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Abstract 

More than 40% of US corn is now used to produce biofuels, which are used as substitutes for 
gasoline in transportation. Biofuels have been blamed universally for past increases in world food 
prices, and many studies have shown that these energy mandates in the US and EU may have a 
large (30-60%) impact on food prices. In this paper, we use a partial equilibrium framework to 
show that demand-side effects - in the form of population growth and income-driven preferences 
for meat and dairy products rather than cereals - may play as much of a role in raising food prices 
as biofuel policy. By specifying a Ricardian model with differential land quality, we find that a 
significant amount of new land will be converted to farming, which is likely to cause a modest 
increase in food prices. However, biofuels may increase aggregate world carbon emissions, due to 
leakage from lower oil prices and conversion of pasture and forest land for farming.  
 
Keywords: Clean Energy, Food Demand, Land Quality, Renewable Fuel Standards, 
Transportation 
 
JEL Codes: Q24, Q32, Q42 
 
This Version: August 2015 

                                                
1Chakravorty (Corresponding Author): Department of Economics, Tufts University (TSE, CESifo), 
ujjayant.chakravorty@tufts.edu; Hubert: CREM, Department of Economics, University of Rennes 1, marie-
helene.hubert@univ-rennes1.fr;  Moreaux: Toulouse School of Economics (IDEI, LERNA), mmichel@cict.fr; and 
Nøstbakken: Department of Economics, Norwegian School of Economics, linda.nostbakken@nhh.no. 



1 
 

1. Introduction  

Biofuels are providing an ever larger share of transport fuels, even though they have been 

universally attacked for not being a “green” alternative to gasoline. In the United States, about 10% 

of gasoline now comes from corn and this share is expected to rise three-fold in the near future if 

the Renewable Fuel Standard (RFS) is extended. The European Union, India and China have 

aggressive biofuel mandates as well. Studies that have modeled the effect of these policies on food 

prices predict large increases, and have been supported by the run-up in commodity prices in recent 

years. For example, the International Food Policy Research Institute (Rosegrant et al.,2008) 

suggests that prices of certain crops may rise by up to 70% by 2020.2 

 

In this paper, we examine the long-run effects of US and EU biofuel policy in a dynamic, partial 

equilibrium setting.3 Our approach is unique in two respects. It is common knowledge that as poor 

countries develop, their diets change in fundamental ways. In particular, they eat less cereal and 

more animal protein in the form of meat and dairy products.4 This fact is important because 

producing meat and dairy uses more land than growing corn.5 Coupled with global increases in 

population, these demand shifts should cause an increase in food prices even without any biofuel 

policy. Second, many studies assume a fixed supply of land. There is plenty of land in the world, 

although of varying quality for food production. Sustained food price increases will cause new land 
                                                
2 Other studies have also found a significant impact, although not to the same degree. For example, Roberts and 
Schlenker (2013) use weather-induced yield shocks to estimate the supply and demand for calories and conclude that 
energy mandates may trigger a rise in world food prices by 20-30%. Hausman, Auffhammer and Berck (2012) use 
structural vector auto-regression to examine the impact of biofuel production in the U.S. on corn prices. They find that 
one third of corn price increases during 2006-08 (which rose by 28%) can be attributed to the US biofuel mandate. 
Their short-run estimates are consistent with our prediction that in the long-run, the impacts may be significantly 
lower. This is because higher food prices are likely to trigger supply side responses only with a time lag, especially if 
significant land conversion were to occur. 
3 Both have imposed large biofuel mandates. Other nations such as China and India have also announced biofuel 
mandates but their implementation is still in progress. We discuss them later in the paper.  
4 For instance, aggregate meat consumption in China has increased 33 times in the last 50 years, yet its population has 
only doubled (Roberts and Schlenker 2013).  
5 On average, eight kilos of cereals produce one kilo of beef and three kilos of cereals produce one kilo of pork. 
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to be brought under farming, but as we move down the Ricardian land quality gradient, costs will 

rise, which may in turn put an upward pressure on prices.6 The model we develop in this paper 

explicitly accounts for the above effects in a dynamic setting where we allow for a rising supply 

curve of crude oil.7 

 

Fig.1 shows the disparity in meat and cereal consumption in the United States and China. Chinese 

per capita meat consumption is about half of the US, but cereal consumption is much higher. These 

gaps are expected to narrow significantly in the near future as the Chinese diet gets an increasing 

share of its calories from animal protein.8 Income-induced changes in dietary preferences have 

been largely ignored in previous economic studies. Our results show that about half the predicted 

rise in food prices may be due to changes in diet.   

 
(a) Cereal consumption  (b) Meat consumption 

Figure 1: Per capita cereal and meat consumption in China and US, 1965-2007 
Source: FAOSTAT. Note: Chinese cereal consumption excludes grain converted to meat. 

 

                                                
6 Significant amounts of new land is currently being converted for farming (Tyner, 2012). 
7 Hertel, Tyner and Birur (2010) use a general equilibrium trade model (GTAP) to explore the impact of biofuels 
production on world agricultural markets, specifically focusing on US/EU mandatory blending and its effects on 
individual countries. They use disaggregated data on world land quality. However, their static framework does not 
account for changes in food preferences. Reilly and Paltsev (2009) also develop a static energy model that does not 
account for heterogeneity in land quality.  
 8 Although we use China as an example, the trend holds for other countries as well. For example, per capita meat and 
dairy consumption in developed nations is about four times higher than in developing countries. 
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Since our main premise is that the pressure on food prices will lead to more land conversion, the 

model we propose explicitly accounts for the distribution of land by quality. We use data from the 

US Department of Agriculture (USDA) which classifies land by soil quality, location, production 

cost and current use as in pasture or forest. With increased use of biofuels, oil prices will fall, 

which will lead to leakage in the form of higher oil use by countries with no biofuel policy. We 

endogenously determine the world price of crude oil and the extent of this spatial leakage.9 We 

show that biofuel policy may reduce direct carbon emissions (from combustion of fossil fuels) in 

the mandating countries but it is largely offset by an increase in emissions elsewhere. However, 

indirect emissions (from land use) go up because of the conversion of pasture and forest land, 

mainly in the developing countries. Aggregate global greenhouse gas emissions from the US and 

EU biofuel mandates actually show a small increase.  

 

The main message of the paper is that demand shifts may have as much of a role in the rise of food 

prices as biofuel policy.10 Moreover, this price increase may be significantly lower because of 

supply side adjustments in the form of an increase in the extensive margin. We obtain these results 

with assumptions of modest growth rates in the productivity of land and in the energy sector. 

General equilibrium effects of these policies, which we do not consider, may further diminish the 

price impact of biofuel mandates. By the same token, models that do not account for supply side 

effects of rising food prices will tend to find large impacts.     

                                                
9 Unlike other studies that determine crude oil use in a static setting.  
10 Additional biofuel mandates imposed by China and India also have a surprisingly small effect on food prices.  
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Section 2 describes the underlying theoretical model. Section 3 reports the data used in the 

calibration. Section 4 reports results and in section 5 we discuss sensitivity analysis. Section 6 

concludes the paper. The Appendix provides data on the parameters used in the model. 

