t) , K(t) < Ky .

(4.8)

Denote by t̄y the time at which K(t) = Ky if K̄ > Ky, then:

q̇x(t̄
�
y
) = K̇(t̄�

y
) > K̇(t̄+

y
) = q̇x(t̄

+
y
), �(t̄�

y
) < �(t̄+

y
) and q̇y(t̄

�
y
) = 0 < q̇y(t̄

+
y
).

(4.9)

Let us turn now to the condition that the pairs (K,X) must satisfy at
the phase switching dates in order that the sequence Expansion-Stabilization-
Hotelling (E.S.H) be an optimal path candidate. To determine these condi-
tions we build a phase diagram in the (K,X) plane.

4.2 The phase diagram in the (K,X) plane

To build the diagram we proceed backwards and characterize first the Stabiliza-
tion-Scraping frontier and next the Expansion-Stabilization one.

4.2.1 The Stabilization-Scraping or Hotelling frontier

Let K� and X� be respectively the production capacity of the C.U.E industry
and the coal stock available at the beginning of the Hotelling phase. We de-
note by KH(X�) the frontier function: KH(X�) is the capacity of the C.U.E
industry required to follow the Hotelling path starting at the time t� with a
coal endowment X�. Because qx(t) is decreasing during the Hotelling phase,
maintaining a capacity larger than the C.U.E production is unnecessarily
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costly at all times during the phase. Hence K(t) = qx(t), t 2 (t�, tX) and
the capacity KH(X�) is the C.U.E production rate at the beginning of the
Hotelling path starting with the coal endowment X�. Thus would K� be
larger than KH(X�), then K� �KH(X�) would have to be scraped immedi-
ately before starting the progressive scraping process implied by the Hotelling
policy. Clearly such a state of the system is never attained along an optimal
path.

Note that the graph of the function KH(X�) is nothing but than the
Hotelling path itself. The reason is that any point (KH(X 0

�
), X 0

�
) on the

frontier attained at some time t
0 is the beginning of an Hotelling path. After

t
0
, {(KH(X(t)), X(t)), t > t

0
} is an Hotelling path. But this path does not

depend upon the way (KH(X 0
�
), X 0

�
) has been attained at time t

0, either as
the end of a stabilization phase closed at time t

0 or as a point of an Hotelling
trajectory posterior to a state (KH(X

00
�
), X

00
�
), X 00

�
> X

0
�
, attained at some

time t
00
< t

0.

Let �X�
be the value of �X at time t� and �H(�X�

) be the duration of the
Hotelling phase. Given that at the coal exhaustion date the U.E price must be
equal to p̃ then �H(�X�

) is this value of �H solving cv+r[c
x
+�X�

e
⇢�H ]+m = p̃,

hence:

d�H

d�X�

= �
1

⇢�X�

< 0, �X�
2 (0, �̃X), lim

�X
�
#0
�H(�X�

) = +1 , (4.10)

and
lim

�X
�
"�̃X

�H(�X�
) = 0 , (4.11)

where �̃X = [p̃� (cv + rc
x
+m)]/r.

For �X�
2 (0, �̃X) and t 2 [t�, t� + �H(�X)], let us define p(t,�X�

) as
the Hotelling price, p(t,�X�

) ⌘ cv + r[c
x
+ �X�

e
⇢(t�tk)] + m, and denote

respectively by q(t,�X�
), qx(t,�X�

) and qy(t,�X�
) the corresponding U.E,

C.U.E and S.U.E production rates. Since K(t) = qx(t,�X�
), then the F.O.C

(3.5) relative to qx may be rewritten as

u
0(q(t,�X�

)) = u
0(qx(t,�X�

) + qy(t,�X�
)) = u

0 (qx(t,�X�
) + q̂y(qx(t,�X�

)))

= cv + r[c
x
+ �X�

e
⇢(t�t�)] +m.
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Differentiating, taking (4.6) into account while noting that @q(t,�X�
)/@t =

q̇(t), we obtain:

@q(t,�X�
)

@�X�

=
1

⇢�X�

@q

@t
, t 2 (t�, t� + �H(�X�

)) , (4.12)

from which, taking (4.7) and (4.8) into account, we get:

@qx(t,�X�
)

@�X�

=
1

⇢�X�

@qx

@t
< 0 , t 2 (t�, t� + �H(�X�

))

and t 6= t̄y if qx(t�,�X�
) > Ky , (4.13)

with
@qx(t̄�y ,�X�

)

@�X�

>
@qx(t̄+y ,�X�

)

@�X�

, if qx(t�,�X�
) > Ky , (4.14)

and

@qy

@�X�

=
1

⇢�X�

@qy

@t

8
>>>><

>>>>:

= 0 , t 2 (t�, t̄y) if qx(t�,�X�
) > Ky

> 0 , t 2 (t̄y, t� + �H(�X�
)) if qx(t�,�X�

) > Ky

or t 2 (t�, t� + �H(�X�
)) if qx(t�,�X�

) < Ky .

