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Abstract

From Primary Resources to Useful Energy: The Pollution Ceil-
ing Efficiency Paradox

We study an economy producing energy services from a polluting fossil
fuel and a carbon free renewable resource under a constraint on the admis-
sible atmospheric carbon concentration, equivalently under a constraint on
the admissible temperature. The transformation rates of natural primary
resources energy into useful energy are costly endogenous variables. Choos-
ing higher efficiency rates requires to bring into operation more sophisticated
energy transformation devices, that is more costly ones. We show that, in-
dependently of technical progress, along a perfect foresight equilibrium path
which is Pareto optimal, the transformation rate of any exploited resource
should increase throughout time, excepted within the period during which
the carbon constraint is binding, a phenomenon we call the ’ceiling paradox’.

Keywords: energy efficiency; carbon pollution; non-renewable resources;
renewable resources.

JEL classifications: Q00, Q32, Q43, Q54.
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1 Introduction

It is a well documented fact that historically, the conversion rate of primary
energy into useful energy has steadily increased. For example, the first steam
power units operated in the British mining industry to pump water, in the
early eighteenth century, the steam engine of Thomas Newcomen (1712),
converted about 0.5% of its potential energy input (coal and/or wood) into
useful work output. About sixty years later (1769)1, the Watt engine was
converting 3% of its potential energy input, six times the performance of its
ancestor.2 Both engines were built according to some loose thermodynamic
principles.3 However, a glance at the two engines design shows that the
cooling system of the Watt engine was more sophisticated and more costly
than the cooling system of the Newcomen machine. Improvement still went
on during the nineteenth century and up to the middle of the twentieth
century with more and more complex engines, especially by multiplying the
number of cylinders and other devices for a better use of the steam produced
in the boiler.

Although technical progress and growing scientific knowledge are cer-
tainly key explanations of the increasing efficiency of the energy uses in an
historical perspective,4 the objective of this paper is to show that it may
result more simply from the mere working of competitive forces promoting
efficiency efforts in a world of nonrenewable energy resource scarcity even
without technical progress. Choosing a conversion rate of available energy
into useful energy is an economic choice and retaining a more efficient pro-
cess is also, generally, more costly. For example some part of the exhausted
energy resulting from the burning of gas in a today engine can be exploited,
via a turbo-charger, to improve the efficiency of combustion. But one has to
bear the cost of the turbo-charger and its installation in the car. In hybrid
cars, some part of the energy which would be otherwise dissipated, is used

11769 is the date of the first patent obtained by Watt. The first engines were sold by
Boulton and Watt seven years later, in 1776 according to Marsden (2002, p 102).

2Both rates from Kümmel (2011), p. 49 for the Newcomen engine and p. 50 for
the Watt engine. A usual, one must be cautious about such estimations. For example,
Brookes (2000, p 359) gives respectively 0.75% for the Newcomen engine and 4% for the
Watt engine. However the scale of the increase factor is about the same, the Watt engine
being 5.33 more efficient than the Newcomen machine.

3The first theoretical essay by Carnot (1824) was published only fifty years later.
4However note that technical progress is partly endogenous.



to save the gasoline consumption thank to electric devices. But clearly two
engines, a classical gas one and an electric one, are more costly than only
one.

In this paper, we take explicitly into account the fact that to obtain
useful energy from a fossil resource, it is first necessary to transform the
underground energy into what we call available crude energy, an operation
undertaken by the extractive industry, and next to transform the available
crude energy into useful energy, a task generally performed jointly by utilities
and the final users themselves. We assume that the unitary extraction costs
depend negatively upon the resource grade under exploitation. Moreover,
the cost of transforming one unit of the extracted resource into useful energy
increases with the energy conversion rate.5

Transforming extracted fossil fuel into useful energy generates also as a
by-product polluting GHG emissions in the atmosphere with potential ad-
verse consequences. These emissions are more or less proportional to the
burnt fossil resource rather than to the useful energy output. Hence, im-
proving the conversion rate may be seen as an indirect abatement device.
The diesel engines emit less CO2 per unit of gas than the gasoline engines
because they are more efficient converters of potential energy, but they are
also more costly to produce. However contrary to other abatement options,
like carbon capture and sequestration installations, the conversion rate im-
provements simultaneously save the resource.

Several views of a climate change mitigation policy have been proposed
in the climate economics literature. The most conventional one expresses the
consequences of global warming as a combination of welfare losses (impacts on
properties, health impacts) and productivity losses (e.g. agricultural yields
losses). These losses are then aggregated as a ’damage’ function, assumed to
be some increasing function of the size of the atmospheric carbon stock (or of
the average temperature rise).6 The design of an optimal environmental reg-

5Also important empirically is the recovery rate of available crude energy from the
underground one. This problem requires a specific analysis outside the scope of the present
paper.

6Multiple theoretical and empirical studies have endorsed the ’damage function’ ap-
proach. Main original contributions are Tahvonen (1991), Tahvonen and Kuuluvainen
(1991), Farzin and Tahvonen (1996), Withagen (1994) Tahvonen and Withagen (1996),
Toman and Withagen (2000). For more recent contributions see Golosov et al. (2014),
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ulation scheme is then accommodated in a Pigouvian way. An optimal global
carbon tax should identify with the marginal climate damage in annualized
value equivalent. Since the damages evolve through time with the climate
dynamics, the tax rate should also be adjusted to the climate damages trend.
An alternative policy to the implementation of a carbon tax, perhaps less de-
manding with respect to the commitment abilities of the governments, is the
creation of carbon emissions permits markets. The time adjustment of the
regulation is in this case achieved through a periodic revision of the quantity
of allowances issued by the regulator.

Instead of a climate damage function framework, we follow in the present
paper another route pioneered by Chakravorty, Magné and Moreaux (2006).
In their model, carbon accumulation in the atmosphere creates only negli-
gible damages provided that the pollution carbon stock stays under some
critical threshold. However, this threshold be crossed over, earth climate
conditions would become catastrophic. The objective of the environmental
regulation should then be to limit the atmospheric carbon concentration be-
low the threshold level. Such a modeling framework echoes the current policy
proposal of avoiding an average earth temperature rise above +2

0C by the
end of the current century.7

In our setting, the use of fossil fuels thus faces two kinds of constraints.
The first one is the physical scarcity of the available fossil fuels reserves, the
second one is the limited ability of the atmospheric compartment to store
carbon emissions without triggering potentially damaging climate change.
Raising the energy conversion rate of fossil fuels can alleviate these two con-
straints by saving the resource while mitigating carbon emissions.

An alternative to costly energy conversion efficiency efforts in fossil fuel
exploitation is the development of carbon free renewable energy use. How-
ever, the transformation of clean energy primary sources into useful energy

Van der Ploeg and Withagen (2014), Hassler et al. (2012), Nordhaus (2008), Stern (2007).
7As pointed out by Weitzman (2010) and Mason and Wilmot (2015), damages are

depending on the temperature rather than directly on the carbon stock. Thus the ceiling
should be defined as a temperature ceiling, like the well-known +2

0
C ceiling. However

as far as there exists a monotonic relationship between the temperature level and the
atmospheric carbon stock, the qualitative properties of the optimal paths would be the
same. The issue becomes more intricate when both the temperature level and the carbon
stock size drive the temperature dynamics.
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faces the same kind of physical and technical constraints than the exploita-
tion of fossil fuels. We model this problem by assuming that the unitary
production cost of useful energy from clean renewable energy increases with
the transformation rate. We want to describe in this context the dynamics
of the energy transition from fossil fuels toward clean energy.

Within this general framework, we show the following. When the demand
function for useful energy is stationary, the equilibrium and/or optimal trans-
formation rate of the fossil energy source broadly increases through time up
to the end of its exploitation. The time and the grade at which exploitation
ends are endogenously determined not only by the increasing costs of less ac-
cessible grades but also by the increasing transformation cost of crude energy
into useful energy. When renewable energy is exploited in conjunction with
fossil energy, its transformation rate also increases and it takes a larger share
inside the energy mix until it replaces completely the use of fossil energy.

Rather surprisingly, when a constraint on the atmospheric pollution stock
is added, then the transformation rate in the coal industry must stay constant
when coal is the only resource which is exploited within the time period
during which the constraint is active. Maybe even more surprising, when the
renewable resource is also exploited, both conversion rates have to be kept
constant. Restricting the use of coal does not open a larger market for the
non-polluting renewable resource. The energy mix must stay unmodified.
We call this feature of the optimally regulated perfect foresight equilibrium,
equivalently of the Pareto optimal paths, the ceiling paradox.

The paper is organized as follows. The model of useful energy production
from primary resources is laid down in Section 2. Section 3 describes the
perfect foresight equilibrium of an economy without damages generated by
the use of the polluting non-renewable resource. Section 4 characterizes the
first best regulation policy of the pollution damages. Section 5 concludes.
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2 A model of useful energy production from

primary resources

We consider a stationary economy in which final energy services can be ob-
tained through the exploitation of two primary sources. The first one is a
nonrenewable polluting fossil fuel (say coal) while the second one is clean
and renewable (say solar).

Let X(t) be the available underground stock of coal at time t measured
in energy units, X0 be the initial endowment, X0 ⌘ X(0), and x(t) be the
instantaneous extraction rate measured in the same units: ˙X(t) = �x(t). For
the renewable and carbon free primary energy source, we assume a constant
available flow of this energy, yn, also measured in energy units.

The use of coal generates carbon polluting emissions in the atmosphere.
Assume an homogenous polluting content from coal burning to simplify.8
Denoting by ⇣ the unitary pollution content of coal, the pollution emission
flow at time t amounts to ⇣x(t). Let Z(t) be the pollution stock at time t and
Z0 be the historically given pollution stock, Z0 ⌘ Z(0). The pollution stock
is fed by the emission flow ⇣x(t) and is self-regenerating at some proportional
rate ↵ > 0, assumed to be constant to simplify.9 Hence the dynamics of Z(t)
is driven by: ˙Z(t) = ⇣x(t)� ↵Z(t).

The energy industry transforms the two primary energy sources into use-
ful energy supplied to the final users, either consumers or firms. We assume
that the industry is composed of identical competitive firms with equal access
to the same set of processing technologies. Thus we do not assign special-
ization to the firms in converting primary energies, either coal or solar, into
useful energy.

8The issue of heterogenous polluting resources is thoroughly examined in Chakravorty,
Moreaux, Tidball (2008).

9More general formulations of the self-regeneration process are explored in Forster
(1975), Farzin (1996), Tahvonen and Salo (1996), Tahvonen and Withagen (1996) and
Toman and Withagen (2000) in which the proportional rate ↵ depends upon Z. Some self-
regenerating processes give rise to non convex dynamic programs in which the necessary
first order conditions are not sufficient to characterize the optimal paths. Such regeneration
processes would induce the same type of difficulty in the present context.
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Concerning their access to the primary energy sources, two industry struc-
tures may be considered. The first one is an integrated structure, where the
firms own the coal mines and the land areas used for renewable energy gener-
ation (solar, wind or biomass). The second one is a disintegrated structure,
where the industry must purchase coal from the extractive industry and hire
land to produce renewable energy. We assume an integrated structure for
the production of renewable energy to escape the problem of favorable sites
access for wind or solar energy generation. For coal, we retain a disinte-
grated structure and we have thus to describe the features of the coal mining
industry.

The coal extractive industry is composed of competitive firms facing an
identical unit cost schedule depending on the grade under exploitation. De-
note by a(X) this unit cost, hence a total extraction cost a(X)x at the mining
industry level. a(X) follows the following usual assumptions in mining eco-
nomics:10,11

Assumption A. 1 a : (0, X0
] ! R+ is twice continuously differentiable

on (0, X0
), strictly decreasing, a0(X) < 0, strictly convex, a00(X) > 0, with

a(0+) = +1.