 

2. The Model 

In this section, we present the detailed theoretical structure of the calibration model used to 

estimate food prices.  Consider a dynamic, partial equilibrium economy in which three goods, 

namely cereals, meat and transport energy are produced and consumed in five regions respectively 

denoted by r  (the United States, EU, other High Income Countries, Medium Income Countries and 

Low Income Countries). Time is denoted by subscript t . The regional consumption of these goods 

is denoted by ( ), ( )rc rmq t q t  and ( )req t  where mc,  and e denote cereals, meat and energy, 

respectively. Each region faces a downward-sloping inverse demand function denoted by 

1 1( ( ), ), ( ( ), )rc rc rm rmD q t t D q t t− − and 1( ( ), )re reD q t t− , respectively. Within each region, demand for a good 

is independent of the demand for other goods. Regional demands for the three consumption goods 

(cereals, meat and transport energy) are modeled by means of Cobb-Douglas demand functions, 

which shift exogenously over time because of changes in population, income and consumer 

preferences over meat and cereals. Benefits from consumption are measured in dollars by the 

Marshallian surplus, i.e., the area under the inverse demand curve.11  

Land is used to supply food and biofuels. It is available in three qualities denoted by 

{ },  ,  n High Medium Low=  with High being the highest quality. The acreage of land qualityn  in 

                                                
11 The structure of the model is similar to that adopted by Chakravorty, Roumasset and Tse (1997) for a single region, 
and by other studies as well (e.g., Sohngen, Mendelsohn and Sedjo (1999), Fischer and Newell (2008) and Crago and 
Khanna (2014)). Nordhaus (1973) pioneered this approach by assuming independent demand functions for the US 
transport, commercial and residential energy sectors. 
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region r  devoted to cereals, meat or biofuel production at any time t is given by ( ), ( )n n
rc rmL t L t and 

by ( )n
rbL t , respectively, where we denote the different land uses by { }, ,j c m b= .  Let ( )n

rj
j
L t∑  be 

the total acreage in use j  for land quality n  at any time t and 
n
rL  be the initial land area by quality 

available for cultivation. Aggregate land under the three crops cannot exceed the endowment of 

land, hence ( ) ( ) , for all .
nn n
rrj r

j
L t L t L j= ≤∑  Let new land brought under cultivation at any time t  be 

denoted by ( ),n
rl t  i.e.,    

!Lr
n(t) = lr

n(t) , where dot denotes the time derivative. The variable ( )n
rl t may 

be negative if land is taken out of production: here we only allow new land to be brought under 

cultivation.12 The regional total cost of bringing new land into cultivation is increasing and convex 

as a function of aggregate land cultivated in the region, but linear in the amount of new land used at 

any given instant – this cost is given by ( )n n
r r rc L l  where we assume that 

2

20, 0.r r
n n
r r

c c
L L
∂ ∂> >
∂ ∂

 

Additional land brought under production is likely to be located in remote locations. Thus, the 

greater is the land area already under cultivation, the higher the unit cost of bringing new land into 

farming within a given quality.  

Let the yield for land quality n  allocated to use j  be given by .nrjk
13 Yields are higher on higher 

quality land.14 Then the output of food or biofuel energy at any time t  is given by n n
rj rj

n
k L∑ . 

                                                
12 Allowing land to be taken out of production will make the optimization program complicated. When we run our 
calibration model, this variable is never zero before the year 2100 except in the US (where land conversion is small in 
any case, as we see later in the paper) and is never zero in any region after the year 2100 because population keeps 
increasing and diets trend toward more meat and dairy consumption, which is land intensive. However, if food prices 
fall because of exogenous technological change, some land may go out of production in the distant future, but that is 
beyond the scope of our analysis.  
13 In the calibration model, crops are transformed into end-use commodities (cereals, meat and biofuels) by means of a 
coefficient of transformation (crops into commodities) and a cost of transformation, both linear. Their values are 
reported in the Appendix.  
14 See Appendix Tables A5 and A6.   
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Regional production costs are a function of output and assumed to be rising and convex, i.e., more 

area under cereals, meat or biofuel production implies a higher cost of production, given by 

( ).n n
rj rj rj

n
w k L∑  

Oil is a nonrenewable resource and we assume a single integrated “bathtub” world oil market as in 

Nordhaus (2009). Let X  be the initial world stock of oil that is used only for transportation, 

)(tX be the cumulative stock of oil extracted until date t  and ( )rx t  the regional rate of 

consumption so that  
   
!X (t) = xr (t)

r
∑ . The unit extraction cost of oil is increasing and convex with 

the cumulative amount of oil extracted, denoted by )(Xg . Thus total cost of extraction 

is ( ) ( )r
r

g X x t∑ . Crude oil is transformed into gasoline by applying a coefficient of transformation 

rω  so that total production of gasoline is gr r rq xω= , where ' 'g  stands for gasoline.15 Transport fuel 

is produced from combining gasoline (derived from crude oil) and biofuels in a convex linear 

combination using a CES specification, given by 
1 1 1

(1 )

r

r r r

r r
re r rg rg rg rbq q q

σ
σ σ σ
σ σπ µ µ
− − −⎡ ⎤

⎢ ⎥= + −
⎢ ⎥⎣ ⎦

 where 

req is the production of transport fuel, rπ is a constant, ,rg rbq q the quantities consumed of gasoline 

and biofuel, rgµ is the share of oil and (1 )rgµ−  is the share of biofuels in transport fuel, rσ  is the 

regional elasticity of substitution. 
 

We assume frictionless trade of food commodities and biofuels across regions. Then we can write 

the net export demand (regional production net of consumption) for cereals, meat and biofuels as    

                                                
15 We include the cost of refining crude oil into gasoline, described in the Appendix. 
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,n n n n
rc rc rc rm rm rm

n n
k L q k L q⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  and ,n n

rb rb rb
n
k L q⎛ ⎞−⎜ ⎟

⎝ ⎠
∑  respectively. Transport fuel is not traded 

but blended and consumed domestically.  

 

Given the exogenous shift in demand from population growth and changes in preferences over 

meat and cereals driven by an increase in GDP per capita, the social planner maximizes net 

discounted surplus across regions and over time using a discount rate 0ρ > . (S)he chooses the 

regional acreage allocated to food and biofuel production, the amount of new land brought under 

cultivation, the quantity of each food and energy used and the quantity of gasoline used at each 

time t  in each region r . Note that we do not include the externality cost of carbon emissions from 

energy or land use in this program. Later, we exogenously impose the mandates on biofuel 

production by region (the US and the EU) and solve for the constrained solution.16 The 

optimization problem is written as  

1

, , ,
0 0

( , t) ( ) ( ) ( )    (1)
rj

r r r r
nj j n

q
t n n n n r

rj rj rj r r r rj rj rj
L q l x r n j n r

Max e D q dq c L l w k L g X x dtρ
∞

− −
⎫⎧ ⎡ ⎤⎛ ⎞⎪ ⎪− − −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

∑ ∑ ∑ ∑ ∑∫ ∫  

subject to: 

   

Lrj
n

j
∑ = Lr

n ≤ Lr
n ,∀n (2)

!Lr
n(t) = lr

n(t),∀n (3)
!X (t) = xr

r
∑ (t) (4)

qre = π r µrgqrg

σ r−1
σ r + (1− µrg )qrb

σ r−1
σ r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ r−1
σ r

(5)

krj
n Lrj

n

n
∑ − qrj

⎛
⎝⎜

⎞
⎠⎟
= 0

r
∑ (6)

 

                                                
16 In both the unconstrained and constrained models, we compute the aggregate carbon emissions from each program. 
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where rg r rq xω= . The corresponding generalized Lagrangian can be written as: 