(4.15)
Hence

@qy(t̄�y ,�X�
)

@�X�

<
@qy(t̄+y ,�X�

)

@�X�

, if qx(t�,�X�
) > Ky . (4.16)

Determination of the optimal value of �X�
, given X�, and of the slope of

KH(X�).

The optimal value of �X�
, given X�, is this value which solves the coal

exhaustion condition:

r

Z
t�+�H(�X

�
)

t�

qx(t,�X�
)dt = X� . (4.17)

By a slight abuse of notation let us denote by �X�
(X�) the value of the

mining rent at the beginning of the Hotelling phase as a function of the coal
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stock X� available at the same date. Differentiating (4.17) and taking into
account that qx(t� + �H(�X�

),�X�
) = 0, we obtain:

d�X�

dX�

=
1

r
R
t�+�H(�X

�
)

t�

@qx(t,�X
�
)

@�X
�

dt

< 0 . (4.18)

Hence

dKH

dX�

=
@qx(t�,�X�

)

@�X�

d�X�

dX�

> 0, X� 6= X�y if Ky < K̄sup , (4.19)

and
lim
X�#0

KH(X�) = 0 and lim
X�"0

KH(X�) = K̄sup < +1, (4.20)

where X�y is this value of X� for which KH(X�) = Ky if Ky < K̄sup, and K̄sup

solves u0(K + q̂y(K)) = cv + rc
x
+m, that is K̄sup is the limit of the constant

production level of C.U.E when �X�
tends towards 0, alternatively when X�

tends towards +1. Clearly Ky may be either larger or smaller than K̄sup.
Note that in the case Ky < K̄sup the function KH(X�) is not differentiable
at X� = X�y, (4.14) and (4.19) together imply that:

dKH(X
+
�y
)

dX�

<
dKH(X

�
�y
)

dX�

. (4.21)

The frontier KH(X�) is illustrated in Figure 2 for the case Ky < K̄sup.

Figure 2 here.

Would the initial state of the system be some pair located above the
frontier KH(X�) like (K 0

, X
0) in Figure 2 then the optimal policy would be

to scrap initially the excess of capital K 0
�KH(X 0) and next to move along

the Hotelling frontier from the point (KH(X 0), X 0) down to (0, 0). But clearly
such state (K 0

, X
0) will never be attained starting from K(0) = 0, whatever

X0.
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4.2.2 The Expansion-Stabilization frontier

We proceed backward and start from the state (K�, X�,�X�
) of the C.U.E

industry at the end of the stationary phase: K� = KH(X�),�X�
= �X�

(X�)
and K� = K̄ where Kk ⌘ K(tk). Since the capacity of the C.U.E industry
is constant during the phase, K(t) = K̄, t 2 [tk, t�], then the coal input con-
sumption of the C.U.E industry during the stabilization phase is proportional
to its duration that we denote by �S: �S ⌘ t� � tk.

Let Xk be the coal stock available at the beginning of the phase, then:
Xk = X�+rK̄�S. Denoting by KS(Xk) the frontier function we should have:

KH(X�) = K̄ = KS(X� + rKH(X�)�S) .

We show that the duration of phase, �S, is an increasing function of K̄
so that in the (K,X) plane the horizontal distance between KH(X�) and
KS(Xk) is an increasing function of K̄ = K� = Kk as illustrated in Figure 2,
provided that K̄ be lower than some upper limit K̄max itself lower than K̄sup.

Arbitrage condition for the last built piece of C.U.E industry equipment

In order that the C.U.E industry capital be kept constant during the
phase succeeding to the investment phase, the sum of the discounted profit
margins of the phase of constant capital in value at the beginning of the phase
must be equal to the cost of the last piece of equipment put into operation
at the same date, c0

k
by Proposition 1. Thus for the optimal duration �S of

the stabilization phase, given the optimal value �X�
of the mining rent at

the end of the phase and the optimal production capacity K̄, the arbitrage
condition reads:

�SZ

0

{u
0(q̂(K̄))� (cv + r[c

x
+ �X�

e
�⇢(�S�⌧)] +m)}e�⇢⌧

d⌧ = c
0
k
. (4.22)

Next remember that �X�
is the function of K̄ determined by the optimality

condition which must hold at the beginning of the Hotelling phase, that is
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the end of the stabilization phase. This condition states that at time t�,
�K = 0, hence:11

r�X�
= u

0(q̂(K̄))� [cv + rc
x
+m] =) r

d�X�

dK̄
= u

00(q̂(K̄))
dq̂

dK
|K=K̄ < 0 .

(4.23)
In the arbitrage condition (4.22), let us substitute for �X�

the function
�X�

(K̄) and rearrange to get:

�SZ

0

{u
0(q̂(K̄))� [cv + rc

x
+m]}e�⇢⌧

d⌧ � re
�⇢�S�X�

(K̄)�S = c
0
k
. (4.24)

Differentiating, we obtain:

0 = {u
0(q̂(K̄))� [cv + rc

x
+m]}e�⇢�S � re

�⇢�S�X�
(K̄)}d�S

+ r⇢e
�⇢�S�X�

(K̄)�Sd�S

+{

�SZ

0


{e

�⇢⌧
u
00(q̂(K̄))

dq̂

dK
|K=K̄ � r

d�X�

dK̄
e
�⇢�S

�
d⌧}dK̄.