The last property in A.1 together with the assumption A.3 imply that some
part of the initially available coal endowment, X0, will be kept underground.

Transforming primary energy from any source into final energy services
implies a loss depending on the processing technologies and the type of en-
ergy source. First, consider coal energy. Let us denote by ⌘

x

the unitary
transformation rate of extracted coal into useful energy, 0 < ⌘

x

< 1. 12 The
10See for example Heal (1976), Hanson (1980). The underlying assumption is that the

coal deposits have different extraction costs and that they are exploited by increasing order
of extraction costs as a result of the minimization of discounted extraction costs under
positive discounting.

11Let f(x) defined on X ✓ R and ¯

X the closure of X. Then for any x0 2 ¯

X we denote
respectively by f(x

+
0 ) and f(x

�
0 ) the limits lim

x#x0 f(x) and lim

x"x0 f(x), when such limits
exist.

12To simplify, we assume that the upper bound of the transformation rate ⌘

x

is equal
to one, although it is actually strictly lower. The same remark applies to the conversion
rate of solar energy, ⌘

y

, introduced below. See Section 5 for a sketch of the more complex
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useful coal energy consumption rate at time t, denoted by q
x

(t), amounts to
⌘
x

(t)x(t).

Getting more useful energy than less from a given flow x of extracted coal,
requires more efficient, hence more sophisticated processing devices, that is
more costly ones. Let b(⌘

x

) be the unitary conversion cost of extracted coal
energy (per unit of processed coal input) into ready-to-use energy services as
a function of ⌘

x

, the chosen efficiency rate. Then the total transformation
cost of x units of crude energy from extracted coal into q

x

= ⌘
x

x units of
useful energy services amounts to b(⌘

x

)x.

The unitary production cost of useful coal energy amounts to b(⌘
x

)/⌘
x

,
equal to the marginal produnction cost, that is a total cost equal to (b(⌘

x

)/⌘
x

)q
x

.
We assume that this unit cost is an increasing function of the transformation
rate. This implies that b(⌘

x

), the unit conversion cost of coal energy should
also be an increasing function of ⌘

x

.13 The unit conversion cost function b(.)
satisfies:

Assumption A. 2

• b : [0, 1) ! R+ is twice continuously differentiable on (0, 1), strictly
increasing, b0(⌘

x

) > 0, strictly convex, b00(⌘
x

) > 0, with b(0+) = 0,
b0(0+) > 0, b(1�) = +1 and b0(1�) = +1.

• The unit production cost of useful coal energy (and so the marginal
production cost) is a strictly increasing function of ⌘

x

: b0(⌘
x

) > b(⌘
x

)/⌘
x

and lim

⌘

x

#0 b(⌘x)/⌘x > 0.

Burning coal to obtain, for example, electricity requires other inputs, at
least equipment, hence a strictly positive marginal cost of useful coal energy

optimal paths which could result from technical constraints imposing upper bounds below
1 on the conversion efficiency rates.

13Differentiating the unit production cost yields:

d

d⌘

x

b(⌘

x

)

⌘

x

=

1

⌘

x


b

0
(⌘

x

)� b(⌘

x

)

⌘

x

�
.

It is immediate that b

0
(⌘

x

) > 0 is a necessary condition for (d/d⌘

x

)[b(⌘

x

)/⌘

x

] > 0.
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at 0

+: lim

⌘

x

#0 b(⌘x)/⌘x > 0. The same should apply to the derivative of the
function b(.) at ⌘

x

= 0

+. The assumptions b(1�) = +1 and b0(1�) = +1
mean that it is not physically possible to transform totally the potential
energy of crude coal into useful energy.

Turn to solar energy generation from the natural flow yn. Like for coal,
transforming this primary resource into ready-to-use energy services implies
a loss. Let us denote by ⌘

y

, 0 < ⌘
y

< 1, the conversion rate of primary
solar energy into final energy, so that the current consumption of useful solar
energy, denoted by q

y

, amounts to ⌘
y

yn. Let c(⌘
y

) be the unitary processing
cost of primary solar energy into useful energy, thus a total processing cost
of useful solar energy equal to c(⌘

y

)yn. The average production cost of useful
solar energy amounts to c(⌘

y

)/⌘
y

, equal to the marginal cost. As for coal,
higher solar conversion rates are more costly and the c(.) function satisfies:

Assumption A. 3

• c : [0, 1) ! R+ is twice continuously differentiable over (0, 1), strictly
increasing, c0(⌘

y

) > 0, strictly convex, c00(⌘
y

) > 0, with c(0+) = 0,
c0(0+) > 0, c(1�) = +1 and c0(1�) = +1.

• The unit production cost of useful solar energy (and so the marginal
cost) is a strictly increasing function of ⌘

y

: c0(⌘
y

) > c(⌘
y

)/⌘
y

and
lim

⌘

y

#0 c(⌘y)/⌘y > 0.

The rationale for lim

⌘

y

#0 c(⌘y)/⌘y > 0, c0(0+) > 0, c(1�) = +1, c0(1�) =
+1 is the same than the rationale for the similar assumptions on b(.) in A.2.

3 Perfect foresight competitive equilibrium

Assume that all markets are competitive, including the capital market, and
that the interest rate, denoted by r, is a strictly positive constant. The pur-
pose of this section is two-fold. First we identify a set of short run equilibrium
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properties under an arbitrary public regulation scheme of the pollution re-
sulting from coal burning. These properties will facilitate considerably the
characterization of the optimal policy done in Section 4. Second, we de-
scribe the perfect foresight equilibrium of the energy sector when burning
coal generates only negligible damages.

3.1 Demand and energy supply plans

We first consider the two ends of the energy sector, the extractive industry
and the final users of useful energy, and next the in-between transformation
industry.

Extracted coal supply

Let p
x

(t) be the price of extracted coal at time t, xs

(t) the quantity
supplied by the extractive industry and xd

(t) the quantity demanded as an
input by the transformation industry.

Consider first the extraction sector. Given a price path {p
x

(t); t � 0},
the industry has to design a coal supply plan {xs

(t); t � 0} maximizing its
cumulated discounted profit under the coal resource availability constraint,
that is solve the problem:

max

x

s(t)

Z 1

0

[p
x

(t)xs

(t)� a(X(t))xs

(t)] e�rtdt

s.t. ˙X(t) = �xs

(t) , X(0) = X0 given
xs

(t) � 0 , X(t) � 0 .

Denote by µ
X

(t) the current level of the mining rent. Then profit maximiza-
tion by the coal extraction industry requires that:

p
x

(t) = a(X(t)) + µ
X

(t) , (3.1)

and when µ
X

(t) is time differentiable:14

µ̇
X

(t) = rµ
X

(t) + a0(X(t))xs

(t) . (3.2)
14It is later shown at the end of the section that µ

X

(t) is differentiable over the whole
time interval during which coal is exploited.
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The linearity of the coal extraction cost implies that the supply plan
of the extractive industry is indeterminate at the equilibrium on the coal
market. For a given price p

x

of extracted coal and a unitary full marginal
cost of extraction at grade X, a(X) + µ

X

, either xs is nil if p
x

< a(X) + µ
X

or infinite in the reverse case. Thus the equilibrium on the extracted coal
market at time t requires that p

x

(t) = a(X(t)) + µ
X

(t), that is (3.1), the
usual zero profit equilibrium condition under constant unitary costs, and the
extractive industry is ready to supply at this price any amount xs determined
elsewhere provided that no benefit could be earned by supplying earlier of
later the coal of the grade at stake.

Equation (3.2) expresses the Hotelling rule when the extraction costs
depend upon the grade which is mined. Here µ

X

(t) is the mining rent of
the grade X(t) exploited at time t. Under constant marginal costs, when
the extraction cost is the same for all the grades, the rent should grow
at a proportional rate equal to the interest rate under competitive capi-
tal market conditions, that is the rent must increase by rµ

X

(t)dt between
t and t + dt. In the present context, the extraction cost is larger at t + dt
than at t by an amount approximatively equal to �a0(X(t))x(t)dt.15 Thus
the mining rent of the grade X(t + dt) must be equal to µ

X

(t + dt) =

µ
X

(t) + rµ
X

(t)dt + a0(X(t))x(t)dt, hence (3.2), in order that the extrac-
tion of x(t) be not postponed to t+ dt and the extraction of x(t+ dt) be not
switched earlier at t.

Useful energy demand

At the other end of the energy sectors are the final users of useful energy.
At this end-users stage, we assume perfect substitutability between useful
energy produced from any primary source. We assume in addition that useful
energy is not storable, so that any amount of transformed energy which is
not immediately consumed by the end-users is definitively lost. Denote by
q, q = q

x

+ q
y

, the aggregate instantaneous rate of useful energy consumed
by the end-users and let u(q) denote the gross surplus thus generated. The
gross surplus function u(.) satisfies the following standard assumption:

Assumption A. 4 u : (0,1) ! R+ is twice continuously differentiable,
15Remember that a

0
(X) is negative.
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strictly increasing, u0 > 0, strictly concave, u00 < 0, and satisfies the first
Inada condition: u0

(0

+
) = +1.

We shall denote by pd(q) the inverse demand function of useful energy,
pd(q) ⌘ u0

(q), and by p the price of useful energy. The inverse of pd(q),
denoted by qd(p), is the standard direct demand function.

Demand of extracted coal and supply of useful energy

The transformation industry, which lies in-between the extractive indus-
try and the final users, takes as given the useful energy price, p(t), together
with the extracted coal price, p

x

(t), and determines the supplies of useful en-
ergies, qs

x

(t) and qs
y

(t), and the demand of extracted coal xd

(t) which, together
with the choice of ⌘

x

(t) and ⌘
y

(t), maximize its profits.

Although we characterize in the present section the perfect foresight com-
petitive equilibrium when pollution damages are negligible, we assume here
that the transformation sector could be subjected to monetary penalties for
its polluting emissions. Hence we will not have to repeat the same arguments
in the next section when pollution will be assumed to be actually damaging.
Let T (⇣xd

(t), t) be the burden, or monetary transfer, imposed to the energy
sector at time t. As far as more pollution is worsening the welfare, this trans-
fer should be some increasing function of the emissions level resulting from
coal burning, @T/@⇣x > 0, and would have to be adjusted through time to
accommodate the dynamics of the atmospheric carbon stock. We shall make
precise the transfer scheme in section 4 when introducing the environmental
regulation objective.

Since qs
x

= ⌘
x

xd and qs
y

= ⌘
y

y, the profit maximization problem of the
transformation industry may be laid down in terms of ⌘

x

, ⌘
y

, y and xd. Thus
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the industry solves at any time t:16,17

max

x

d

,⌘

x

,⌘

y

,y

p
⇥
⌘
x

xd

+ ⌘
y

y
⇤
� b(⌘

x

)xd � c(⌘
y

)y � p
x

xd � T (⇣xd, t)

s.t. xd � 0 , ⌘
x

� 0 and ⌘
y

� 0 (3.3)
yn � y � 0 . (3.4)

Let �
x

, �
⌘x

and �
⌘y

be the multipliers associated to the non-negativity con-
straints (3.3) over the choice variables xd, ⌘

x

and ⌘
y

respectively. Let �̄
y

be
the multiplier associated to the solar flow constraint (3.4). The first order
conditions are:

w.r.t. xd

: p⌘
x

= b(⌘
x

) + p
x

+

@T

@xd

� �
x

(3.5)

w.r.t. ⌘
x

: pxd

= b0(⌘
x

)xd � �
⌘x

(3.6)
w.r.t. ⌘

y

: py = c0(⌘
y

)y � �
⌘y

(3.7)
w.r.t. y : p⌘

y

= c(⌘
y

) + �̄
y

, (3.8)

together with the usual complementary slackness conditions.