1

0

( , t) ( ) ( )

( ) ( )

rjq
n n n n

rj rj rj r r r rj rj rj
r n j n

r n n n n n
r r rj r r r

r r n j r

n n
j rj rj rj

j r n

L D q dq c L l w k L

g X x L L l x

k L q

β θ λ

ν

−
⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎝ ⎠
⎡ ⎤

− + − + −⎢ ⎥
⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞+ −⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑ ∑ ∑∫

∑ ∑∑ ∑ ∑

∑ ∑ ∑

 

where n
rβ is the multiplier associated with the static land constraint (2), n

rθ and λ are multipliers 

associated with the two dynamic equations (3) and (4), and jν represents the world price of  traded 

goods (cereals, meat and biofuels). We get the following first order conditions: 

 

{ }

{ }

( ') 0( 0if 0), , ,                                                                    
(7)

0( 0if 0), ,                                                                   

n n n
rj j rj r rj

rj j rj

k w L j c m b

p q j c m

ν β

ν

− − ≤ = > =

− ≤ = > =                       (8)                                                            

0( 0if 0)                                                                                        re
re b rb

rb

qp q
q

ν∂ − ≤ = >
∂

            
(9)

( ) 0( 0if 0)                                                                                                  
(10)

( ) 0( 0if 0).                           

n n
r r r rn

re
re rg

rg

c L l

qp g X q
q

θ

λ

− ≤ = >

∂ − − ≤ = >
∂

                                                        
(11)

 

Finally, the dynamics of the co-state variables is given as 

   

!λ(t) = ρλ + g '( X ) xr
r
∑ (12)

!θr
n(t) = ρθr

n + ′cr (Lr
n )lr

n − βr
n. (13)

 

This is a standard optimization problem with a concave objective function since the demand 

functions are downward sloping and costs are linear or convex. The constraints are linear. We can 

thus obtain a unique, interior solution.17 

                                                
17 For an analytical solution to a much simpler but similar problem, see Chakravorty, Magne and Moreaux (2008).  
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Conditions (7) suggest that the cultivated land in each region is allocated either to cereals, meat and 

energy production until the price (ν j )  equals the sum of the production cost plus the shadow value 

of the land constraint, given by .nrβ  Equation (8) suggests that the regional price of cereals and 

meat ( )rjp  equals its world price (ν j ). Equation (9) suggests that the price of biofuels in each 

region ( )rep , weighted by the term re

rb

q
q

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 equals its world price )( bν . Equation (10) indicates that 

the marginal cost of land conversion equals the dynamic shadow value of the stock of land .rnθ  

Equation (11) states that the regional price of gasoline ( )rep  weighted by re

rg

q
q

⎛ ⎞∂
⎜ ⎟⎜ ⎟∂⎝ ⎠

 equals its cost 

augmented by the scarcity rent λ ."Conditions (12) and (13) give the dynamic path of the two co-

state variables λ and .nrθ   

According to equations (9) and (11), consumption of biofuel and gasoline are respectively given by 

'
n

re r
re rb n

rb rb

qp w
q k

β∂ = +
∂

 and ( ) .re
re

rg

qp g X
q

λ∂ = +
∂

 Hence the weighted marginal costs of biofuels and 

gasoline are equal. A positive quantity of land is allocated to the production of cereals, meat and 

energy. Obviously, rents will be higher on higher quality land. An increase in the demand for 

energy will induce a shift of acreage from food to energy and hence drive up the price of food, as 

well as bring more land into cultivation, potentially of a lower quality. 

The biofuel mandate is imposed in the model by requiring a minimum level of consumption of 

biofuels in transportation at each date until the year 2022. Define the regional mandate in time T  

as ( )
rb
q T , which implies that biofuel use must not be lower than this level at date .T  This 

constraint can be written as ( )( ) ( ) 0.rb rb
q T q T− ≥  This will lead to an additional term 
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( )( ) ( )r rb rb
q T q Tτ − in the generalized Lagrangian. The new condition for allocating land to biofuel 

(modified equations (7) and (9)) will be ' 0,( 0if 0) for all .n n nre
rb re rb r r rb

rb

qk p w L n
q

τ β⎛ ⎞∂ − + − ≤ = >⎜ ⎟∂⎝ ⎠
 

The shadow price rτ can be interpreted as the implicit subsidy to biofuels that bridges the gap 

between the marginal costs of gasoline and biofuel. It is of course region-specific. The European 

mandate is a proportional measure, which prescribes a minimum percent of biofuel in the transport 

fuel mix. This restriction is implemented in the model by writing ( ) ( )
( )

rb

re

q T s T
q T

≥ where )(Ts is the 

mandated minimum share of biofuels in transport at time T .  

Even though the optimization program abstracts from valuing externalities from carbon emissions, 

it is important to find out whether carbon emissions decline due to the imposition of the biofuel 

mandate.18 The model tracks direct as well as indirect carbon emissions. Emissions from gasoline 

are constant across regions, but emissions from first and second gen biofuels are region-specific 

and depend upon the crop used. Emissions from gasoline occur at the consumption stage, while 

biofuel emissions occur mainly at the production stage. Finally, indirect carbon emissions are 

released by conversion of new land, namely forests and grasslands into food or energy crops. This 

sequestered carbon is released back into the atmosphere. In the Appendix we detail the 

assumptions used to compute regional carbon emissions with and without the biofuel mandate.  

3. Calibration of the Model 

In this section, we discuss calibration of the model presented above. We aggregate the countries 

into three groups as stated earlier, using data on gross national product per capita (World Bank 

2010). These are High, Medium and Low Income Countries (HICs, MICs and LICs). Since our 
                                                
18 Chakravorty and Hubert (2013) analyze the impact of a carbon tax on the transportation sector in the US.  
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study focuses specifically on US and EU biofuel mandates, the HICs are further divided into three 

groups - the US, EU and Other HICs. There are five regions in all. Table 1 shows average per 

capita income by region. The MICs consist of fast growing economies such as China and India that 

are likely to account for a significant share of future world energy demand as well as large biofuel 

producers like Brazil, Indonesia and Malaysia. The LICs are mainly nations from Africa.  

Table 1. Classification of regions by income (US$) 
Regions         GDP per capita Major countries 
US                 46,405 - 
EU        30,741 - 
Other HICs                 36,240 Canada, Japan  
MICs         5,708 China, India, Brazil, Indonesia, Malaysia 
LICs          1,061 Mostly African countries 
Notes: Per capita GDP in 2007 dollars, PPP adjusted. Source: World Bank (2010) 

 

Specification of Demand. We can now describe the three consumption goods - cereals, meat and 

dairy products, and transport energy - in more detail. Cereals include all grains, starches, sugar and 

sweeteners and oil crops. Meat and dairy include all meat products and dairy such as milk and 

butter. For convenience, we call this group “meat.” We separate cereals from meat because their 

demands are subject to exogenous income shocks as specified below. Meat production is also more 

land intensive than cereals. As mentioned above, transport energy is supplied by gasoline and 

biofuels. Cereals, meat and biofuels compete for land that is already under farming as well as new 

land, which is currently under grassland or forest cover.19  

 

Regional demand ( , )rj rjD P t  for good j  takes the form                                  

 
  
Drj (Prj ,t) = Arj Prj

αrj yr (t)βrj (t ) Nr (t)        (14) 

                                                
19 Obviously, many other commodities can be included for a more disaggregated analysis, but we want to keep the 
model tractable so that the effects of biofuel policy on land use are transparent. 
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where ( )rjP t  is the output price of good j at time t  in dollars, 
α rj is the regional own-price 

elasticity and ( )rj tβ  the regional income elasticity for good jwhich varies exogenously with per 

capita income reflecting changes in food preferences; ( )ry t  is regional per capita income, ( )rN t  is 

regional population at time t  and rjA  is the constant demand parameter for good j , which we 

calibrate to reproduce the base-year demand for final commodities for each region. The constant 

demand parameters are reported in Appendix Table A1.20 The demand function in (14) can be 

thought of as the demand for a representative individual times the population of the region. 