In the above expression the first term is nil by the condition (4.23;l.h.s.), and
given the value of d�X�

/dK̄ given also by (4.23;r.h.s.) the third term may be
rewritten as:

{u
00(q̂(K̄))

dq̂

dK
|K=K̄

�SZ

0

(e�⇢⌧
� e

�⇢�S)d⌧}dK̄ . (4.25)

Hence:

d�S

dK̄
=

u
00(q̂(K̄)) dq̂

dK
|K=K̄

�SR
0

(e�⇢⌧
� e

�⇢�S)d⌧

�r⇢e�⇢�S�X�
(K̄)�S

> 0. (4.26)

From d(Xk � X�)/dK̄ = r[K̄d�S/dK̄ + �S] and the above inequality, and
given that dX�/dK̄ > 0 (c.f (4.19) with K̄ = KH) we conclude:

d(Xk(K̄)�X�(K̄))

dK̄
> 0 and

dXk(K̄)

dK̄
> 0, (4.27)

provided that K̄ 6= Ky.
11Note that (4.23), d�X�/dK̄ < 0, may also be obtained from (4.18), d�X�/dX� < 0,

and (4.19), dKH/dX� > 0, because KH = K̄.
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However (4.27) holds as far as the derivatives of (4.24) leading to (4.27)
hold, that is as far as there exists a pair (K̄,�S) for which (4.24) is satisfied.
Let us show now that (4.24) may be satisfied only for K̄

0
s lower than an

upper bound K̄max, itself lower than the upper bound K̄sup under which
start the Hotelling phases.

Let us assume that e�⇢�S�X�
= �Xk

' 0 because �S is very large so that
the instantaneous unitary net margin in the C.U.E industry is approximately
equal to u

0(q̂(K̄)) � [cv + rc
x
+ +m] during a large part of the stationary

phase, hence a capitalized value at tk of any piece of equipment at most equal
to:

�SZ

0

{u
0(q̂(K̄))� [cv + rc

x
+m]}e�⇢⌧

d⌧ .

At the limit when �S ! 1, the arbitrage condition (4.24) reads:

u
0(q̂(K̄))� [cv + rc

x
+m] = ⇢c

0
k
. (4.28)

Let us denote by K̄max the solution of (4.28) , then K̄max < K̄sup and the
arbitrage equation (4.24) may be satisfied i.f.f K̄ < K̄max.

12 To conclude:13

KS(Xk) < K̄max and
dKS

dXk

> 0, Xk 6= Xky if Ky < K̄max, (4.29)

lim
Xk#0

KS(Xk) = 0 and lim
Xk"1

KS(Xk) = K̄max, (4.30)

where Xky solves KS(Xk) = Ky when Ky < K̄max. In this last case:

dKS(X
+
ky
)

dXk

<
dKS(X

�
ky
)

dXk

. (4.31)

12Remember that K̄sup solves u0(q̂(K̄)) � [cv + rc
x

+ +m] = 0, hence the inequality
K̄max < K̄sup and the distance between the two limits is an increasing function of c0

k
:

dK̄max/dc0
k

< 0.
13For very small X�, by lengthening the duration of the phase that is by choosing

a sufficiently thin C.U.E production rate during the stationary phase the energy price
can be kept approximatively equal to p̃ > u0(q̂(K̄max)). Repeating the argument put
forward to determine K̄max, the arbitrage condition (4.24) can be satisfied provided that
p̃� [cv + rc

x
+ +m] � ⇢c0

k
. By Assumption A.6, substituting p̃ for c0

y
(q̃), this inequality is

strict. By the same token we get the existence of K̄max > 0, hence (4.30) below. However
note that the above arguments suggest that limXk#0 �S(Xk) > 0.
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Would the initial state of the system be located under the Hotelling fron-
tier KH(X�) but above the horizontal line K̄max like (K 00

, X
00) in Figure 2,

the optimal policy would be first to use the available capital K 00 and extract
x(t) = rK

00 up to the time at which X(t) solves KH(X) = K
00. At this time

the system is on the Hotelling frontier and the best is to follow the frontier
down to (0, 0). During the first phase of this scenario the shadow marginal
value of the capital K 00 is positive, starting from some level lower than c

0
k

and decreasing down to 0 once the Hotelling frontier is attained. But clearly
such a state (K 00

, X
00) is never attained along an optimal path starting from

K(0) = 0 however large is the initial coal endowment.

4.2.3 Critical coal endowment when Ky < K̄max

If Ky < K̄max, among the paths of the first phase during which the C.U.E
industry accumulates capital, there exists a unique path joining the K�(Xk)
frontier at Ky. Let X0y be the initial coal endowment corresponding to this
path (see Figure 2). This endowment is the critical endowment of coal below
which the optimal paths are such that the S.U.E industry is always active and
above which it is temporarily closed during a time interval (t

y
, t̄y) including

the phase at maximum capacity: t
y
< tk and t� < t̄y < tX .