The specification of the cost structure implies that if the transfer scheme
is a linear function of the emission rate, ⇣xd, then the supply of useful coal
energy is indeterminate. Assume that T (⇣xd, t) = T0 + T (t)⇣xd. Denote by
pT
x

= p
x

+ ⇣T (t) the full price of coal, marginal transfer included. For any
given transformation rate ⌘

x

, the unitary production cost of useful coal energy
is constant and equal to

�
pT
x

+ b(⌘
x

)

�
/⌘

x

(per unit of useful energy). Thus
either p(t) <

�
pT
x

(t) + b(⌘
x

)

�
/⌘

x

and the supply is nil or the reverse holds and
the supply is infinite. Hence at the equilibrium, the profit must be nil, the
meaning of (3.5), as usual under constant average costs. Then the industry is
ready to supply any quantity qs

x

determined elsewhere. This feature translates
to the demand for extracted coal input, xd. Given any efficiency rate ⌘

x

,
xd

= qs
x

/⌘
x

is indeterminate since qs
x

itself is indeterminate.18

The condition (3.6) states that the choice of the coal conversion efficiency
rate, ⌘

x

, depends only on p, the price of useful energy. Let ⌘e
x

(p) be the profit
16We neglect the constraints ⌘

x

 1 and ⌘

y

 1, since they cannot bind at the equilib-
rium.

17We omit the time index when no confusion is possible.
18Note however that for transfer schemes increasing at an increasing rate with the emis-

sion flow ⇣x, @2
T/@(⇣x)

2
> 0, the supply of useful coal energy and the demand of extracted

coal would be unambiguously determined as functions of p and p

T

x

.
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maximizing choice function:19

⌘e
x

(p)

8
<

:

= 0 for p  b0(0+)

> 0 for b0(0+) < p
and

d⌘e
x

dp
=

8
>>>><

>>>>:

0 for p < b0(0+)

1/b00(⌘e
x

(p)) > 0

for b0(0+) < p .

(3.9)

Thus we may define what we call a quasi-supply function of useful coal energy
that we denote by q̂s

x

(p, xd

) ⌘ ⌘e
x

(p)xd:20

q̂s
x

(p, xd

)

8
>>>><

>>>>:

= 0 for p  b0(0+)
or xd

= 0

> 0 for b0(0+) < p
and xd > 0

and
@q̂s

x

@p
=

8
>>>>>>>>>><

>>>>>>>>>>:

0 for p < b0(0+)
or xd

= 0

xd

b00(⌘e
x

(p))
> 0

for b0(0+) < p
and xd > 0 .

(3.10)

Positive solar energy production implies that p = c0(⌘
y

) through (3.7).
On the other hand, the assumption A.3 implies that c0(⌘

y

) > c(⌘
y

)/⌘
y

. Thus
(3.8) implies that: p⌘

y

= c0(⌘
y

)⌘
y

= c(⌘
y

) + �̄
y

> c(⌘
y

). Hence �̄
y

> 0,
implying that y = yn. What would be the quasi-supply function of useful
solar energy resulting from the profit maximization condition (3.7), is de
facto a standard supply function. As for coal, the profit maximizing rate of
solar energy into useful energy depends only on p, the useful energy price.
Let ⌘e

y

(p) be the choice function resulting from (3.7). Clearly:

⌘e
y

(p)

8
<

:

= 0 for p  c0(0+)

> 0 for c0(0+) < p
and

d⌘e
y

dp
=

8
>>>><

>>>>:

0 for p < c0(0+)

1/c00(⌘e
y

(p)) > 0

for c0(0+) < p .

(3.11)

The supply function of useful solar energy that we denote by qs
y

(p), qs
y

(p) ⌘
19The function ⌘

e

x

(p) is not differentiable at p = b

0
(0

+
) as far as b00(0+) > 0. Furthermore

lim

p"1 ⌘

e

x

(p) = 1.
20The function q̂

s

x

(p, x

d

) is not differentiable at p = b

0
(0

+
) and x

d

> 0. Furthermore
lim

p"1 q̂

s

x

(p, x

d

) = x

d.
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⌘e
y

(p)yn, satisfies:

qs
y

(p)

8
<

:

= 0 for p  c0(0+)

> 0 for c0(0+) < p
and

dqs
y

dp
=

8
>>>><

>>>>:

0 for p < c0(0+)

yn/c00(⌘e
y

(p)) > 0

for c0(0+) < p .

(3.12)

Last we define the aggregate quasi-supply function of useful energy, de-
noted by q̂s(p, xd

), as the sum of the useful coal energy quasi-supply and
useful solar energy supply functions: q̂s(p, xd

) ⌘ q̂s
x

(p, xd

) + qs
y

(p), nil for
p  min{b0(0+), c0(0+)} and next increasing up to xd

+ yn for p ! 1:

@q̂s

@p

8
<

:

= 0 , p < min{b0(0+), c0(0+)}

> 0 , p 2 D(b0(0+), c0(0+), xd

) ,
(3.13)

where D is the domain of the (p, xd

) space in which @q̂s/@p is well defined.21

3.2 Short run equilibrium relationships

We show now that at any time t, the short run equilibrium condition on
the useful energy market allows defining the useful energy outputs from the
two primary sources q

x

(t) and q
y

(t), and the extracted coal demand of the
transformation industry, xd

(t), as functions of the useful energy price p(t).
Furthermore, since ⌘

x

(t) = ⌘e
x

(p(t)) and ⌘
y

(t) = ⌘e
y

(p(t)), then all the vari-
ables, excepted the supply of extracted coal, may be seen as functions of p(t).
Next, using the profit maximization condition of the transformation industry
with respect to the demand of extracted coal, we show that p(t) may itself

21

D(b

0
(0

+
), c

0
(0

+
), x

d

) =

{p : p > c

0
(0

+
)} if xd

= 0 ,

{p : p > b

0
(0

+
) and p 6= c

0
(0

+
)} if xd

> 0 and b

0
(0

+
) < c

0
(0

+
) ,

{p : p > c

0
(0

+
) and p 6= b

0
(0

+
)} if xd

> 0 and c

0
(0

+
) < b

0
(0

+
) .

For p = min{b0(0+), c0(0+)} and p = max{b0(0+), c0(0+)} the derivative @q̂

s

/@p is not
defined when x

d

> 0. When x

d

= 0 the derivative is defined at p = c

0
(0

+
).
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be expressed as a function of the full price of extracted coal at the same
date, pT

x

(t) = p
x

(t) + @T (⇣xd, t)/@xd. Since p
x

(t) depends of the coal grade
under exploitation at time t and of the corresponding mining rent µ

X

(t), we
must wait until the characterization of the complete equilibrium dynamics,
included the coal market equilibrium, before getting a complete picture of
what happens at time t.

Consider first the useful energy market equilibrium. The market clearing
equilibrium condition implies that:

qd(p(t)) = q̂s
�
p(t), xd

(t)
�
. (3.14)

Let us denote by xde

(p(t)) the solution of (3.14). Differentiating, we get from
(3.13):

dxde

dp
=

dqd/dp� @q̂s/@p

@q̂s/@xd

< 0 , (3.15)

provided that p 2 D(b0(0+), c0(0+), xd

) and xd > 0 in order that the deriva-
tives of the right hand side be defined and that @q̂s/@xd 6= 0.22

Next the profit maximization condition with respect to xd, eq.(3.5), de-
termines a relationship between p(t) and pT

x

(t) as:

p(t)⌘e
x

(p(t)) = pT
x

(t) + b (⌘e
x

(p(t))) . (3.16)
22Note that, since q̂

s

(p, x

d

) = q̂

s

x

(p, x

d

) + q

s

y

(p), ⌘

x

= ⌘

e

x

(p) and q̂

s

x

= ⌘

e

x

(p)x

d, then
x

de

(p(t)) may be equivalently defined as:

x

de

(p(t)) =

q

d

(p(t))� q

y

(p(t))

⌘

e

x

(p(t))

,

provided that q

d

(p(t)) � q

s

y

(p(t)), inequality which is satisfied at the equilibrium on the
useful energy market. Differentiating, we obtain:

dx

de

dp

=

1

(⌘

e

x

)

2

⇢✓
dq

d

dp

�
dq

s

y

dp

◆
⌘

e

x

�
�
q

d � q

s

y

�
d⌘

e

x

dp

�
< 0 .
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Let pe
�
pT
x

(t)
�

be the solution of (3.16): 23,24

pe(0+) = b0(0+) and
dpe

dpT
x

=

1

⌘e
x

(pe(pT
x

))

> 0 for pT
x

> 0 . (3.17)

Using this relation we may express all the model variables, the supply
of extracted coal excepted, as functions of pT

x

(t), given that the useful en-
ergy market is in equilibrium. Especially useful for the determination of the
dynamic equilibrium of the extracted coal market is the expression of the ex-
tracted coal demand as a function of pT

x

, we denote by xde

�
pT
x

(t)
�

by a slight
abuse of notation. It is immediate from (3.15) and (3.17) that the demand
of extracted coal by the transformation industry is a decreasing function of
its full price:

dxde

(pT
x

)

dpT
x

=

dxde

dp
· dp

e

dpT
x

< 0 . (3.18)

Note that xde

(pT
x

) is not an usual input demand function because it takes
into account the equilibrium condition on the useful energy market.

Before turning to the dynamic equilibrium on the extracted coal market,
note that a higher full price of coal induces higher efficiency rates of both coal
and solar when solar is simultaneously exploited. Denoting by ⌘e

x

�
pT
x

(t)
�

and
⌘e
y

�
pT
x

(t)
�

the efficiency rates as functions of the full price of extracted coal
(again by a slight abuse of notation), we get from (3.9), (3.11) and (3.17):

d⌘e
x

dpT
x

=

d⌘e
x

dp
· dp

e

dpT
x

> 0 and
d⌘e

y

dpT
x

=

d⌘e
y

dp
· dp

e

dpT
x

> 0 . (3.19)

When the price of the extracted coal increases, the transformation in-
dustry decreases its demand for coal while increasing its transformation effi-
ciency rate. However, because the useful energy consumption decreases, the

23For p

T

x

= 0 we get p⌘

e

x

(p) = b(⌘

e

x

(p)) which is satisfied by any p  b

0
(0

+
) since then

⌘

e

x

(p) = 0.
24Differentiating (3.16), we get:


⌘

e

x

(p) + (p� b

0
(⌘

e

x

(p)))

d⌘

e

x

dp

�
dp = dp

T

x

.

By (3.6): p� b

0
= 0 if ⌘

x

> 0, hence ⌘

e

x

(p)dp = dp

T

x

.
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increase of the transformation rate does not compensate for the decrease of
the extracted coal input rate. The equilibrium of the useful energy market
requires that the supply of useful coal energy decreases. Thus, the decrease
of the useful coal energy production is even more severe when solar energy
is also exploited. The increase of pT

x

induces, via the increase of p and hence
of ⌘

y

, a larger supply of useful solar energy.

3.3 Perfect foresight equilibrium paths absent environ-
mental damages

In the preceding sub-section we have shown that the problem of character-
izing the paths of all the key features of the energy sectors may be reduced
to the problem of characterizing the equilibrium path of the extracted coal
market. Let us now describe the main features of the equilibrium path on
this market.

Perfect foresight equilibrium of the extracted coal market

Absent environmental damages, the full price of extracted coal for the
transformation industry is equal to the selling price of the extractive industry,
T (⇣xd, t) = 0, xd � 0 and t � 0, hence pT

x

(t) = p
x

(t), t � 0.

Next, from the supply side of the extracted coal market, we know that:
p
x

(t) = a (X(t)) + µ
X

(t) (c.f. (3.1)). Time differentiating and substituting
for µ̇

X

(t) its expression (3.2) yields:

ṗ
x

(t) = �a0(X(t))x(t) + rµ
X

(t) + a0(X(t))x(t) = rµ
X

(t) > 0 .