Individual demand is a function of the price of the good and income given by GDP per capita.  

 

As incomes rise, we expect to observe increased per capita consumption of meat relative to the 

consumption of cereals, as noted in numerous studies (e.g., Keyzer et al. 2007). We model this 

shift towards animal protein by using income elasticities for food that are higher at lower levels of 

per capita income.  Specifically, income elasticities for the US, EU and other HICs are taken to be 

stationary in the model since dietary preferences as well as income in these regions are not 

expected to change significantly over time, at least relative to developing countries. However, they 

are likely to vary in the MICs and LICs due to the larger increase in per capita incomes. The higher 

the income, the lower is the income elasticity. All price and income elasticities are specific to each 

food commodity (e.g., meat, cereals) and taken from GTAP (Hertel et al., 2008) as described in the 

Appendix (Tables A1-A3).21 

 

                                                
20 Independence of demand for meat and cereals has been assumed in other studies, see Rosegrant et al. (2001) and 
Hertel, Tyner and Birur (2010). 
21 Note that not all developing countries have exhibited as large a growth in meat consumption as China. For example, 
a third of Indians are vegetarian and a change in their incomes may not lead to dietary effects of the same magnitude. 
Moreover, beef and pork are more land-intensive than chicken, the latter being more popular in countries like India. 
The distribution of income may also affect this behavior. If it is regressive, the effect on diets may be limited.    
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We account for regional disparities in the growth of population. While the population of high 

income nations (including the US and EU) is expected to be fairly stable over the next century, that 

of middle income countries is predicted to rise by about 40% by 2050 and more than double for 

lower income countries (United Nations Population Division, 2010). Demand is also impacted by 

per capita income in each region, which is assumed to increase steadily over time but at a 

decreasing rate, as in several studies (e.g., Nordhaus and Boyer 2000). Again, regional differences 

are recognized, with the highest growth rates in MICs and LICs.22 

 

Land Endowment and Productivity The initial global endowment of agricultural land is 1.5 billion 

hectares (FAOSTAT). The regional distribution of land quality is not even, as is evident from 

Figure 2, which shows land endowments based on climate and soil characteristics.23 Most good 

land is located in higher income countries, but Brazil and India also have sizeable endowments of 

high quality land. Initial endowment for each of the three land qualities can be divided into land 

already under cultivation and fallow land. 24 As shown in Table 2, more than half of the agricultural 

land in the HICs (US, EU and Others) is classified as high quality, while the corresponding shares 

are roughly a third for MICs and LICs, respectively. Most land of medium and low quality is 

currently fallow in the form of grasslands and forests, and located in MICs and LICs. Note from 

Table 2 that there is no high quality land available for new production. Future expansion must 

                                                
22 Initial population levels and projections for future growth are taken from the United Nations Population Division 
(2010). Both world food and energy demands are expected to grow significantly until about 2050, especially in the 
MICs and LICs. By 2050, the current population of 6.8 billion people is predicted to reach nine billion. Beyond that 
time, population growth is expected to slow, with a net increase of one billion people between 2050 and 2100. 
23 Many factors such as irrigation and climate change can affect land quality. For instance, investment in irrigation can 
improve the productivity of land. In northern regions like Canada and Russia higher temperatures may cause an 
expansion of land suitable for agricultural production; hence, area under medium and low qualities may increase in the 
future. The net effect of these factors on the productivity of new land is unclear and left for future work. However, we 
do allow for increasing productivity of land over time (see below).              
24 See Appendix for details on land classification. According to FAO (2008a), an additional 1.5 billion hectares of 
fallow lands could be brought under crop production in the future. This is approximately equal to the total land area 
already under cultivation. 
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occur only on lower quality lands. Brazil alone has 25% of all available lands in the MICs and is 

the biggest producer of biofuels after the US. 

 
Figure 2. Distribution of land quality 

 
Source: U.S. Department of Agriculture, (Eswaran et al. 2003 p.121). Notes: Land quality is defined along two 
dimensions: soil performance and soil resilience. Soil performance refers to the suitability of soil for agricultural 
production; soil resilience is the ability of land to recover from a state of degradation. Land quality 1 is the highest 
quality and 9 the lowest. In our model, we ignore category 7 through 9 which are unsuitable for agricultural production 
and aggregate the rest into three qualities (categories 1 and 2 become High quality land, 2 and 3 Medium quality land 
and 5 and 6, Low quality land). 
 

As in Gouel and Hertel (2006), the unit cost of accessing new land in a region increases with land 

conversion. This can be written as  

  
cr (Lr

n ) = φ1r −φ2r log
Lr

n − Lr
n

Lr
n

⎛

⎝⎜
⎞

⎠⎟
         (15) 

 
where n

rL is the initial endowment of quality n, so that ( )n n
r rL L t−   is the fallow land available at 

date t,   φ1r and   φ2r are model parameters, positive in value (calibrated from data) and assumed to be 

the same across land quality but varying by region (see Appendix Table A4).25  

                                                
25 Intuitively,   φ1r is the cost of converting the first unit land to farming. Conversion costs increase without bound as the 
stock of fallow land declines, since the log of the bracketed term is negative.  
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Table 2. Land currently in farming and endowment of fallow land 

 Land quality US EU Other HICs MICs LICs World 

Land already under 
Agriculture 
(million ha) 

High 100 100 25 300 150 675 

Medium 48 32 20 250 250 590 

Low 30 11 20 243 44 350 

Land available for 
farming (incl. fallow 
lands)  
(million ha) 

High 0 0 0 0 0 0 

Medium 11 8 21 300 300 640 

Low 11 8 21 500 500 1040 

Sources: Eswaran et al. (2003), FAO (2008a), Fischer and Shah (2010).    

 

Improvements in agricultural productivity are exogenous and allowed to vary by region and land 

quality (see Appendix Table A5). All regions are assumed to exhibit increasing productivity over 

time, mainly because of the adoption of biotechnology (e.g., high-yielding crop varieties), access to 

irrigation and pest management. However, the rate of technical progress is higher in MICs and 

LICs because their current yields, conditional on land quality, are low due to a lag in adopting 

modern farming practices (FAO 2008a). The rate of technical progress is also likely to be lower for 

the lowest land quality. Biophysical limitations such as topography and climate reduce the 

efficiency of high-yielding technologies and tend to slow their adoption in low quality lands, as 

pointed out by Fischer et al. (2002).  

 

The production cost for product j  (e.g. cereal, meat or biofuel) for a given region is 

 ( ) ( )
2

1

r

n n
rj r rj rj

n
w t k L t

η

η ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑                                                   (16) 



16 
 

where the term inside brackets is the aggregate production over all land qualities in the region and 

1rη and 2 rη are regional cost parameters.26 For food and biofuels, we distinguish between 

production and processing costs. All crops need to be packaged and processed, and if they are 

converted to biofuels, the refining costs are significant. For cereals and meat, we use the GTAP 5 

database, which provides sectoral processing costs by country (see Appendix Table A7). 