The following proposition summaries our results.

Proposition P. 4 Optimal path

Starting from a pure renewable energy state in which q(0) = qy(0) = q̃

and p(0) = p̃, the optimal energy mix evolves as follows.

1. During a first phase [0, tk), the capacity of the C.U.E industry is de-
veloped, K̇(t) = k(t) > 0, at a decreasing speed, K̈(t) = k̇(t) < 0. The C.U.E
production qx(t) increases, the S.U.E production qy(t) decreases however the
total U.E production q(t) expands and the U.E price decreases.

If the S.U.E industry is sufficiently competitive, Ky > K̄max, it must
remain active however large is the initial coal endowment X0, and is reduced
to its historical minimum size at the end of the phase. On the contrary, if
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potentially uncompetitive, Ky < K̄max, the S.U.E industry survives or not the
C.U.E industry expansion according to the coal initial endowment be smaller
or larger than a critical size X0y. For small endowments the S.U.E sector is
reduced to some minimum size like in the competitive case: The lack of coal
hampers the competitiveness of the C.U.E industry and compensates for the
lack of competitiveness of the S.U.E industry. For larger coal endowments
the C.U.E industry is no more sufficiently hampered and the S.U.E industry
must be closed before the end of the C.U.E industry expansion.

2. During a second phase [tk, t�) the production rates of both C.U.E and
S.U.E are constant and equal to the production rates of the end of the pre-
ceding phase. This phase is the plateau of the maximum C.U.E and U.E
production rates and the bottom of the S.U.E production flow. This is also
the phase of cheapest U.E price.

3. The third phase [t�, tX), the last phase of coal exploitation, is a standard
Hotelling phase. Both C.U.E and total U.E productions decrease, the C.U.E
production down to 0, hence the C.U.E industry capital is accordingly scraped.
The C.U price increases. If the S.U.E industry remains active its production
increases and if it has been closed its revival occurs within the phase. However
the increase of the S.U.E production fails to compensate for the decrease of
the C.U.E production. The phase ends when the coal endowment is exhausted
and the economy comes back and forever to its pure renewable initial state.
The coal interlude is gone.

The price and quantities paths for the case of a potentially uncompetitive
S.U.E industry and large coal endowment are illustrated in Figure 3.

Figure 3 here
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4.3 Determination of the optimal path

Let us show now how to use the frontier function KS(Xk) and the phase
duration functions �S(K̄) and �H(�X�

) to determine the optimal path.14

Consider first the cases K̄max < Ky whatever X0 and Ky < K̄max but
X0 < X0y for which the S.U.E industry is kept active along the whole optimal
path.

Expansion phase [0, tk) :

From (3.5) with qx(t) = K(t), qx(t)+qy(t) = q̂(K(t)) and �x(t) = 0 (since
qx(t) > 0) we get

u
0(q̂(K(t))) = cv + r(c

x
+ �X0e

⇢t) + ⌘(t). (4.32)

From (3.10) with �(t) = 0 and ⌫K(t) = 0 (since K(t) > 0), we obtain:

⌘(t) = ��̇K(t) + ⇢�K(t) +m,

and substituting for ⌘(t) in (4.32) results in:

u
0(q̂(K(t))) + �̇K(t)� ⇢�K(t) = cv + r(c

x
+ �X0e

⇢t) +m. (4.33)

Next from (3.7) with �k(t) = 0 (since k(t) > 0), and taking care that
k(t) = K̇(t), we get

�K(t) = c
0
k
(K̇(t)) ) �̇K(t) = c

00

k
(K̇(t))K̈(t),

so that substituting for �K(t) and �̇K(t) in (4.33), we obtain:

u
0(q̂(K(t)))� ⇢c

0
k
(K̇(t)) + c

00

k
(K̇(t))K̈(t) = cv + r(c

x
+ �X0e

⇢t) +m. (4.34)
14The frontier KS(Xk) and the optimal phase durations �S(K̄) and �H(�X�) have been

determined backwards, starting from the state of the system at the time at which the coal
stock is exhausted, and do not depend upon what happened within the initial expansion
phase. Thus to determine the optimal path what remains to determine is what must
happen during the initial expansion phase taking as given the functions KS(Xk), �S(K̄)
and �H(�X�).
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For a given �X0 let us denote by K(t,�X0) a solution of (4.34) satisfying
the initial condition K(0) = 0 and by tk(�X0) the time at which K̇(t,�X0) = 0
(equivalently the time at which �K(t) = c

0
k
). In order that K(t,�X0), t 2

[0, tk(�X0)], be the optimal expansion phase of the C.U.E production capacity,
the state of the system at time tk(�X0), (K(tk(�X0),�X0), X(tk(�X0)), must
be located on the expansion-stabilization frontier, that is the optimal value
of �X0 must solve the following equation (4.35):

K(tk(�X0),�X0) = KS[X0 � r

Z
tk(�X0 )

0

K(t,�X0)dt] . (4.35)

Let �
⇤
X0

denote the solution, then during the phase the optimal shadow
value of the C.U.E industry capital stock, �⇤

K
(t), is given by (3.7) with �k(t) =

0, that is �
⇤
K
(t) = c

0
k
(K̇(t,�⇤

X0
)).