(3.20)

Thus the price of extracted coal increases up to the time, we denote by t
x

,
at which ends coal exploitation. Let us now determine the highest price thus
attained.

Once coal exploitation is closed, useful energy is supplied only by solar
energy at the price p̃ balancing supply and demand: qd(p̃) = qs

y

(p̃). We
denote by q̃ the corresponding consumption and/or production rate, q̃ =

17



qd(p̃) = qs
y

(p̃) and by ⌘̃
y

= ⌘e
y

(p̃), equivalently ⌘̃
y

= q̃/yn, the solar energy
transformation rate. Under the assumptions A.3 and A.4, p̃ > c0(0+) and is
unique.

At the same time t�
x

, the rent of the underground coal grade which is
exploited must be nil: µ

X

(t�
x

) = 0. On the other hand, since the price
path of useful energy must be time continuous, the price of extracted coal
is determined via the function pe(p

x

) as the solution of p̃ = pe (p
x

(t�
x

)). Let
us denote by p̃

x

this solution. Then, by the equation (3.2) with µ
X

= 0, the
last grade which is exploited is this grade ˜X for which p̃

x

= a( ˜X).

We conclude that the perfect foresight equilibrium of the extracted coal
market may be defined as the path {(p

x

(t), X(t))}t=t

x

t=0 , together with the coal
exploitation closing time t

x

, solution of the following system of equations:25

ṗ
x

(t) = r (p
x

(t)� a (X(t))) (3.21)
˙X(t) = �xde

(pe(p
x

(t))) , (3.22)

with:
X(0) = X0 , X(t

x

) =

˜X and p
x

(t
x

) = p̃
x

= a( ˜X) . (3.23)

Equilibrium path properties

Some properties of the equilibrium path of the extracted coal market and
the induced paths of the other model variables are worth to be pointed out.

First the amount of underground coal which is extracted up to the time
t
x

at which the extraction is closed, X0 � ˜X, equivalently the amount of
coal kept underground forever, ˜X, does not depend upon the price path
of the extracted coal {p

x

(t)}t=t

x

t=0 , but only upon the conditions prevailing
in the useful energy market when solar is the only supplier. Second, from
this amount of cumulated extraction, X0 � ˜X, only that part we denote
by Q

x

is converted into useful energy during the coal exploitation period,
Q

x

=

R
t

x

0 ⌘e
x

(p(t)) xde

(p(t)) dt, and the average conversion rate of coal energy
is in fine equal to Q

x

/(X0� ˜X). Thus, not only some fraction of the available
25Equation (3.21) results first from (3.20): ṗ

x

= rµ

X

, and second from (3.1): µ

X

=

p

x

� a(X), that is nothing but the Hotelling rule in the present context.
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coal stock, X0, is left underground, but also from the extracted fraction,
another fraction is also left unused.

Next, since p(t) = pe(p
x

(t)) and dpe/dp
x

> 0 (c.f. (3.17)), then the useful
energy price p(t) increases up to p̃ > c0(0+) and the exploitation of solar
energy must begin at some time t

y

before the end of coal exploitation: t
y

= 0

if p(0) � c0(0+) and t
y

2 (0, t
x

) if p(0) < c0(0+). When t
y

> 0, then the
transformation rate of coal ⌘

x

(t) increases during the time interval [0, t
y

] and
both transformation rates ⌘

x

(t) and ⌘
y

(t) increase during the interval (t
y

, t
x

).
Note that once both resources are exploited b0 (⌘

x

(t)) = p(t) = c0 (⌘
y

(t)).
Time differentiating: b00⌘̇

x

= c00⌘̇
y

yields together with b0 = c0:

⌘̇
x

/⌘
x

⌘̇
y

/⌘
y

=

c00(⌘
y

)⌘
y

/c0(⌘
y

)

b00(⌘
x

)⌘
x

/b0(⌘
x

)

, (3.24)

where b00⌘
x

/b0 and c00⌘
y

/c0 are the elasticities of the marginal transforma-
tion costs in respectively the coal and solar energy transformation processes.
Hence, the energy conversion rate of coal energy increases at a higher relative
growth rate than the energy conversion rate of solar energy when the elas-
ticity of the solar marginal cost function is higher than the elasticity of the
coal marginal cost function, and the reverse happens in the opposite case.

The last point to examine is the time differentiability of the different
paths, especially the price path of useful energy. Differentiability is a poten-
tial problem at t = t

y

when t
y

> 0, that is the time at which solar energy
becomes competitive when it is initially too costly to exploit, and at t = t

x

that is the time at which ends the coal exploitation when solar energy be-
comes the only provider of useful energy. The study is done in Appendix A.1
and the results presented in the below Proposition 1.

Proposition P. 1 Along a perfect foresight equilibrium of the energy sector,
absent any environmental damages:

a. The cumulative quantity of extracted coal depends only of the cost func-
tion in the solar transformation industry (for a given gross surplus
function of useful energy).

b. During the period of coal extraction [0, t
x

):
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b.1. The price of useful energy p(t) increases and is time differentiable
with lim

t"t
x

ṗ(t) = 0. The production rate q(t) decreases and is
also time differentiable with lim

t"t
x

q̇(t) = 0.

b.2. The production of useful coal energy q
x

(t) decreases, the coal ex-
traction rate x(t) decreases while its transformation rate, ⌘

x

(t),
increases but not sufficiently to compensate for the decrease of the
extracted coal production.
The price of extracted coal, p

x

(t), increases up to p̃
x

and is time
differentiable with lim

t"t
x

ṗ
x

(t) = 0. The paths of q
x

(t) and x(t)

are both time differentiable excepted at t = t
y

when t
y

> 0 and
lim

t"t
x

q̇
x

(t) = lim

t"t
x

ẋ(t) = 0.

b.3. Solar energy begins to be exploited before the end of coal exploita-
tion. When it is exploited the production of useful solar energy
q
y

(t) increases but not sufficiently to compensate for the decrease
of useful coal energy. The conversion rate, ⌘

y

(t), increases. The
highest proportional increase of conversion rates ⌘

i

, i = x, y, oc-
curs in the transformation industry where the elasticity of the
marginal unitary transformation rate cost, either b0 or c0, is the
largest. Last lim

t"t
x

⌘̇
y

(t) = 0.

c. Once the transition to a pure renewable energy economy is over, the
price of useful energy is constant, hence also the production of useful
solar energy and its conversion rate.

4 Climate regulation

Denote by ¯Z the critical atmospheric carbon stock, or ’carbon ceiling’, trig-
gering catastrophic climate damages, for example the GHG stock triggering
a temperature rise above +2

o. For the model to make sense, we have to
assume that Z0 < ¯Z. Initially the global economy is not constrained by the
ceiling. The objective of the regulator is to maximize the sum of discounted
net surpluses while maintaining the carbon pollution stock below the ceiling,
that is implement the constraint ¯Z � Z(t) � 0, t � 0.

Observe that when the economy is constrained by the ceiling, the use of
crude coal energy should not be higher than what is allowed by natural dilu-
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tion. Then x̄ ⌘ ↵ ¯Z/⇣ is the upper bound on the extracted coal input of the
coal transformation industry corresponding to the pollution stock threshold
¯Z. One policy option for the regulator could be to set a global emission norm
↵ ¯Z, equivalently a maximum extraction rate x̄, when the carbon ceiling con-
straint binds. But this cannot be optimal in a perfect foresight context.26

An optimal regulation of the climate problem is not only a matter of carbon
concentration stabilization in the atmosphere but also a timing problem. If
an active stabilization policy cannot be dispensed with, the problem is to
determine the time at which the ceiling constraint should start to bind and
for how long. This requires a more sophisticated carbon regulation scheme
than just partially or totally banning emissions when it is too late in some
sense.

The regulator has to design a dynamic linear tax scheme applied to coal
emissions which decentralizes the first best optimum. Let T (t) be the uni-
tary carbon tax rate and ⇣T (t)x(t) be the instantaneous carbon tax revenue
at time t. If along the equilibrium path without environmental regulation
described in the subsection 3.3 the carbon ceiling never binds, there is of
course no need for a carbon tax. To give content to the problem we therefore
assume that Z(t) would override ¯Z in the no-regulation, perfect foresight
scenario.

The problem is now to determine the best slowing down of coal consump-
tion with respect to the non regulated rate, at least initially. First, must the
curbing be so strong that the constraint ¯Z � Z(t) � 0 be never effective?
We show that it is never the case. More precisely, assuming that, without
a tax scheme, the ceiling constraint would be violated, implies that under
the optimal tax scheme, the ceiling constraint necessarily binds along the
optimal path. Curbing the curb is necessary but not too much.

Thus the problem reduces to determine the time at which the constraint
begins to bind and the length of the constrained period, more precisely to
determine the coal consumption path leading to ¯Z and the duration of the
period during which the burned coal rate is equal to x̄, and last the coal
consumption path once the ceiling constraint may be forgotten. What makes
attractive this arbitrage problem is that burning coal may result into more
or less useful energy via the choice of the transformation rate ⌘

x

, a costly
26See Corollary 1 of the Proposition 2 for a proof.
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device which enters into the determination of the net surplus.

4.1 The social planner problem

In the absence of income effects, the social planner can use the interest rate
as a discounting device of the indirect utilities of the end users in a partial
equilibrium context. The social planner solves the following problem (S.P.):27

max

x,⌘

x

,⌘

y

Z 1

0

{u(⌘
x

(t)x(t) + ⌘
y

(t)yn)� a(X(t))x(t)

�b(⌘
x

(t))x(t)� c(⌘
y

(t))yn} e�rtdt

s.t. ˙X(t) = �x(t) , X(0) = X0 given (4.1)
˙Z(t) = ⇣x(t)� ↵Z(t) , Z(0) = Z0 < ¯Z given (4.2)
and ¯Z � Z(t) � 0 (4.3)
x(t) � 0 , ⌘

x

(t) � 0 and ⌘
y

(t) � 0 .

Let �
X

and ��
Z

be the costate variables associated to the relations (4.1) and
(4.2) describing the dynamics of X and Z respectively,28 ⌫ be the Lagrange
multiplier associated to the non-negativity constraint in (4.3). The first order
conditions are:

u0
(⌘

x

x+ ⌘
y

yn)⌘
x

= a(X) + b(⌘
x

) + �
X

+ ⇣�
Z

� �
x

(4.4)
u0
(⌘

x

x+ ⌘
y

yn)x = b0(⌘
x

)x� �
⌘x

(4.5)
u0
(⌘

x

x+ ⌘
y

yn)yn = c0(⌘
y

)yn � �
⌘y

, (4.6)

together with the usual complementary slackness conditions.

Let µE

X

(t) denote the equilibrium level of the mining rent at time t under
the transfer schedule {T (t), t � 0} and �⇤

X

(t) together with �⇤
Z

(t) denote
respectively the levels of the costate variables at time t along an optimal
path. The inspection of (4.4) reveals that any linear unit transfer schedule
{T (t), t � 0} satisfying µE

X

(t) + T (t) = �⇤
X

(t) + ⇣�⇤
Z

(t) at any time t � 0

implements the social optimum. Pick T (t) = ⇣�⇤
Z

(t), 8t � 0, as the optimal
27We omit the constraints ⌘

x

 1 and ⌘

y

 1 which are never active under A.2 and A.3.
Also under A.1 and A.3, the constraint X(t) � 0 never binds.

28Using ��

Z

as the co-state variable of Z allows to interpret �
Z

as the shadow marginal
cost of Z.
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carbon tax rate, then µE

X

(t) = �⇤
X

(t), the mining rent simply identifies with
the optimal level of the coal resource scarcity rent under such a tax schedule.