Processing costs for biofuels are discussed below.   

 

The Energy Sector Transportation energy eq is produced from gasoline and biofuels in a convex 

linear combination using a CES specification. For biofuels we model both land using (First 

Generation biofuels) and newer technologies that are less land-using (Second Generation), the 

latter are described in more detail below. First and second generation biofuels are treated as perfect 

substitutes, but with different unit costs, as in many other studies (Chen et al. 2012).  We use 

estimates of the elasticity of substitution made by Hertel, Tyner and Byrur (2010). We calibrate the 

constant parameter in the CES production function to reproduce the base-year production of 

blending fuel (see Appendix Table A8 for details).27  

 

For crude oil reserves, both conventional and unconventional oils (e.g., shale) are included. 

According to IEA (2011), around 60% of crude oil is used by the transportation sector. From the 

estimated oil reserves in 2010, we compute the initial stock of oil available for transportation as 

153 trillion gallons (3.6 trillion barrels, World Energy Council 2010). The unit cost of oil depends 

on the cumulative quantity of oil extracted (as in Nordhaus and Boyer 2000) and can be written as 

                                                
26 The calibration procedure for this equation is explained in the Appendix and regional cost parameters are reported in 
Table A6.  
27 Transport fuel production is in billion gallons, which is transformed into Vehicles Miles Traveled (VMT) using the 
coefficients reported in Table A9. 
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3
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( )g( ( )) X tX t
X

ϕ

ϕ ϕ ⎧ ⎫= + ⎨ ⎬
⎩ ⎭

                           (17) 

where ∑∑=
t r

r txtX )()(  is the cumulative oil extracted at time t , X is the initial stock of crude 

oil, 1ϕ is the initial extraction cost and 1 2( )ϕ ϕ+ is the unit cost of extraction of the last unit of oil. 

The parameters 1ϕ , 2ϕ and 3ϕ  are obtained from Chakravorty et al. (2012). The initial extraction 

cost of oil is around $20 per barrel (or $0.50 per gallon) and costs can rise to $260 per barrel (or 

$6.50 per gallon) close to exhaustion (see Appendix Table A10). At these high prices, 

unconventional oils become competitive.  

 

For each region, we consider a representative fuel: gasoline for the US and diesel for the EU.28 We 

further simplify by considering a representative first generation biofuel for each region. This 

assumption is reasonable because there is only one type of biofuel that dominates in each region. 

For example, 94% of biofuel production in the US is ethanol from corn, while 76% of EU 

production is biodiesel from rapeseed. Brazil, the largest ethanol producer among MICs, uses 

sugarcane. Hence, sugarcane is used as the representative crop for MICs. In the LICs, 90% of 

biofuels are produced from cassava, although it amounts to less than 1% of global production.29 

Table 3 shows the representative crop for each region and its processing cost in the model base 

year.30 Note the significant difference in costs across crops. These costs are assumed to decline by 

around 1% a year (Hamelinck and Faaij 2006) mainly due to a decrease in processing costs.31  

                                                
28 Gasoline represents more than three-quarters of US transport fuel use while diesel accounts for about 60% in the EU 
(World Resources Institute 2010). The coefficients of transformation of oil into gasoline and into diesel are reported in 
the Appendix. 
29 Energy yield data for first-generation biofuels is reported in Appendix Table A11.  
30 The total cost of biofuels is the sum of the production and processing costs plus rent to land net the value of by-
products. Note that production costs depend on what type of land is being used and in which geographical region, and 
land rent is endogenous. By-products may have significant value since only part of the plant (the fruit or the grain) is 
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Table 3. Unit processing costs of first generation biofuels 
 US EU Other HICs MICs LICs 

Feedstock Corn Rapeseed Corn Sugar-cane Cassava 
 (94%) (76%) (96%) (84%) (99%) 

Cost ($/gallon) 1.01 1.55 1.10 0.94 1.30 
Sources: FAO (2008a); Eisentraut (2010); Notes: The numbers in parentheses represent the percentage of first-
generation biofuels produced from the representative crop in the base year, 2007 (e.g., corn). 

 

We model a US tax credit of 46 cents/gallon, consisting of both state and federal credits (de Gorter 

and Just 2010), which is removed from the model in year 2010, as done in other studies (Chen et al. 

2012).  EU states have tax credits on biodiesel ranging from 41-81 cents (Kojima et al. 2007). We 

include an average tax credit of 60 cents for the EU as a whole.  

 

Second gen biofuels can be divided into three categories depending on the fuel source: crops, 

agricultural and non-agricultural residue. They currently account for only about 0.1% of total 

biofuel production although the market share may increase with a reduction in costs and improved 

fuel performance and reliability of the conversion process. Compared to first gen fuels, they emit 

less greenhouse gases and are less land consuming. Among several second gen biofuels, we model 

the one that has the highest potential to be commercially viable in the near future, namely 

cellulosic ethanol (from miscanthus, which is a type of perennial grass that produces biofuel) in the 

US and biomass-to-liquid (BTL) fuel in the EU (IEA 2009b). Their energy yields are much higher 

than for first gen biofuels. In the US, 800 gallons of ethanol (first gen) are obtained by cultivating 

one hectare of corn, while 2,000 gallons of ethanol (second gen) can be produced from ligno-

cellulosic biomass (Khanna 2008). In EU, around 1,000 gallons/ha can be obtained from BTL, but 

only 400 gallons/ha are obtained from first gen biofuels. 
                                                                                                                                                           
used to produce first-generation biofuels. For instance, crushed bean “cake” (animal feed) and glycerine are by-
products of biodiesel that can be sold separately. The costs shown in table represent about 50% of the total cost of 
production. 
31 Except for cassava, for which we have no data. 
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Second gen fuels are more costly to produce. The processing cost of cellulosic ethanol is $3.00 per 

gallon while first gen corn ethanol currently costs about $1.01 per gallon and ethanol from sugar 

cane costs $0.94.32 The processing cost of BTL diesel is $3.35 per gallon - twice that of first gen 

biodiesel. However, technological progress is expected to gradually narrow these cost differentials 

and by about 2030, the per gallon processing costs of second gen biofuels and BTL diesel are 

projected to be $1.09 and $1.40, respectively.33 Finally, second gen fuels enjoy a subsidy of $1.01 

per gallon in the US (Tyner 2012), which is also accounted for in the model. 

 

US and EU mandates The US mandate sets the domestic target for biofuels at nine billion gallons 

annually by 2008, increasing to 36 billion gallons by 2022.34 The bill specifies the use of first and 

second gen biofuels (respectively, corn ethanol and advanced biofuels) as shown in Figure 3. The 

former is scheduled to increase steadily from the current annual level of 11 to 15 billion gallons by 

2015. The bill requires an increase in the consumption of “advanced” biofuels (or second 

generation biofuels) from near zero to 21 billion gallons per year in 2022. In the EU, the mandate 

requires a minimum biofuels share of 10% in transport fuel by 2020. Unlike the US, the EU has no 

regulation on the use of second gen fuels. 