Stabilization phase [tk, t�] :

During the stabilization phase the C.U.E industry capacity is constant:
K(t) = K̄ = K(tk(�⇤

X0
),�⇤

X0
). The optimal duration of the phase is equal to

�S(K̄) solving (4.22) with �X�
= �

⇤
X0
e
⇢[tk(�⇤

X0
)+�S ]

.
15

�K(t) decreases accord-
ing to (4.5) starting from �K(tk(�⇤

X0
)) = c

0
k

at the beginning of the phase
down to zero at the end, at time t� = tk(�⇤

X0
) + �S(K̄). At this date the

available stock of coal, X�, amounts to

X� = X0 � r[�S(K̄)K̄ +

Z
tk(�⇤

X0
)

0

K(t,�⇤
X0
)dt].

Hotelling phase [t�, tX ] :

Last during the Hotelling phase K(t) solves:

u
0(q̂(K(t))) = cv + r(c

x
+ �

⇤
X0
e
⇢t) +m.

15That is �(K̄) solves:
Z �S

0
u0(q̂(K̄)) � (cv + r[c

x
+ �⇤

X0
e⇢[tk(�

⇤
X0

)+⌧ ]] + m)e�⇢⌧d⌧ = c0
k
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Let us denote by KH(t,�⇤
X0
) the solution of the above equation. The

duration of the phase is equal to �H(�⇤
X�
) defined in 4.2.1 supra, that is

�H(�⇤
X0
e
⇢[tk(�⇤

X0
)+�S(K̄)]). At the end of the phase the initially available stock

of coal is exhausted:

r

Z
tk(�⇤

X0
)

0

K(t,�⇤
X0
)dt+ �s(K̄)K̄ +

Z
tX(�⇤

X0
)

t�(�⇤
X0

)

KH(t,�
⇤
X0
)dt = X0 , (4.36)

where t�(�⇤
X0
) = tk(�⇤

X0
) + �S(K̄) and tX(�⇤

X0
) = t�(�⇤

X0
) + �H(�⇤

X�
).

The equality (4.36) is a direct implication of the fact that �⇤
X0

solves (4.35)
that is K(tk(�⇤

X0
),�⇤

X0
), X(tk(�⇤

X0
)) is located on the optimal expansion-

stabilization frontier so that the above path {K(t), X(t), t 2 [0, tX(�⇤
X0
)]}

corresponds to the optimal trajectory starting from (0, X0) in the (K,X)-
plane.

In the case K̄max > Ky and X0 > X0y (see Figure 2) q̂(K) is not differen-
tiable at K = Ky (c.f (3.17)) and the derivative function u

0(q̂(K(t)) in (4.34)
is changing when K(t) = Ky during both the expansion phase at time t

y

and the Hotelling phase at time t̄y.

The details of the optimal path determination in this case are given in
Appendix A.2.

5 Conclusion

When the necessity to build an exploitation capital for providing useful en-
ergy to the final users is taken into account, the optimal exploitation path of
the non renewable resource is a three phases path, with a constant production
intermediate phase. Recovering the investment costs takes time, a minimum
time interval during which the margin above the current operation cots must
be positive. In the present model the surplus function of the final users is
stationary, hence the useful energy price and the production of renewable
useful energy are both constant during the intermediate phase of maximum
production of non renewable useful energy. It would be no more the case
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with a non stationary surplus function. The drift of the surplus function
would translate into a mere price increase or decrease of the useful energy,
depending upon the direction of the drift, if the renewable energy is not com-
petitive. If the renewable energy is competitive, the price increase would be
damped by the increase of the renewable energy surplus, and symmetrically
the price decrease would be amplified by its supply decrease. However the in-
termediate phase of constant maximum production of non renewable energy
would not disappear from the optimal scenario.16

Three problems should be given additional care while staying with the
same kind of simple models. The first one is concerning the scraping costs
that we have assumed to be nil. Adding either scraping costs or de-pollution
costs of the installation sites once they are closed, or a residual value to the
no more exploited capital can complexify the Hotelling phase, for example
by slowing down the decrease rate of the capacity to smooth the closing
costs path. The other one is relative to the renewable energy sector the
capital of which has not been modelled. During the phase of the fossil fuel
expansion the capital of the renewable energy sector must shrink but like for
the capital of the fossil fuel sector during the Hotelling phase, that may have
a scraping cost. Next during the revival phase of renewable sector some new
dedicated capital has to be built. The two transitions, from renewable to non
renewable and later in the reverse direction from non renewable to renewable
should receive a symmetrical treatment.17 Last the pollution generated by
the fossil fuel should be taken into account. These problems are left for
further research.