The dynamics of the costate variables when differentiable, must satisfy:
˙�
X

= r�
X

+ a0(X)x (4.7)
˙�
Z

= (r + ↵)�
Z

� ⌫ ,

⌫ � 0 , ¯Z � Z � 0 and ⌫
⇥
¯Z � Z

⇤
= 0 (4.8)

Last the transversality condition at infinity is:

lim

t"1
e�rt

[�
X

(t)X(t) + �
Z

(t)Z(t)] = 0 . (4.9)

Identifying µ
X

and �
X

, (4.7) shows that the coal scarcity rent obeys the same
law of motion than the mining rent along the equilibrium path.

As observed before, the carbon regulation makes sense only if the ceiling
constraint actually binds. This means that the use of the coal input is initially
so large that Z(t) increases over time until it reaches the ceiling level ¯Z at a
time we denote by t

Z

. Initially ⌫ = 0 since Z0 < ¯Z. Thus we get from (4.8):

�
Z

(t) = �
Z0e

(r+↵)t , t  t
Z

where �
Z0 ⌘ �

Z

(0) . (4.10)

Once the ceiling constraint binds, the coal consumption rate must stay
constant at the level x̄ = ↵ ¯Z/⇣ > 0. On the other hand, at the end of the
coal exploitation period, extraction should end smoothly, x(t�

x

) = 0. Since
the optimal coal extraction path must be time continuous, we conclude that
the ceiling constraint cannot bind until the end of coal exploitation. Thus
the last phase of coal exploitation is an unconstrained one (see Appendix A.2
for a formal proof).

Let ¯t
Z

< t
x

be the time at which ends the phase at the ceiling, then once
the ceiling constraint is no more active and forever, the shadow marginal cost
of the pollution stock is nil:

�
Z

(t) = 0 , t � ¯t
Z

. (4.11)

Denote by !⇤
(t) ⌘ a(X⇤

(t)) + �⇤
X

(t) + ⇣�⇤
Z

(t), the optimal level of the
full shadow marginal cost of the coal input for the transformation industry
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evaluated at time t along an optimal path {(X⇤
(t),�⇤

X

(t),�⇤
Z

(t)), t � 0}.
If the regulator sets the carbon tax rate T (t) = ⇣�⇤

Z

(t) at any time t, it
implements the optimal climate policy. Hence pT

x

(t) = !⇤
(t) is the coal price

level, tax included, which decentralizes the first best optimum. Let x⇤
(t) and

Z⇤
(t) denote the optimal levels of the coal extraction rate and the pollution

stock at any time t. From (4.7), (4.10) and (4.11) we conclude:

Proposition P. 2 Along the optimal path, during any period of unconstrained
coal extraction, the full marginal cost of the coal input of the transformation
industry, !⇤

(t), and thus the full price of extracted coal, tax included, imple-
menting the first best optimum, pT

x

(t), are increasing:

8t : x⇤
(t) > 0 and Z⇤

(t) < ¯Z

=) !̇⇤
(t) = r�⇤

X

(t) + ⇣(r + ↵)�⇤
Z

(t) = ṗT
x

(t) > 0 . (4.12)

Instead of a carbon tax, the regulator could set a norm on polluting emis-
sions ⇣x(t)  ↵ ¯Z(t) at any time t when Z(t) = ¯Z, while letting free the choice
of ⇣x(t) by the energy industry when Z(t) < ¯Z. Define a perfect foresight
equilibrium with an emission norm when at the ceiling as a pair of useful
energy price and extracted coal price paths together with a time interval
during which the emissions cannot be larger than ↵ ¯Z, such that, taking as
given these prices paths, the time interval and the norm, the extractive indus-
try and the energy transformation industry both deliver profit-maximizing
outputs justifying the price paths and satisfying the emission norm during
the specified interval. Then an implication of Proposition 2 is that such a
perfect foresight equilibrium cannot be optimal.

Corollary 1 Assume that the pollution stock regulation is set as an emission
norm ↵ ¯Z when the ceiling constraint binds, then the corresponding perfect
foresight equilibrium is not optimal.

A formal proof is given in Appendix A.3. The intuition behind the result
is that, in such an equilibrium, the transformation industry has not to take
into account the constraint before the time at which it starts to be active. The
transformation industry takes as given the day-to-day price of the extracted
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coal and the day-to-day price of useful energy and, given those prices, chooses
the best (profit-maximizing) transformation rates together with the quantity
of useful energy the market is able to absorb at the corresponding given
price. This applies in particular up to the time at which the constraint
begins to bind. But, along an optimal path, the emissions have to be taxed
before hitting the ceiling constraint. This is the missing information that
the transformation industry cannot take into account in a perfect foresight
competitive equilibrium. Only putting a cap on emissions when attaining
the ceiling is a too simple policy instrument inducing a too late mitigation
of the emission flow. Although the ceiling constraint would not be violated,
the intertemporal profile of the useful energy consumption restrictions would
not be optimal. Caps on emissions (equivalently, carbon taxation) should be
introduced right from the start up to the time at which the ceiling constraint
ceases to be active.

4.1.1 Optimal dynamics: Periods of unconstrained coal extraction

During any unconstrained period, Proposition 2 states that pT
x

, the price of
coal, tax included, rises along an optimally regulated equilibrium. We can
thus infer from the Proposition 1 that the useful energy price also increases,
while the useful energy consumption rate declines together with coal use. A
time increasing useful energy price trend spurs more efficiency efforts from
the transformation industry, ⌘

x

increases through time, and if solar energy
is produced in combination with coal energy, ⌘

y

also increases. Last the pro-
duction of useful energy from coal, q

x

, constantly decreases with the decline
of the coal consumption rate, x, and solar energy takes progressively a larger
share of the energy mix when the two sources are simultaneously exploited.

4.1.2 Periods of constrained coal extraction at the pollution stock
ceiling

When the ceiling constraint binds, the coal extraction rate must be constant,
x(t) = x̄. We show that, during such a phase, the price of useful energy
is constant and thus the optimal conversion rate of coal ⌘

x

is constant, and
also the efficiency rate of solar energy, ⌘

y

, when both solar and coal are
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simultaneously exploited.

Since x(t) = x̄, the supply function of useful energy is now well defined
q̂s(p, x̄) = q̂s

x

(p, x̄) + qs
y

(p). The useful energy price at the ceiling is the
price p̄ at which the total supply balances the demand: qd(p̄) = q̂s(p̄, x̄).
We thus conclude that the useful energy price should be constant during
any constrained phase of coal extraction. Let q̄ denote the equilibrium useful
energy consumption rate, q̄ = qd(p̄). Since the useful energy price is constant,
the optimal conversion rates from any primary energy source should also
be constant. Let ⌘̄

x

= ⌘e
x

(p̄) denote the constant level of the coal energy
conversion rate during a constrained phase. Similarly denote by ⌘̄

y

the solar
energy conversion rate, ⌘̄

y

= ⌘e
y

(p̄), if solar energy is produced during the
constrained phase. Last, let q̄

x

= ⌘̄
x

x̄, and q̄
y

= ⌘̄
y

yn denote the also constant
useful energy consumption rates from the two sources when at the ceiling.

Different cases may appear according to only coal or both coal and solar
feed the useful energy needs. In the case illustrated in Figure 1, only coal
is exploited when the cap constraint ¯Z � Z � 0 is active. This is possible
if first b0(0+) < c0(0+) and second if the useful energy demand is not too
strong so that the price p̄ at which qd(p̄) = q̂s(p̄, x̄) is lower than c0(0+). The
demand curve, qd(p), intersects the total supply curve in this part of the curve
for which the coal energy supply is equal to the total energy supply, useful
solar energy being not competitive at the price p̄, thus: qd(p̄) = q̂s

x

(p̄, x̄).
The efficiency rate of the coal energy industry is given by ⌘̄

x

= ⌘
x

(p̄) and
q̄ = q̄

x

= ⌘̄
x

x̄ while q̄
y

= 0.

Figure 1 about here

In the case illustrated in Figure 2, both coal and solar energies are ex-
ploited when the pollution cap constraint is active, while b0(0+) < c0(0+) like
in the preceding case. Now p̄ > c0(0+). The reason is that the useful en-
ergy demand is strong and cannot be fed by the coal industry alone without
triggering the competition of solar energy. In Figure 2, absent the solar alter-
native, the price which would balance the useful energy demand and supply
while using only coal would be the price p̄

x

at which q̂s
x

(p, x̄) = qd(p), higher
than c0(0+). Clearly the optimality condition (4.6), here p̄

x

= c0(0+) � �
⌘y

with �
⌘y

� 0, could not be satisfied.
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Figure 2 about here

When c0(0+) < b0(0+) the solar energy is always exploited, even when the
coal industry sector is active. If coal is exploited then, by (4.5), p = b0(⌘

x

)

with ⌘
x

> 0, so that (4.6): p = c0(⌘
y

) may be satisfied only by some ⌘
y

> 0.
When the ceiling constraint is active and the coal extraction regime must
thus stay at x̄, the dispatching between coal useful energy and solar useful
energy is illustrated in the Figure 3.

Figure 3 about here

The most striking fact of the ceiling phase is that because the price of
useful energy is constant, the conversion rate of the coal industry, ⌘

x

, is
constant, and that, when the solar energy is exploited, the conversion rate
of the solar industry, ⌘

y

, is also constant. We now show that the constancy
of the useful energy price also implies that the shadow marginal cost of the
pollution stock, equivalently the optimal carbon tax, should decline during
the ceiling phase.

Since the equilibrium price of useful energy must be constant during the
ceiling phase, the full cost of the extracted coal input, tax included, defined
by p̄ = pe(pT

x

), is also constant. Denote by p̄T
x

this constant level. Along an
optimal path, pT

x

= !⇤ implies that the shadow full marginal cost of the coal
input for the coal transformation industry when at the ceiling must also be
constant, a constant we denote by !̄⇤. During the ceiling period:

!̄⇤
= a(X⇤

(t)) + �⇤
X

(t) + ⇣�⇤
Z

(t) .

Time differentiating yields:

0 = �a0(X⇤
(t))x̄+

˙�⇤
X

(t) + ⇣ ˙�⇤
Z

(t) ,

where �a0(X⇤
(t))x̄+

˙�⇤
X

(t) = r�⇤
X

(t) > 0 according to (4.7). Hence:

˙�⇤
Z

(t) = �r

⇣
�⇤
X

(t) < 0 . (4.13)

The phase at the ceiling is a phase of decreasing shadow marginal cost of
the pollution stock and at the end of the ceiling phase, this shadow cost
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must be nil.29 Maintaining a constant rate of coal exploitation, x̄, in order
to satisfy the carbon cap target, requires a constant coal price, tax included,
p̄T
x

, all along the ceiling phase. Since the coal market price, p
x

(t), continues
to grow during the ceiling phase because of the permanent increase of the
marginal extraction cost, the optimal regulation policy of the atmospheric
carbon stock requires to decrease progressively the optimal carbon tax rate,
T (t) = ⇣�⇤

Z

(t), until the constraint ceases to bind, and forever, the carbon
tax rate being nil after ¯t

Z

, the end of the ceiling phase.

We conclude as follows:30

Proposition P. 3 Assume that along the optimal path, there exists a period
during which the pollution stock cap ¯Z constrains the use of coal, then during
such a period:

a. The useful energy production q
x

and the transformation rate ⌘
x

of the
coal industry are both constant, together with its extracted coal input
level x̄.

b. When both coal and solar energy are simultaneously exploited, then the
production of useful solar energy q

y

and its transformation rate ⌘
y

are
also both constant, so that, whatever the case, q

y

= 0 or q
y

> 0, the
total consumption of useful energy, q, is constant.

c. The optimal carbon tax rate charged for using the coal input in the
coal transformation industry, T = ⇣�⇤

Z

, decreases and exactly balances
the increase of the extracted coal price p

x

, so that the full cost of the
extracted coal input, tax included, pT

x

, stays constant within the period.
29Since the constraint ¯

Z � Z � 0 is tight, when at the ceiling ⌫(t) is positive. From
(4.8) and the value of ˙

�

⇤
Z

(t) given by (4.13), the optimal level of ⌫, we denote by ⌫

⇤, is
given by:

⌫

⇤
(t) = (r + ↵)�

⇤
Z

(t) + r�

⇤
X

(t)/⇣ > 0 .