                                                
32 For second generation biofuels, processing is more costly than for first-generation biofuels and production costs plus 
land rent account for about 65% of the total cost. 
33 Second generation biofuels costs are assumed to decrease by 2% per year. All data on production costs are from IEA 
(2009b). 
34 It is not clear whether the mandates will be imposed beyond 2022 but in our model, we assume that they will be 
extended until 2050. In fact ethanol use in the US has already hit the 10% “blending wall” imposed by Clean Air 
regulations which must be relaxed for further increases in biofuel consumption. We abstract from distinguishing 
between the three categories of advanced biofuels in the US mandate. Of the 21 billion of second gen biofuels 
mandated, 4 billion gallons are low emission biofuels that can be met by biofuels other than cellulosic, such as 
sugarcane ethanol imported from Brazil. Another billion gallons may be met by biodiesel, which is used mainly for 
trucks. In this study, we assume that the entire target for advanced biofuels has to be met by cellulosic ethanol. 
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  Figure 3. US biofuel mandate 
 

Carbon emissions The model accounts for direct carbon emissions from fossil fuel consumption in 

transportation and indirect carbon emissions induced by the conversion of new land into 

agriculture. Carbon from biofuel use is mainly emitted during production and hence is crop-

specific. Considering only direct emissions, displacing gasoline by corn ethanol reduces emissions 

by 35%; 70% if displaced by ethanol from sugarcane. Second-generation biofuels reduce carbon by 

80% compared to gasoline (Chen et al. 2012).35 Conversion of land for farming also releases 

carbon into the atmosphere.36 Using Searchinger et al. (2008), we assume that the carbon released 

is 300 and 500 tons of CO2e (CO2 equivalent) per hectare respectively for medium and low quality 

land, immediately after land conversion. This is because medium quality land has more pasture and 

less forests than low quality land, and pastures emit less carbon.37 

 

                                                
35 Carbon emissions from gasoline and representative biofuels are reported in the Appendix (Table A12). 
36 This is a gradual process. For forests, it may also depend on the final use of forest products. However, we assume 
that all carbon is released immediately following land-use change, an assumption also made in other well-known 
studies (e.g., Searchinger, et al. 2008).  
37 There have been recent studies (see Hertel et al., 2010) which suggest that the emissions from indirect land use 
change are likely to be somewhat smaller than those assumed by Searchinger. However, given that significant land use 
change occurs both in our base model and the one under regulation, these new estimates are unlikely to affect the 
central conclusions of our paper. Emission levels may change, not the net effect of biofuel regulation.   
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Trade among regions Although we assume frictionless trading in crude oil and food commodities 

between countries, in reality, there are significant trade barriers in agriculture, but given the level 

of aggregation in our model, it is difficult to model agricultural tariffs, which are mostly 

commodity-specific (sugar, wheat, etc.). However, we do model US and EU tariffs on biofuels. 

The US ethanol policy includes a per-unit tariff of $0.54 per gallon and a 2.5% ad valorem tariff 

(Yacobucci and Schnepf, 2007). The EU specifies a 6.5% ad valorem tariff on biofuel imports 

(Kojima et al. 2007). After 2012, US trade tariffs are removed from the model to match current 

policy (The Economist, 2012).  

 

The discount rate is assumed to be 2% as is standard in such analyses (Nordhaus and Boyer 2000). 

We simulate the model over 200 years (2007-2207) in steps of five, to keep the runs tractable. It is 

calibrated for the base year 2007. The theoretical framework is defined as an infinite horizon 

problem. However, for tractability, we use a finite approximation in the form of a long time 

horizon (2007-2207) to ensure that the dynamic rent of oil is positive. This does not really affect 

the period we are mainly interested in, which is roughly the next decade. We follow Sohngen and 

Mendelsohn (2003) by assuming that exogenous parameters like population and income do not 

change significantly after 2100.  

 

Model validation It is not possible to test model predictions over a long time horizon because 

biofuel mandates have been imposed only recently. However, as shown in Fig.4, the model does 

track the US gasoline consumption quite closely from 2000 to 2007.38 The average difference 

between observed and projected values is systematically around 3%. The model predicts the annual 

                                                
38 Note that we only impose biofuel mandates in our model so the gasoline consumption is determined endogenously.                          
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average increase in food prices from 2000 to 2013 at 9%.39 According to the FAO, food prices 

grew at an annual rate of 7.5% during this period. The model solution suggests that around 19 

million hectares of new land are converted for farming from 2000 to 2009. According to 

FAOSTAT, 21 million hectares of land were brought into cultivation during this period. These 

indicators suggest that the model performs reasonably well in predicting the impact of the 

mandates on different variables of interest. 

 
 

Figure 4: Model prediction vs actual US oil consumption from 2000 to 2013 
Source: Consumption figures are from EIA (2014). Notes: The difference between observed and predicted values is 
higher after 2008 since US gasoline consumption fell during the recession 2008-2013. Of course, our partial 
equilibrium model does not capture short-run macro-economic fluctuations.  
 
 
4. Simulation Results 
 
We first state the scenarios modeled in the paper and then describe the results. In the Baseline case 

(model BASE), we assume that there are no energy mandates and both first and second gen fuels 

are available. This is the unconstrained model described before and serves as the counterfactual. 

                                                
39 Our world food price is the average of cereal and meat prices weighted by the share of each commodity in total food 
consumption. In general, it is hard to accurately predict food prices in the short run, because of weather-related 
variability (droughts such as the one that occurred in Australia in 2008 or Russia in 2010), currency fluctuations and 
other macroeconomic phenomena.  
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The idea is to see how substitution into biofuels takes place in the absence of any clean energy 

regulation. In the Regulatory Scenario (model REG), US/EU mandatory blending policies, as 

described earlier, are imposed. The key results are as follows:40  

 

1. Effect of biofuel mandates on food prices. We find that the effect of the mandates on food prices 

is significant, but not huge (see REG in Table 4). With no energy mandates, food prices rise by 

about 15%, which is purely from changes in population and consumption patterns (see BASE). 41 

With energy mandates, they go up by 32% (see REG). Thus, the additional increase in 2022 from 

energy regulation is about 17%.42 This is much smaller than what most other studies predict 

(Rosegrant et al. 2008, Roberts and Schlenker 2012).43  

 

Figure 5 shows the time trend in food prices under the two regimes. Note that prices increase both 

with and without regulation.44 The substantial increase in food demand in MICs and LICs  

                                                
40 Our results are time sensitive but to streamline the discussion, we mostly focus on the year 2022. In the more distant 
future (say around 2050 and beyond), rising energy prices and a slowdown in demand growth makes biofuels 
economical, even without any supporting mandates. Mandates become somewhat redundant by then. Given the lack of 
space, we do not discuss what happens in 2050 and beyond. 
41 The model is calibrated to track real food prices in 2007. Cereal and meat prices for that year for the BASE case are 
$218 and $1,964 per ton. Observed prices in 2007 were $250 and $2,262, respectively (World Bank 2010). The small 
difference can be explained by our calibration method, which is based on quantities not prices.  
42 Since the model is dynamic, the initial values are endogenous, hence the starting prices in 2007 are not exactly equal 
(Table 4).  
43 In general, it is difficult to compare outcomes from different models, but Rosegrant et al. (2008) predict prices of 
specific crops such as oilseeds, maize and sugar rising by 20-70% in 2020, which are generally much higher than in 
our case. Roberts and Schlenker (2013) project that 5% of world caloric production would be used for ethanol 
production due to the US mandate. As a result, world food prices in their model rise by 30%. These studies assume 
energy equivalence between gasoline and biofuels, i.e., one gallon of gasoline is equivalent to one gallon of biofuel. 
We account for the fact that one gallon of ethanol yields about a third less energy than gasoline, as in Chen et al. 
(2012). 
44 Although real food prices have declined in the past four decades, the potential for both acreage expansion and 
intensification of agriculture through improved technologies is expected to be lower than in the past (Ruttan 2002). 
From 1960 to 2000, crop yields have more than doubled (FAO 2003). However, over the next five decades, yields are 
expected to increase by only about 50%, see data presented in Appendix (Table A5). However, yields may also 
respond to higher food prices, an effect we do not capture here. That will imply a smaller impact of energy mandates 
on food prices. 
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accompanied by a change in dietary preferences raises the demand for land, which drives up its 

opportunity cost. Without energy regulation, meat consumption in these two regions increases by 