16On the way to obtain "peak oils" in theoretical models see Holland (2008). For a
skeptical appraisal of the predictive power of most models see Brandt (2010), although
many models under review have a poor economic content. See also Hughes and Rudolph
(2011) and for more recent and less critical reviews, see Weichtmeister et al (2018) and
Bardi (2019).

17Most papers on the transition towards a clean renewable energy regime under capacity
constraints and adjustment costs take as given the present capacity of the fossil sector.
(See for example Amigues et al (2015) and Coulomb et al (2018)).
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Appendix

A.1 Non-differentiability of q̂y(K), q̂(K) and

µ̂(K) at K = Ky

Concerning first q̂y(K) we get from (3.16):

lim
K"Ky

dq̂y

dK
= lim

K"Ky

u
00(K + q̂y(K))

c00
y
(q̂y(K))� u00(K + q̂y(K))

=
u
00(Ky)

c00
y
(0+)� u00(Ky)

=

8
<

:

�1 if c00
y
(0+) = 0

2 (�1, 0) if c00
y
(0+) > 0

while
lim
K#Ky

dq̂y

dK
= 0,

hence, whatever c
00
y
(0+) � 0,

lim
K"Ky

dq̂y

dK
< lim

K#Ky

dq̂y

dK
.

Since q̂(K) = K+q̂y(K), the same inequality holds for dq̂/dK at K = Ky.

As for µ̂(K), we get from (3.19):

lim
K"Ky

dµ̂

dK
= lim

K"Ky

u
00(K + q̂y(K))c00

y
(q̂y(K))

c00
y
(q̂y(K))� u00(K + q̂y(K))

=
u
00(Ky)c00y(0

+)

c00
y
(0+)� u00(Ky)

,

while
lim
K#Ky

dµ̂

dK
= lim

K#Ky

u
00(K) = u

00(Ky).

It is easy to see that u
00(Ky) <

u
00(Ky)c00y (0

+)

c00y (0
+)�u00(Ky)

, hence, whatever c
00
y
(0+) � 0,

lim
K"Ky

dµ̂

dK
> lim

K#Ky

dµ̂

dK
.
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A.2 Determination of the optimal path. Case:

K̄max > Ky and X0 > X0y

The argument parallels the one developed in the sub-section 4.3 for the other
cases. In order to avoid any confusion we denote by q̂1(K) the function q̂(K)
for K < Ky and by q̂2(K) the same function q̂(K) for K � Ky: q̂1(K) > K,
K < Ky and q̂2(K) = K, K � Ky, with q̂1(K�

y
) = q̂2(Ky) = Ky (see (3.17)).

Similarly we denote by q̂y1(K) the function q̂y(K) for K < Ky and by
q̂y2(K) the same function q̂y(K) for K � Ky: q̂y1(K) > 0, K < Ky and
q̂y2(K) = 0, K � Ky, with q̂y1(K�

y
) = q̂y2(Ky) = 0 (see (3.16)).

A.2.1 Expansion phase [0, tk)

A.2.1.1 Sub-phase [0, t
y
)

From (3.5) with qx(t) + qy(t) = q̂1(K(t)) and �x(t) = 0 (since qx(t) > 0) we
get:

u
0(q̂1(K1(t))) = cv + r(c

x
+ �X0e

⇢t) + ⌘(t) . (A.2.1)

From (3.10) with �(t) = 0 and ⌫K(t) = 0 (since K(t) > 0), we obtain:

⌘(t) = ��̇K(t) + ⇢�K(t) +m ,

and substituting for ⌘(t) in (A.2.1) results in:

u
0(q̂1(K(t))) + �̇K(t)� ⇢�K(t) = cv + r(c

x
+ �X0e

⇢t) +m . (A.2.2)

Next from (A.2.2) with �k(t) = 0 (since k(t) > 0), and taking into account
that k(t) = K̇(t), we get:

�K(t) = c
0
k
(K̇(t)) ) �̇K(t) = c

00

k
(K̇(t))K̈(t) ,

so that, substituting for �K(t) and �̇K(t) in (A.2.2), we obtain:

u
0(q̂1(K(t)))�⇢c

0
k
(K̇(t))+ c

00

k
(K̇(t))K̈(t) = cv+ r(c

x
+�X0e

⇢t)+m . (A.2.3)
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For a given �X0 let us denote by K1(t,�X0) a solution of (A.2.3) satisfying
the initial condition K(0) = 0 and by t

y
(�X0) the time at which K1(t,�X0) =

Ky, equivalently the time at which q̂y1(K1(t,�X0)) = 0.

A.2.1.2 Sub-phase [t
y
, tk)

During this sub-phase the dynamics of K(t) is given by an equation similar
to (A.2.3) with q̂2(K) substituted for q̂1(K), that is:

u
0(q̂2(K(t)))�⇢c

0
k
(K̇(t))+ c

00

k
(K̇(t))K̈(t) = cv+ r(c

x
+�X0e

⇢t)+m . (A.2.4)

For the same �X0 that in (A.2.3) and the function K1(t,�X0), let us
denote by K2( t,�X0) the solution of (A.2.4) satisfying the initial condition
K2(ty(�X0),�X0) = Ky = K1(ty(�X0),�X0) preserving the continuity of K(t)

at t
y
(�X0) the time at which K̇2( t,�X0) = 0.