30At this stage, one may wonder if the model results would be robust to more general
costs structures than our linear cost assumptions. We show in Appendix A.4 that the whole
qualitative results presented in the Propositions 1 and 3 remain valid when considering
cost functions of the form B(q

x

, ⌘

x

), assumed increasing and convex in both q

x

and ⌘

x

.
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4.2 Optimal paths

Assume that (X0, Z0
) lies in the relevant zone of the plane (X,Z) for the

constraint ¯Z�Z � 0 to be violated along the unconstrained equilibrium path
described in subsection 3.3.31 Taking this constraint into account, there exist
two types of optimal paths according to the solar energy is exploited or not
during the phase at the ceiling. We focus only on the first type of path
because exploiting the solar source when at the ceiling is empirically the
most probable case.

When solar energy is exploited during the phase at the ceiling and in ad-
dition p(0) < c0(0+), so that initially only coal is exploited, then the optimal
path is a five phases path. The price paths of useful energy, p(t), and of
extracted coal, p

x

(t), are illustrated in Figure 4. The useful energy consump-
tion paths from the two sources are pictured in Figure 5, on the top panel
for coal energy and on the bottom panel for the solar one.

Figure 4 about here

Figure 5 about here

Before the ceiling phase, the useful energy price path is defined as p(t) =
[pT

x

(t) + b(⌘
x

(t))]/⌘
x

(t), t < t
Z

. Such a path corresponds to the trajectory
(1) in Figure 4. At the ceiling, p(t) = p̄. After the ceiling phase, the price
path is given by p(t) = [p

x

(t) + b(⌘
x

(t))] /⌘
x

(t), corresponding to the price
trajectory (2) in the Figure 4, since then T (t) = 0.

Phase 1: Initial pre-ceiling phase of only coal exploitation

The first phase [0, t
y

) is a phase of only coal exploitation during which the
price of useful energy increases, the consumption of coal energy decreases and

31The phase portrait of the stock variables dynamics in the state space (X,Z) for the
unconstrained equilibrium is presented in Appendix A.5. It identifies the non empty set
of initial endowments (X

0
, Z

0
) for which the constraint ¯

Z � Z � 0 would be violated.
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its extraction rate decreases while its conversion rate increases. The phase
ends at time t

y

when p(t
y

) = c0(0+) and solar energy becomes competitive.
The pollution stock increases because x(t) > x̄ and Z(t) < ¯Z, ˙Z(t) > 0

and at the end of the phase the pollution stock ceiling is not yet reached:
Z(t

y

) < ¯Z.32

Phase 2: Phase of simultaneous exploitation of coal and solar before the
ceiling

The second phase (t
y

, ¯t
Z

) is a phase of simultaneous exploitation of both
resources. Again the price of useful energy increases and its consumption
decreases. As shown in paragraph 4.1.1 (Proposition 2) the consumption
of useful solar energy increases while the consumption of useful coal energy
decreases, the optimal conversion rate of the coal industry increases and the
coal extraction rate decreases, and the optimal conversion rate of the solar
industry also increases.33

During the phase, x(t) > x̄ and since Z(t
y

) < ¯Z at its beginning, then
the pollution stock increases like in the preceding phase. The phase ends at
time t

Z

when the pollution stock hits the cap ¯Z and the extraction rate has
decreased down to x̄.

Phase 3: Phase of constrained coal extraction

During this phase [t
Z

, ¯t
Z

] all the command variables controlled by the
regulator through the carbon tax schedule, T (t), that is: x, ⌘

x

and ⌘
y

, are
constant. The phase ends at time ¯t

Z

when T (t) = 0.
32It may happen that the initial price p(0) could be larger than c

0
(0

+
) in which case

this first phase disappears, hence a four phases path. This would be the case for initial
endowments X

0 and Z

0 equal to their levels at any time t

0 between t

y

and t

Z

in the
scenario illustrated in Figures 4 and 5. Since the solution of the social planner problem is
dynamically consistent, then the optimal paths starting from X(t

0
) and Z(t

0
) instead of

X

0 and Z

0 would be the tails of the illustrated paths starting at t0.
33Note that at t

y

, when switching from Phase 1 to Phase 2, p(t) and p

x

(t) are time
differentiable since �

X

(t), ˙

�

Z

(t), u

00
(q(t)) and ⌘

X

(t) are all continuous time functions.
This is also the case for q(t) and ⌘

x

(t). However, the same arguments developed in the
unconstrained equilibrium case (c.f. Proposition 1 and Appendix A.1), show that q

x

(t),
q

y

(t), ⌘
y

(t) and x(t) are continuous but not time differentiable functions at t
y

, as illustrated
in Figure 5.
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Phase 4: Post-ceiling phase of simultaneous exploitation of coal and solar
energies

During this phase (

¯t
Z

, t
x

) the price of useful energy increases again, q,
q
x

and x decrease while q
y

, ⌘
x

and ⌘
y

increase. The phase ends at the time
t
x

when the price of useful energy equals p̃ and the production of useful
solar energy amounts to q̃

y

= ⌘̃
y

yn. Since lim

t"t
x

q(t) = lim

t"t
x

q
y

(t) = q̃
y

,
then lim

t"t
x

q
x

(t) = lim

t"t
x

[q(t)� q
y

(t)] = 0. However lim

t"t
x

⌘
x

(t) = ⌘̃
x

> 0,
hence lim

t"t
x

x(t) = 0. Thus, the grades X < ˜X = X(t
x

) are too costly to be
exploited for whatever efficiency rate ⌘

x

.34

Phase 5: Pure solar economy

The last phase [t
x

,1) is the phase of permanent pure solar economy:
q(t) = q̃

y

, p(t) = p̃ and ⌘
y

(t) = ⌘̃
y

.

For the sake of completeness, Appendix A.6 presents an algorithmic ar-
gument able to determine the optimal scenario of the regulated economy.

5 Concluding remarks

One main conclusion of the study is that the progressive depletion of fossil
fuels and/or the implementation of climate change mitigation policies should
drive up over time the energy conversion rates, not only for fossil fuels but
also for carbon free renewable sources. Our work has also raised the rather
paradoxical conclusion that the economy should stop improving the energy
conversion rates when being constrained by a global atmospheric carbon stock
stabilization objective. It is thus when the climate constraint binds that the
improvement efforts are postponed. However the effects of the constraint are
not restricted to the phase at the ceiling but are spread over the whole optimal
path. Next, tightening the constraint results into higher transformation rates
both when at the ceiling and before and after the ceiling phase. Several

34Since the phase is an unconstrained one, the results of Proposition 1 hold, showing
that p(t), p

x

(t), q
x

(t) and x(t) are continuous and time differentiable at t

x

.
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remarks and potential extensions of our work are worth pointing out in that
respect.

In our stylized framework, the energy transformation industry is broadly
defined as a set of useful energy production activities from two main kinds of
crude energy sources, we summarized as ’coal’ and ’solar’. Actual industries
transform energy from several types of energy sources, fossil or not, mobiliz-
ing a large array of techniques, more or less dependent on the characteristics
of the energy sources. The energy consumption itself also relies on a variety
of techniques to generate useful energy services in transportation, heating,
cooling of lightning, for example. Thus any efficiency increase within the
transformation chain of energies is included within increases of ⌘

x

, ⌘
y

, or
both in our setting. For example, although efficiency improvements are not
yet possible in electricity generation from coal, improvements in the lightning
system are captured by increases of ⌘

x

and ⌘
y

. This is suggesting that in a
more detailed model, improvements of the transformation rates, ⌘

x

and ⌘
y

would be sometimes correlated and sometimes not.

For the sake of simplicity, we have assumed that potentially any level
lower than one of the energy conversion rate could be attained with the ex-
isting panel of energy transformation techniques. A more realistic approach
could be to introduce upper technical limits on conversion rates. Assume for
example that the possible conversion rates of coal and solar energy are con-
fined below upper bounds ¯⌘̄

x

and ¯⌘̄
y

respectively, with ¯⌘̄
x

< 1 and ¯⌘̄
y

< 1. An
immediate consequence of such an assumption is that the rise of the conver-
sion efficiency rates predicted by our model may be technically constrained.
In particular, the optimality condition on the choice of conversion rates when
both sources are simultaneously used, b0(⌘

x

) = c0(⌘
y

), may fail to hold over
some range of conversion rates.

This multiplies the number of possible kinds of optimal paths according to
the type of phase in which the maximum efficiency rate of either coal or solar
transformation is attained. For example assume that b0(¯⌘̄

x

) < c0(¯⌘̄
y

). Then
the five phases optimal path described in the previous subsection 4.2 may
become a seven phases path. In this new possible optimal scenario, the initial
phases below and at the ceiling remain the same as before. But under our
cost assumption, the post-ceiling phase before the complete transition toward
solar energy may be composed of three successive sub-phases. The first
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one is an unconstrained phase as previously described until the coal energy
conversion rate reaches its upper bound ¯⌘̄

x

. During the second sub-phase,
the coal energy conversion rate stays at the level ¯⌘̄

x

while the solar energy
conversion rate continues to rise until the upper limit ¯⌘̄

y

is attained. During
the third sub-phase, the two energy sectors face their respective conversion
efficiency constraints. The production of solar energy remains constant at a
level ¯q̄

y

=

¯⌘̄
y

yn, while the production of coal energy, ¯q̄
x

=

¯⌘̄
x

x, falls down
because of fossil fuels depletion. Note that in such a scenario, the solar energy
conversion constraint also limits the useful energy consumption possibilities
after the complete transition toward renewable energy.

Other simplifications have been made when modeling the mining sec-
tor. For example, petroleum exploitation involves frequently oil recovery
processes in order to extend the life duration of the field. This may be ac-
commodated by assuming an average exploitation cost function of the form
a(X, ⌘

m

), where ⌘
m

denotes the recovery rate from the resource deposit. It
should be expected that ⌘

m

increases over time for similar reasons that make
rise the energy conversion rates. In contrast with the conversion rates, which
stop increasing during the ceiling phase, ⌘

m

should continuously rise because
of the increasing scarcity of fossil fuels. Exploration and development of new
resources is another way to alleviate the scarcity constraint. Assuming that
the exploration cost is also a convex function of the exploration effort leads
to similar cost structures.35

Our analysis has shown that the currently observed increasing long run
trend of energy efficiency may be the result of the mere working of market
forces, the exhaustion of fossil fuels, but also carbon pollution mitigation
policies, creating incentives to raise the energy conversion performance of
the transformation industry. The literature has frequently stressed the role
of technical progress to explain this trend. A quite natural extension of
the present model would be to introduce exogenous technical progress, by
making the transformation costs functions explicitly time dependent, with
@b(⌘

x

, t)/@t  0 and @c(⌘
y

, t)/@t  0. Endogenous technical change settings
could also be considered, raising the issue of the optimal direction of research
efforts either toward cost reductions in fossil fuels energy conversion or in
solar energy conversion.

35See Gaudet and Lasserre (1988) for a study of the consequences of exploration over the
management of a non-renewable resource, both in a competitive and a monopoly context.
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No rebound effect arises in the present model although the efficiency rates
⌘
x

and ⌘
y

steadily increase so long as the transition toward a totally clean
economy is not brought to an end (excepted during the phase at the ceiling).36

The reason is that the improvements of these efficiency rates do not reduce
the full marginal cost of useful energy even without pollution damages as
shown in Sub-section 3.3. The marginal transformation costs increase as
long as coal is exploited and also the marginal cost of extracted coal. Thus
when facing a stationary useful energy demand, the consumption of useful
energy necessarily decreases while the share of solar energy increases. Hence
the production of useful coal energy decreases and since the efficiency rate
⌘
x

increases, the production of extracted coal decreases.