Table 4. World food, biofuel and gasoline prices (in 2007 Dollars) 
  BASE REG 

Weighted food price 

($/ton) 
     2007 557 564 
     2022           639 (15%)               746 (32%) 

Biofuel price 
($/gallon) 

2007 
2022 

  2.14  
  1.97 

2.18 
2.19 

Crude oil price 
($/barrel) 

2007 105 106 
2022 121 119 

Notes: Weighted food price is the average of cereal and meat prices weighted by the share of each 
commodity in total food consumption. The numbers in brackets represent the percentage change in prices 
between 2007 and 2022. Our predictions for crude oil prices are quite close to the US Department of 
Energy (EIA 2010, p.28) reference projection of $115/barrel in 2022: see their ‘High and Low Oil Price’ 
range.  

 

8% (for MICs) and 34% (for LICs) between 2007 and 2022, with the latter starting from a smaller 

base. The consumption of cereals remains stable. Since more land is used per kilogram of meat 

produced, the overall effect is increased pressure on land. Food prices decline over time as the 

effect of the mandates wear off.45 This is mainly because population growth levels off and yields 

increase due to technological improvements in agriculture. 

 
Figure 5. World weighted food prices 

Notes: The baseline model is in blue and the regulated model in red. The weighted food price is the average of cereal 
and meat prices weighted by the share of each commodity in total food consumption. 

                                                
45 The increase in price due to regulation is about 6% in the year 2100. 
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2. Demand growth causes most of the land conversion, nearly all of it in developing countries. 

Table 5 shows that the really big increases in land use occur even without mandates: in the MICs, 

119 million ha (=912-793) are brought under production between 2007 and 2022 without any  

mandates (see BASE). This is about two thirds of all the cultivated land currently in production in 

the US. No new land (including land available under the US Conservation Reserve Program is 

brought under cultivation in the US due to higher conversion costs than in MICs. With the 

mandates, MICs bring another 74 (=986-912) million hectares under farming. Food production in 

the US/EU declines but rises in the MICs. Overall, the mandates increase aggregate land area in 

agriculture, because of conversion of new land.  

 Table 5. Land allocation to food and energy production (in million ha) 
  US EU MICs 
  BASE REG BASE REG BASE REG 

Land under food 
production 
 

2007 166 167    138      136    789      789 
2022 166     107 137      129    905        980 

Land under  
biofuel production 
 

2007         12       11       5          7     4     4  
2022         12       71    6        14      7            6 

Total 
cultivated land 
 

2007 178 178 143   143 793 793 
2022 178 178 143   143 912 986 

Notes: Land allocation in Other HICs and LICs are similar across the two models. 
 

 
 

 

Fig.6 shows land use for food and fuel. Note that in the US about 60 million ha – a third of all 

farmland – is moved from food to fuel production, but no new land is added (Fig.6a).46 However, 

the MICs convert a significant amount of land, irrespective of the energy mandates (Fig.6b).47 Both 

first and second gen biofuel production increases sharply under the US mandate. US food 

production declines by almost 27% as a result of the energy mandates (not shown). US food 

exports go down by more than 80% (from 75 to 13 million tons). This is because land is shifted out 

                                                
46 It is important to note that there are other sources of second gen biofuels that are less land-consuming, such as corn 
stower and forest products, which can affect these land conversion estimates significantly. They may lead to a lower 
rise in food prices than predicted in the paper. 
47 We do not show the EU case because the change in acreage is small. 
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of food to produce biofuels for domestic consumption. Imports of first gen biofuels more than 

double.  

 

Fig. 6(a). Land allocation in US: land is shifted 
out from food to fuel 

              Fig. 6(b) Land conversion in MICs 

Figure 6. Land allocation under Base and REG (year 2022) 
Note: An area larger than current US farmland is cleared in the MICs but most of it is due to demand growth not 

biofuel policy 
 

3. Mandates lead to big increases in biofuel production, earlier in time. Without regulation, biofuel 

consumption in the EU and US in 2022 is around 2 and 8 billion gallons, and accounts for  

3% and 5.5% of fuel consumption, respectively. This is much lower than what is prescribed by 

the mandates. Fig.7 shows consumption with and without the mandates (BASE, REG). The 

mandatory blending policy requires an additional 30 billion gallons of biofuels in 2022 compared 

to the unregulated case, mostly in the US.48 The US target is much more ambitious than the EU 

target. It binds until 2040 (see panels a and b), and yields a bigger gap in consumption with and 

without the mandate than in the EU.  

 

As seen from Fig. 7(a) and 7(c), first gen fuels decline in use without a mandate for several years 

before becoming economical in response to rising energy prices. After 2030, their use increases 

                                                
48 Global biofuels production under the baseline scenario is 18 billion gallons in 2022. 
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          Fig. 7(a) US first gen biofuel use                          Fig. 7(b) US second gen biofuel us 

 
Fig. 7(c) Share of biofuels in transport in EU 

 
Figure 7. US and EU biofuel use (with and without mandates) 

Note: The EU mandate is defined as a share.  
 

even without a mandate. In the absence of regulation, the global share of oil in transport steadily 

decreases from 95% in 2007 to 84% in 2050. The share of biofuels increases, mainly due to an 

increase in the market share of first gen fuels. With no regulation, second gen biofuels are not 

economically viable by 2022 in the US whereas they are adopted by 2017 in the EU. This is due  

to lower unit costs in the EU. The production of first gen fuels, however, does show a more rapid 

growth after 2030, mainly because of a reduced demand for land (see Fig.7a and 7c). 
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With no regulation, annual world production of biofuels is constant at about 20 billion gallons until 

2020, before increasing to 96 billion in 2050 (not shown).49 The stagnation until 2020 is due to a 

rapid increase in the opportunity cost of land, caused by the growing demand for food. Indeed, land 

rents double in the US and EU during this period. Beyond 2020 however, food demand levels off, 

and so do land rents. The scarcity rent of oil continues to increase, making gasoline more expensive 

and biofuels economically feasible (Fig. 7).   