In order that K(t,�X0), t 2 [0, tk(�X0)] :

K(t,�X0) =

8
<

:

K1(t,�X0), 0  t < t
y
(�X0)

K2(t,�X0), t
y
(�X0)  t < tk(�X0),

,

be the optimal expansion phase of the C.U.E production capacity, the state
of the system at time tk(�X0), (K(tk(�X0),�X0), X(tk(�X0), must be located
on the expansion-stabilization frontier, that is the optimal value of �X0 must
satisfy the following equation (A.2.5):

K(t
k
(�X0),�X0) = KS(X0� r[

Z
t
y
(�X0 )

0

K1(t,�X0)dt+

Z
tk(�X0 )

t
y
(�X0 )

K2(t,�X0)dt]).

(A.2.5)

Let us denote by �
⇤
X0

the solution. Then during the expansion phase the
optimal shadow marginal value of the C.U.E industry capital stock, �⇤

K
(t),

is given by (3.7) with �k(t) = 0, that is

�
⇤
K
(t) =

8
>><

>>:

c
0
k

⇣
K̇1(t,�⇤

X0
)
⌘

, 0  t < t
y
(�⇤

X0
)

c
0
k

⇣
K̇2(t,�⇤

X0
)
⌘

, t
y
(�⇤

X0
)  t < tk(�⇤

X0
) .
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A.2.2 Stabilization phase [tk, t�)

During the expansion phase the capacity of the C.U.E industry is constant:
K(t) = K̄ = K2(tk(�⇤

X0
),�⇤

X0
). The optimal duration of the phase is equal

to �(K̄) solving (4.22) with �X�
= �

⇤
X0
e
⇢[tk(�⇤

X0
)+�S ]. At time t� = tk(�⇤

X0
) +

�S(K̄), the end of the phase:

X� = X0 � r[�S(K̄)K̄ +

Z
t
y
(�⇤

X0
)

0

K1(t,�
⇤
X0
)dt+

Z
tk(�⇤

X0
)

t
y
(�⇤

X0
)

K2(t,�
⇤
X0
)dt],

�
⇤
X�

= �
⇤
X0
e
⇢[tk(�⇤

X0
)+�S ] and �k(t�) = 0 .

A.2.3 Hotelling phase [t�, tX)

A.2.3.1 Sub-phase [t�, t̄y)

During the first Hotelling sub-phase the S.U.E sector is inactive and K(t)
solves:

u
0(q̂2(K(t))) = cv + r(c

x
+ �

⇤
X0
e
⇢t) +m .

Let us denote by KH2(t,�⇤
X0
) the solution of the above equation. The

sub-phase ends when the S.U.E industry becomes competitive again, at the
time t̄y at which KH2(t,�⇤

X0
) = Ky, the time t solving:

cv + r
�
c
x
+ �

⇤
X0
e
⇢t
�
+m = c

0
y
.

A.2.3.2 Sub-phase [t̄y, tX)

During the sub-phase of S.U.E industry revival, K(t) solves :

u
0(q̂1(K(t))) = cv + r(c

x
+ �

⇤
X0
e
⇢t) +m .

The Hotelling phase ends at the time tX solving:

cv + r(c
x
+ �

⇤
X0
e
⇢t) +m = p̃ = u

0(q̃y).
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A.3 Proof that coal exploitation must end

in finite time and that the initial endow-

ment be exhausted

The proofs are by contradiction.

A.3.1 Coal exploitation ends in finite time: tX < +1

Let us consider successively the cases �X0 > 0 and �X0 = 0.

Case �X0 > 0.

Assume that there exists an infinite sequence of dates {tn}
1
n=1 such that

limn!1 tn = +1 and x(tn) > 0, 8tn. In this case the shadow marginal
operation current cost of the C.U.E industry at time tn, that we denote by
SMOCC(tn), would amount to:

SMOCC(tn) = cv + r(c
x
+ �X0e

⇢tn) +m ,

hence limn!1 SMOCC(tn) = +1 and there exists some n such that
SMOCC(tn) > p̃, n � n, so that it would be better to consume the quantity
q̃y of S.U.E and no C.U.E.

Case �X0 = 0.

Assume first that the expansion phase ends in in finite time: tk < 1.
Then from tk onwards the current gross margin of the C.U.E industry would
amount to u

0(q̂(K̄)) � (cv + rc
x
+ m) where K̄ is the industry capacity at

the end of the expansion phase. This arbitrage condition determining K̄,

which must hold at the time tk for the last piece of invested capacity reads
(cf.eq.(4.22)) with �S = +1)

+1Z

0

{u
0(q̂(K̄))� (cv + rc

x
+m)}e�⇢⌧

d⌧ = c
0
k

(A.3.1)
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Thus from tk the amount of coal used in the C.U.E industry at each unit
of time would amount to rK̄ requiring an infinite coal stock. Assume now
that tk = +1, that is the duration of the expansion phase is infinite. Since
K̇(t) > 0 during this phase, for any ✏ , 0 < ✏ < K̄, there exists some t < +1

such that K(t) � K̄ � ✏, t � t, where K̄ solves (A.3.1). From t onwards the
instantaneous coal input of the C.U.E industry would be at least equal to
r(K̄ � ✏), again requiring an infinite initial endowment.