Apart from technical progress considerations, three routes toward a ’greener’
useful energy production economy are currently considered in the climate de-
bate. The first one is the improvement of energy conversion performances,
the second one the substitution of ’dirty’ primary energy sources by ’clean’
renewable energies, the third one is the abatement of polluting emissions and
their sequestration inside underground reservoirs. The present work has de-
scribed the optimal mix between the two first options. Introducing the third
one inside the model would permit to draw an almost complete view of the
energy production ’greening’ problem.

36That energy efficiency improvements could trigger a bound in energy consumption was
first pointed out by Jevons (1865) and is also known as the Jevons paradox. The effect
was recently rediscovered by Brookes (1978) and Khazzoom (1980). See Gavankhar and
Geyer (2010) and Sorrel (2014) for recent surveys.
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Appendix

A.1 Differentiability of the useful energy price

trajectory

Consider first what happens when the solar energy becomes competitive at
a time t

y

> 0. At any time before the end of coal extraction, we have from
(3.5):

p(t)⌘
x

(t) = p
x

(t) + b(⌘
x

(t)) , t < t
x

.

Time differentiating at times t 6= t
y

at which ṗ(t) is well defined, we get since
p� b0 = 0 by (3.6):

ṗ(t) = ṗ
x

(t)/⌘
x

(t) , t 6= t
y

and t < t
x

.

Because ⌘
x

(t) = ⌘e
x

(p(t)) and p(t) is continuous, then ⌘
x

(t
y

) is well de-
fined and either both p(t) and p

x

(t) are time differentiable at t
y

, or the
both derivatives jump and their proportional jumps are equal, ṗ(t�

y

)/ṗ(t+
y

) =

ṗ
x

(t�
y

)/ṗ
x

(t+
y

). But since µ
X

(t) must be continuous, then from (3.20), ṗ
x

(t)
is well defined at t = t

y

, hence also ṗ(t).

Although both ṗ(t) and ṗ
x

(t) are well defined, q
x

(t), q(t) and xd

(t) are
not time differentiable at t

y

. Because ṗ(t
y

) is well defined then ⌘̇
x

(t
y

) is also
well defined: ⌘̇

x

(t
y

) = ṗ(t
y

)/b00 (⌘
x

(t
x

)) by (3.6). Also, time differentiating
(3.7), we get:

⌘̇
y

(t+
y

) ⌘ lim

t#t
y

ṗ(t)

c00(⌘
y

(t))
=

ṗ(t
y

)

c00(0+)
> 0 .

Hence:

q̇
x

(t+
y

) = q̇(t
y

)� q̇
y

(t+
y

) < q̇(t
y

) = q̇
x

(t�
y

) .

Thus q
x

(t) is not differentiable at t = t
y

. Since q
x

(t) = ⌘
x

(t)xd

(t) for t 6= t
y

,
time differentiating, we obtain:

ẋd

(t�
y

) =

q̇
x

(t�
y

)� ⌘̇
x

(t
y

)xd

(t
y

)

⌘
x

(t
y

)

>
q̇
x

(t+
y

)� ⌘̇
x

(t
y

)xd

(t
y

)

⌘
x

(t
y

)

= ẋd

(t+
y

) .
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However xd

(t) is continuous at t
y

because both q
x

(t) and ⌘
x

(t) are continuous.
Hence from (3.2): µ̇

X

(t
y

) is also well defined.

Consider now the time t
x

at which ends coal exploitation. Since p(t) is
continuous and tends to p̃ at t

x

, then q
y

(t) = ⌘
y

(t)yn tends to q̃ = ⌘
y

(p̃)yn

hence q
x

(t) = q(t) � q
y

(t) tends to 0. Also since p(t) is increasing, then
ṗ(t

x

) = 0 = p(t+
x

) and ṗ
x

(t�
x

) = 0, and q̇(t�
x

) = q̇
x

(t�
x

) = q̇
y

(t�
x

) = 0.

A.2 Proof that the last phase of coal exploita-

tion is an unconstrained one

Assume to the contrary that this last period is a constrained one. Then
x(t) = x̄ during the phase. Let p̄ be the useful energy price clearing the
useful energy market: qd(p̄) = q̂s(p̄, x̄). Since the useful energy price path is
continuous, that implies that p̄ = p̃, where p̃ is the useful energy price which
allows the solar industry to supply the whole market, hence we should have
q(t) = q̃ = q

y

(t) that is x(t) = 0 during the period, a contradiction.

Now assume that x(t�
x

) > 0 hence q(t�
x

) > 0, then we should have qs
y

(t�
x

) <
q̃ since p(t) is continuous at t

x

and qs
y

(t�
x

) = q̃. Thus the function qs
y

(p) should
be discontinuous at p = p̃. But we have shown in appendix A.1 that it is
differentiable.

A.3 Proof of the corollary 1 of Proposition 2

We show that assuming that a perfect foresight equilibrium with an emission
norm ↵ ¯Z once at the ceiling is an optimal path implies a contradiction.

In the perfect foresight competitive equilibrium, the coal extraction sector
solves the problem laid down in sub-section 3.1. Profit maximizing conditions
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are:

p
x

(t) = a (X(t)) + µ
X

(t) (A.3.1)
µ̇
X

(t) = rµ
X

(t) + a0 (X(t)) xs

(t) (A.3.2)

The first relation (A.3.1) is just (3.1) while (A.3.2) is (3.2). Remember that
the extracted coal supply level is indeterminate, the extractive industry being
ready to produce any quantity demanded by the transformation industry
provided that (A.3.1) and (A.3.2) be satisfied. Thus, at any time t the
transformation industry would have to satisfy the emission norm, xs

(t) = x̄
on the perfect foresight equilibrium path.

Consider a time interval (t1, t2) preceding the arrival at the ceiling along
the equilibrium path. If this path is optimal then 0  t1 < t2 < t

Z

, where
t
Z

is the optimal arrival time at the ceiling. The alleged optimality of the
equilibrium path also implies that the following should hold within the time
interval:

p
x

(t) = pT
x

(t) = !⇤
(t) = a (X⇤

(t)) + �⇤
X

(t) + ⇣�⇤
Z

(t) , t 2 (t1, t2) .

(A.3.3)

The first equality comes from the fact that there is no taxation along the
equilibrium path, hence the price of coal, tax included, for the transforma-
tion sector is the price of extracted coal for the extraction industry. The other
equalities are just the optimality conditions having to hold along the equi-
librium path. In order that (A.3.1) and (A.3.3) be simultaneously satisfied,
we must have:

µ
X

(t) = �⇤
X

(t) + ⇣�⇤
Z

(t) . (A.3.4)

Time differentiating and using (4.12) of Proposition 2, in virtue of the alleged
optimality of the equilibrium path, yields:

µ̇
X

(t) = ⇢�⇤
X

(t) + ⇣(⇢+ ↵)�⇤
Z

(t) = ⇢µ
X

(t) + ⇣↵�⇤
Z

(t) > ⇢µ
X

(t) = rµ
X

(t) .

The third equality comes from (A.3.4) while the last one results from the
assumption that the social planner discounts welfare at the interest rate
(⇢ = r). On the other hand, according to (A.3.2):

µ̇
X

(t) = rµ
X

(t) + a0 (X⇤
(t)) x⇤

(t) < rµ
X

(t) ,

hence a contradiction.
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A.4 More general cost structures

We focus here on the possibility of decreasing returns in coal energy gener-
ation. The same issue in solar energy production has little interest in the
present model, since the supply of this energy has been assumed to be fixed
at the level yn. Instead of a coal energy transformation cost function b(⌘

x

)x,
take the more general form B(q

x

, ⌘
x

). Assume that B(q
x

, ⌘
x

) is increasing
and convex in both q

x

and ⌘
x

:

@B(q
x

, ⌘
x

)
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x

> 0 ;
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x
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�

@2B(q

x
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)
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x
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x
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� 0

@2B(q
x

, ⌘
x

)
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x

@⌘
x

�
✓

1

q
x

◆
@B(q

x

, ⌘
x

)

@⌘
x

> 0 . (A.4.1)

This assumption states that the industry faces decreasing returns to scale in
coal transformation. The marginal cost of rising the conversion rate increases
with the operating scale of coal energy processing, reflecting the increasing
difficulties to deploy more efficient techniques when the coal energy trans-
formation scale is larger. Moreover, we assume that an increase of transfor-
mation efficiency has a larger positive effect over the marginal cost @B/@q

x

than on the average cost B/q
x

so that (@/@⌘
x

) @B/@q
x

� (@/@⌘
x

) (B/q
x

).

Since x = q
x

/⌘
x

, the profit maximization criterion of the transformation
industry may be written as:

max

⌘

x

,⌘

y

,q

x

p(q
x

+ ⌘
y

yn)� p
x

q
x

⌘
x

� B(q
x

, ⌘
x

)� c(⌘
y

)yn � T (⇣x, t) .

Since nothing is changed in the optimization problem with respect to solar
energy, we can infer that the profit maximizing efficiency rate of solar energy
is still given by (3.11) while the solar energy supply function is still defined
by (3.12).

The market clearing condition on the useful energy market writes:

qd(p) = q
x

+ qs
y

(p) .
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This defines implicitly q
x

as a function of p. Let qe
x

(p) denote this function.
Differentiating yields:

dqe
x

(p)

dp
= qd

0
(p)� qs

0

y

(p) < 0 , (A.4.2)

since qd
0
(p) < 0 and qs

0
y

(p) > 0. Denote by pe(q
x

) the inverse function. Let
pT
x

= p
x

+ ⇣@T/@x. The profit maximization condition w.r.t. ⌘
x

writes:

⌘2
x

q
x

@B

@⌘
x

= pT
x

. (A.4.3)

On the other hand, the profit maximization condition w.r.t. q
x

writes:
✓
pe(q

x

)� @B

@q
x

◆
⌘
x

= pT
x

. (A.4.4)

To simplify notations, let p0 ⌘ dpe(q
x

)/dq
x

< 0. Differentiating (A.4.3)-
(A.4.4) yields in matrix form:
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x

Let D be the determinant of this system.
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Rearranging and taking (A.4.1) and (A.4.3) into account yields:
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Next, applying the Cramer rule:

dq
x
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x
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Since x = q
x

/⌘
x

, we conclude that:

dx

dpT
x

=

1

⌘2
x


dq

x

dpT
x

⌘
x

� q
x

d⌘
x

dpT
x

�
< 0 .

Last qe
x

(p) = q
x

defines implicitly a relationship between p and pT
x

such that:

dp

dpT
x

=

dq
x

/dpT
x

dqe
x

(p)/dp
> 0 .

The coal conversion rate is increased by an higher coal input price level
not only because of the induced increase of the useful energy price, p, but
also because of the reduction of the scale of coal processing induced by the
fall of x, the rate of coal use in the transformation industry. Concerning solar
energy generation, the increase of the useful energy price induces a parallel
increase of ⌘

y

= ⌘e
y

(p).

Considering the equilibrium dynamics, with or without carbon regula-
tion, we thus conclude that the whole qualitative features of the variables
dynamics during any unconstrained phase, summarized in the Proposition 1,
are conserved under a convex transformation cost structure. It is also imme-
diate that when the economy is constrained by the carbon pollution ceiling,
the coal use rate being fixed to the level x̄, the same applies to ⌘

x

and ⌘
y

,
hence the qualitative results summarized in the Proposition 3 remain valid.

A.5 Geometry of the phase plane (X,Z)

We here describe the dynamics of the state variables X and Z in the uncon-
strained equilibrium case. Without an environmental constraint, T (⇣x, t) = 0
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and pT
x

(t) = p
x

(t). The equilibrium trajectories of X and p
x

are solutions of
the following autonomous dynamic system:

˙X(t) = �xe

(p
x

(t))

ṗ
x

(t) = r (p
x

(t)� a(X(t))) .