A.3.2 The coal initial endowment must be exhausted
at time tX

Let us denote by an asterisk an assumed optimal path {(q⇤
x
(t), q⇤

y
(t), k⇤(t),

�
⇤(t)}1

t=0 along which the coal endowment would not be exhausted. Let X =
X

⇤(tX) > 0 denote this part of the coal stock left underground. Given the
results of the preceding paragraph, if this path is optimal, it must be the case
that �X0 > 0. Consider a time interval (td, t⇤X) within the Hotelling phase,
t
⇤
�
< td < t

⇤
X

, during which q
⇤
y
(t) > 0. Since q

⇤
y
(t) is increasing once positive

during the Hotelling phase and limt"t⇤
X
q
⇤
y
(t) = q̃y > 0, such an interval exists.

Let {
�
q̌x(t), q̌y(t), ǩ(t), �̌(t)

�
}
1
t=0 be an alternative path equal to the optimal

path during the initial interval [0, td] and modified as follows from td onwards,
up to t

⇤
X
:

q̌x(t) =

8
<

:

q
⇤(t)� q

⇤
y
(td) , t� < t < t

⇤
X

0 = q
⇤
x
(t) , t

⇤
X
 t

,

q̌y(t) =

8
<

:

q
⇤
y
(td) , t� < t < t

⇤
X

q̃y = q
⇤
y
(t) , t

⇤
X
 t

,

�̌(t) =

8
<

:

q̇(t)/q⇤(t)� q
⇤
y
(td) , t� < t < t

⇤
X

0 = �
⇤(t) , t

⇤
X
 t

,

with at time t
⇤
X

a brutal scraping of the whole capital of the C.U.E industry,
K̃(t⇤�

X
) = q̃y�q

⇤
y
(td). Both paths, the assumed optimal one and the modified

one are illustrated in the below Figure 4.

Figure 4 here
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The modified path is deduced from the assumed optimal path by substi-
tuting the quantity q̌y � q

⇤
y
(td) of the C.U.E for the same quantity of S.U.E

at each time t 2 (td, t⇤X) so that the useful energy consumption is the same
along both paths, q

⇤(t) = q
⇤
x
(t) + q

⇤
y
(t) = q̌x(t) + q̌y(t) = q̌(t), hence the

useful surplus u(q⇤(t)) = u(q̌(t)), t � 0. The additional cumulated extraction
required to sustain the modified path, �X(t⇤

X
), amounts to:

�X(t⇤
X
) = r

t
⇤
XZ

td

(q⇤
y
(t)� q

⇤
y
(td))dt.

Clearly for t
⇤
X
� td sufficient small: �X(t⇤

X
)  X. Thus the modified path

is feasible. Let us show now that the modified path is also less costly. At
any time t 2 (td, t⇤X) the costs saved thank to the cutting down of the S.U.E
production, that we denote by �SC(t), amount to:

�SC(t) = cy(q
⇤
y
(t))� cy(q

⇤
y
(td)) =

q
⇤
y(t)Z

q⇤y(td)

c
0
y
(qy)dqy

while the additional costs induced by the increase of the C.U.E production,
denoted by �CC(t), amount to:

�CC(t) = [q⇤
y
(t)� q

⇤
y
(td)](cv + rc

x
+m).

Along the assumed optimal path at the time td within the Hotelling phase
with q

⇤
y
(td) > 0 :

cv + r(c
x
+ �X0e

⇢td) +m = u
0(q⇤(td)) = c

0
y
(q⇤

y
(td)).

On the other hand, since c
0
y
(qy) is an increasing function of qy and because

�
⇤
X0

> 0, it follows that:

qy > q
⇤
y
(td) =) c

0
y
(qy) > cv + rc

x
+m,

hence, because q
⇤
y
(t) > q

⇤
y
(td) since q

⇤
y
(t) is increasing during the interval

(td, t⇤X), for any t within the interval:

�CC(t) = [q⇤
y
(t)� q

⇤
y
(td)](cv + rc

x
+m) <

q
⇤
y(t)Z

q⇤y(td)

c
0
y
(qy)dqy = �SC(t).

To sum up the modified path is feasible, allows the same users surplus than
the assumed optimal one and is less costly, a contradiction.
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Figure 1: Typical optimal scenario and time notations. Case Ky < K̄.
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Figure 2: Phase diagram. Case: Ky < K̄max.
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Figure 3: Optimal price and U.E productions paths. Case: Ky < K̄.
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q⇤
x
(t) = q̌x(t)
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q⇤
y
(t) = q̌y(t) = q̃
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Figure 4: Assumed optimal path and modified path.
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