With the particular solution at t
x

, X(t
x

) =

˜X and p
x

(t
x

) = a( ˜X), this system
defines the unconstrained equilibrium trajectory {(X(t), p

x

(t)), 0  t  t
x

}.
Since p

x

(t) � a(X(t)) = µ
X

(t) > 0, t 2 [0, t
x

), we conclude that ṗ
x

(t) > 0

while ˙X(t) < 0 within the time interval [0, t
x

).

Denote by p
x

= pE
x

(X) the relationship implicitly defined between p
x

and X along the equilibrium trajectory. Note that dpE
x

(X)/dX = ṗ
x

/ ˙X <
0, pE

x

(X) is a decreasing function of X. The dynamics of Z(t) along the
unconstrained trajectory is given by:

˙Z(t) = ⇣xe

(pE
x

(X(t)))� ↵Z(t) .

The locus ˙Z = 0 is defined by ZZ

(X) ⌘ ⇣xe

(pE
x

(X))/↵. Since xe

(p
x

) is a
decreasing function of p

x

and pE
x

(X) is a decreasing function of X:

dZZ

(X)

dX
=

⇣

↵

dxe

(p
x

)

dp
x

· dp
E

x

(X)

dX
> 0 .

Fixing X and increasing slightly Z above the curve ZZ

(X), ˙Z becomes neg-
ative. Thus, in the phase plane (X,Z), Z(t) decreases through time above
the curve ZZ

(X), while it increases below the curve.

The phase diagram in the (X,Z) plane is pictured in the Figure 6. De-
pending on X0 and Z0, different types of unconstrained equilibrium trajec-
tories emerge. All trajectories should converge toward the X =

˜X vertical
in finite time. Starting from an initial pair (X0, Z0

) located above the ˙Z = 0

locus, both X(t) and Z(t) decrease through time. The trajectory illustrated
in the Figure 6 starts from (X0, Z0

) located below the ˙Z = 0 locus. Such
trajectories correspond to two phases paths. During a first time phase, Z(t)
increases while X(t) decreases as the trajectory approaches the ˙Z = 0 locus.
During the second time phase, the trajectory having crossed the ˙Z = 0 bor-
der at a point we denote by (X

m

, Z
m

), Z(t) decreases down to ˜Z while X(t)

decreases down to ˜X.

Figure 6 about here
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Note that because of the extraction cost structure, x(t) ! 0 implies
that before the closure of coal exploitation, the carbon pollution stock must
begin to decrease for any vector of initial conditions (X0, Z0

). This feature is
absent from models with constant marginal extraction costs, positive carbon
pollution accumulation being possible until the complete transition toward
solar energy.

The equilibrium trajectory is unique in the phase plane and trajectories
solution of the differential system cannot cross themselves in the phase plane.
This implies that to any initial pair (X0, Z0

) located below the ˙Z = 0 locus
is associated a unique turning point (X

m

, Z
m

) lying along the curve ZZ

(X)

and Z
m

= ZZ

(X
m

). Denote by X
m

(X0, Z0
) and Z

m

(X0, Z0
) the relationships

between (X
m

, Z
m

) and (X0, Z0
).

Since trajectories cannot cross in the phase plane, @X
m

/@X0 > 0 and
@X

m

/@Z0 > 0. Since ZZ

(X) is an increasing function of X, this implies that
@Z

m

(X0, Z0
)/@X0 > 0 and @Z

m

(X0, Z0
)/@Z0 > 0.

Now consider a given level of Z
m

denoted by ¯Z
m

. Then ¯Z
m

= Z
m

(X0, Z0
)

defines implicitly a relationship between X0 and Z0. Denote by ¯Z0
m

(X0
) this

relationship. Note that d ¯Z0
m

(X0
)/dX0

= �(@Z
m

/@X0
)/(@Z

m

/@Z0
) < 0.

Fix X0 and increase slightly Z0 above the curve ¯Z0
m

(X0
) then Z

m

should be
increased. This implies that to larger levels of Z

m

correspond higher iso- ¯Z
m

curves ¯Z0
m

(X0
).

The previous characterization allows separating the set of initial endow-
ment pairs (X0, Z0

) such that the unconstrained equilibrium would never
meet the atmospheric carbon cap from the set of initial pairs that should
violate the constraint. Consider the particular ¯Z

m

level ¯Z and by a slight
abuse of notation, let ¯Z0

(X0
) denote the corresponding critical curve ¯Z0

m

(X0
)

when Z
m

=

¯Z in the (X,Z) plane. Then, it can be concluded from the pre-
vious discussion that for initial endowments vectors (X0, Z0

) located below
the critical curve ¯Z0

(X0
), the unconstrained equilibrium trajectory never at-

tains the ¯Z level. Such vectors lie in the Zone I on Figure 6. On the other
hand, for trajectories initiated in Zone II, like the one starting from (X0, Z00

)

in Figure 6, the ceiling constraint should be violated along the equilibrium
unconstrained path. The zone II thus defines the set of initial endowments
vectors (X0, Z0

) corresponding to an active carbon constraint situation.
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A.6 Determination of the optimal policy

Consider the five phases optimal path described in sub-section 4.2. Denote
by T p ⌘ t

x

� ¯t
Z

, the time duration of the first post-ceiling phase 4, by
T c ⌘ ¯t

Z

� t
Z

, the time length of the ceiling phase 3 and by T a ⌘ t
Z

the time
length of the pre-ceiling phase, the union of the phases 1 and 2. The optimal
path of the regulated economy may be determined through the following
backward induction algorithm.

During the phase 4, the optimal trajectories of X(t) and pT
x

are solution
of the following autonomous differential system:

˙X(t) = �xe

(pT
x

(t))

ṗT
x

(t) = r
�
pT
x

(t)� a(X(t))
�
. (A.6.1)

With the particular solution (

˜X, a( ˜X)) at time t
x

, the end of the coal ex-
ploitation phase, the system (A.6.1) defines a unique trajectory {(X(t), pT

x

(t)),
¯t
Z

 t  t
x

}. Let pT⇤
x

(X) denote the implicit relation so defined in the phase
plane (X, pT

x

). Since pT
x

(t) � a(X(t)) = �
X

(t) � 0 and > 0 if t < t
x

, we
conclude that ṗT

x

(t) > 0 over the open time interval (¯t
Z

, t
x

). In the phase
plane, the derivative of pT⇤

x

(X) is given by ṗT
x

/ ˙X < 0. Hence the graph of the
optimal trajectory in the phase plane is represented by a decreasing function
of X. Last, remember that since the economy is no more constrained by the
carbon ceiling during the phase 4, �

Z

= 0 entails pT
x

(t) = p
x

(t).

At the beginning of the phase 4, that is at time ¯t
Z

, the condition xe

(pT
x

) =

x̄ defines a unique level of pT
x

that we denote by p̄T
x

. Remember that �
Z

(

¯t
Z

)

being nil, p̄T
x

= pT
x

(

¯t
Z

) = p
x

(

¯t
Z

). Then pT⇤
x

(X) = p̄T
x

defines the coal grade
¯X
Z

= X(

¯t
Z

) at ¯t
Z

. Furthermore, the relation p̄T
x

= a( ¯X
Z

) + �
X

(

¯t
Z

) defines
¯�
X

= �
X

(

¯t
Z

). Last, the time needed to move the system from the vector
(

¯X
Z

, p̄T
x

) toward its final position at t
x

, ( ˜X, a( ˜X)), is given, the differential
system being time autonomous. Thus T p is determined.

During the ceiling phase 3, pT
x

(t) is maintained at the constant level p̄T
x

.
The dynamics of (X(t), p

x

(t)) are defined by the following autonomous time
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differential system with the particular solution at ¯t
Z

, ( ¯X
Z

, p̄T
x

):

˙X(t) = �x̄

ṗ
x

(t) = r [p
x

(t)� a(X(t))] .

Let p⇤
x

(X) denote the implicit relationship between p
x

and X correspond-
ing to the graph of the optimal trajectory in the phase plane (X, p

x

). Since
ṗ
x

= r�
X

> 0 during the ceiling phase, p⇤
x

(X) is a decreasing function of X.

A given time length of the ceiling phase, T c, defines the vector (X
Z

(T c

),

p
x

(T c

)) where X
Z

(T c

) = X(t
Z

) and p
x

(T c

) = p
x

(t
Z

). On the one hand:
X

Z

(T c

) =

¯X
Z

+ T cx̄. On the other hand, applying the change of variables:
'(✓) = ✓ + t

Z

:

p
x

(T c

) = p̄T
x

e�rT

c

+ r

Z
T

c

0

a( ¯X
Z

+ x̄(T c � ✓))e�r✓d✓ .

X
Z

(T c

) is an increasing function of T c while:

dp
x

(T c

)

dT c

= �r
�
p̄T
x

� a( ¯X
Z

)

�
e�rT

c

+r

Z
T

c

0

a0(X(T c � ✓))x̄e�r✓d✓ < 0 ,

a0(X) being negative under A.1.

The condition p̄T
x

= p
x

(T c

) + ⇣�
Z

(t
Z

) then defines �
Z

(T c

) = �
Z

(t
Z

), an
increasing function of T c, p

x

(T c

) being itself a decreasing function of T c. For
a given T a, the time length of the pre-ceiling phase covering the phases 1 and
2, this defines �

Z

(t) before the carbon constraint begins to bind.

�
Z

(t) = �
Z

(T c

)e�(r+↵)(Ta�t) ⌘ �
Z

(t;T a, T c

) .

It is immediate that �
Z

(t) is an increasing function of T c and a decreasing
function of T a.

Next, X(t) and pT
x

(t) are solutions of the following non autonomous dif-
ferential system before t

Z

:

˙X(t) = �xe

(pT
x

(t))

ṗT
x

(t) = r
⇥
pT
x

(t)� a(X(t))
⇤
+ ⇣↵�

Z

(t;T a, T c

) .
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With the particular solution (X
Z

(T c

), p̄T
x

), this system defines a unique tra-
jectory of X and pT

x

for any given pair (T a, T c

). Let {(X(t;T a, T c

),
pT
x

(t;T a, T c

)), 0  t  T a} be the corresponding trajectory. Then the
initial condition: X0

= X(0, T a, T c

) defines an implicit relation between
T a and T c, a relation we denote T c

(T a

). This relation defines in turn
pT
x

(t, T a

) ⌘ pT
x

(t;T a, T c

(T a

)) and thus x(t, T a

) ⌘ xe

(pT
x

(t;T a

)). Last, the
ceiling attainment condition:

¯Ze↵T
a

= Z0
+ ⇣

Z
T

a

0

x(t, T a

)e↵tdt ,

determines T a. Thus t
Z

= T a is determined, together with ¯t
Z

= T c

(T a

)+T a

and t
x

= T p

+T c

(T a

)+T a. On the other hand: �
Z

(0) = �
Z

(T c

(T a

))e�(r+↵)Ta

is determined together with �
X

(0) = pT
x

(0, T a

) � a(X0
) � ⇣�

Z

(0). Last
X(t

Z

) = X
Z

(T c

(T a

)) and t
y

is the unique solution of c0(0+) = pe(pT
x

(t;T a

)).
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Figure 1: Useful Energy Consumption when at the Ceiling and only
Coal is Exploited.
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Figure 2: Useful Energy Consumption at the Ceiling when both
Coal and Solar are exploited and b0(0+) < c0(0+).
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Figure 3: Useful Energy Consumption when at the Ceiling and both
Coal and Solar are exploited when c0(0+) < b0(0+).
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Figure 4: Optimal Path of the Useful Energy Price.
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Figure 5: Useful Energy Consumption Rates: Coal (top panel) and
Solar (bottom panel).
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Figure 6: Geometry of the plane (X,Z)
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