 

4. Mandates reduce crude oil prices and cause significant leakage and direct emissions. The 

primary goal of biofuel regulation is to reduce direct emissions from the energy sector. US 

emissions fall by less than 1% and EU emissions by about 1.5% (see Table 6). 50 The switch 

towards less carbon intensive energy is partially offset by the rise in the demand for the blended 

fuel. The mandates, while increasing the consumption of biofuels in the US/EU, increase oil 

consumption and reduce biofuel use elsewhere. This occurs because of terms of trade effects – the 

mandate lowers the world price of oil (see Table 4). In 2022 the price of oil is about 1% lower, 

while the price of biofuels increases by 11% with mandatory blending. The net effect is that biofuel 

consumption outside the US and EU goes down by 20% in 2022, most of it in MIC countries. Oil 

use in the rest of the world goes up by 1%.51  

 

Globally, annual direct emissions of carbon decrease by about 0.5%. Although the US/EU 

consume a significant share of global transportation energy - 53% in 2007, which declines to 28% 

                                                
49 Although the first gen biofuels consumption goes beyond that in REG as shown in Fig 7(a), the total consumption of 
biofuels (sum of first-and-second gen biofuels) is larger under the REG. Under the BASE scenario, the consumption of 
second gen biofuels is nil since they are not competitive.  
50 Observed average carbon emissions for previous years are close to our model predictions. The former are 1.7, 0.9 
and 5.8 tons of CO2e for the US, EU and World in 2007, very similar to our base figures shown in Table (IEA, 2009c).  
51 We only discuss spatial leakage while other models have studied inter-temporal leakage (e.g., see Fischer and Salant, 
2011) and inter-sectoral leakage (Fullerton and Heutel, 2010).  
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in 2050 – the decline in emissions in these two regions is mostly offset by spatial leakage. The net 

effect of mandatory blending policies on global direct emissions is small (Table 6).  

 

Table 6. Direct carbon emissions in billion tons of CO2e (REG) 
 US EU World 
2007 1.85 0.83 5.1 
2022 1.95 (-0.9%) 0.81(-1.5%) 6.30 (-0.5%) 
Note: We compute carbon emissions in terms of CO2e (CO2 equivalent), which includes other greenhouse gases 
such as nitrogen dioxide and methane. Numbers in parenthesis represent the percentage change of carbon 
emissions compared to BASE model, which is not shown.  

 

5. Indirect carbon emissions increase. Biofuel mandates lead to an increase in indirect global 

emissions (see Fig.8). The mandates increase total emissions in most years relative to the 

unregulated (BASE) case, which to a large degree is due to land conversion. Total emissions 

(direct and indirect) also increase in the near term (see Fig.8). Since we track the amount and 

quality of land that is converted for agriculture, we can compute indirect emissions from land use. 

Regardless of whether biofuel mandates are imposed in our model, the increased demand for food 

and energy causes large-scale land conversion. The mandates only accelerate this process. In 2022, 

indirect carbon emissions increase by 60% (or 4.4 billion tons of CO2e), all of it from non-

regulated countries, which is much larger than the annual savings from regulation in the mandated 

countries (0.01 billion tons). In aggregate, carbon emissions increase by about 4.4 billion tons of 

CO2e due to mandatory blending (see Fig. 8).  

 

6. Welfare declines in the non-regulated countries. We compute the regional gains and losses in 

aggregate consumer and producer surplus for the food and energy commodities as a result of the 

mandates. Medium and low-income countries experience the largest loss in welfare with 

mandatory blending. However, the US experiences a slight increase in welfare. These results are 
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Figure 8. Biofuel mandates do not reduce carbon emissions 

Notes: Shown for 2022. Total emissions are the sum of direct and indirect emissions. 
 

 

primarily driven by changes in surplus from agriculture. The mandates increase biofuel production, 

which causes an increase in the opportunity cost of land, which in turn drives up the price of 

agricultural commodities (both food and energy). This has a significant positive impact on surplus 

in the US agricultural sector, which is one of the stated goals of the mandate (see de Gorter and 

Just 2010).  

 

Since we do not explicitly account for externalities, the global welfare effect of introducing 

mandatory blending is negative – welfare declines when the model is constrained. In the MICs and 

LICs - countries where a large share of income is allocated to food consumption - consumers are 

more sensitive to changes in food prices. As a result, the loss in welfare of food consumers exceeds 

the gain to food producers (from higher food prices). Note however, that we do not include the 

benefits from reduced carbon emissions in the mandated nations or elsewhere, which are likely to 

be significant because carbon is a global pollutant. On the other hand, higher emissions in other 

nations due to terms of trade effects will cause environmental damages and will likely decrease 

aggregate welfare.  
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5. Sensitivity Analysis 

There is uncertainty regarding the values of several key parameters used in the empirical analysis. 

These include the stock of oil and its cost of extraction, the conversion cost of fallow land and 

yield parameters for crops. In this section, we investigate the sensitivity of our results to changes in 

these parameters.52 We also impose biofuel mandates in two of the largest energy consuming 

nations, China and India, to check how food prices may be impacted if they too implement their 

announced mandates. Finally, we check how assumptions regarding the scarcity of crude oil, the 

interest rate and income-based dietary preferences affect our analysis. 

 

Model Sensitivity to Parameter Values Our strategy is to shock both models (REG and BASE) 

with the following changes: (1) 50% lower conversion cost for fallow lands, (2) 50% increase in oil 

stock and (3) a 10% increase in agricultural yields because of adoption of biotechnology.53 Land 

conversion costs are important because they represent a situation in which governments may relax 

regulatory policies or subsidize conversion of land into agriculture. We consider the case of 

abundant oil, in response to the fact that historically, reserve estimates have been biased 

downwards.54 For (3), we model the adoption of genetically modified foods that may raise 

agricultural yields through introduction of new cropping varieties that are plant and disease 

resistant and do well in arid environments (FAO 2008b).55 We assume a reasonable across-the-

                                                
52 Because of a lack of space, we are unable to show all our sensitivity results. We discuss only the most significant 
ones.  
53 An increase in the cost of extraction of oil is not considered, but would have a similar effect as a reduction in the 
initial stock of oil since both would raise energy prices. Preliminary runs suggest that the model is not sensitive to the 
cost of extraction.  
54 For example, recent discoveries of cheap shale oil and gas have made biofuels less economically attractive, 
according to the IEA (IEA, 2013). 
55 The adoption of Genetically Modified Organisms (GMOs) can help biofuel production by increasing the production 
of biomass per unit of land as well as the conversion of biomass to first or second gen biofuels (FAO 2008b).   
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board increase in agricultural yields of 10% relative to the models described earlier.56 To keep it 

simple, this increase in yields is assumed uniform across land qualities and regions and affects 

production of food and biofuels. 

 

Table 7 reports the percent change in the outcome variables under REG relative to BASE when 

specific parameters are changed. We are interested in changes in the difference between the two 

models, i.e., for any given row, column entries that deviate significantly from the first column. For 

instance, when the cost of land conversion declines, food price increases are smaller, which is 

intuitive. More land will be converted and hence the impact on the food market is lower. With 

abundant oil, the price of oil is lower, making biofuels less competitive even in the base model. 

Thus, the net effect of regulation is larger on food prices, than with the initial parameters. This 

leads to a larger decrease in direct emissions in the regulated regions (US and EU). Finally, higher 

adoption of biotech leads to less land conversion in the BASE model (by about 50%) so that when 

the mandate is imposed, the additional land conversion is significant, and we get a large impact on 

indirect carbon emissions.57 

 

EU, Chinese and Indian Mandates, Scarcity of Oil and Stationary Dietary Preferences Before 

examining the effects of Chinese and Indian mandates, we investigate the effects of the EU 

mandate without the US policy. Since EU transport fuel consumption is about half that of the US, 

 

                                                
56 According to the Council of Biotechnology Information (2008), adoption of GMOs contributed to a 15% increase in 
US crop yields during 2002-07. Due to a lack of data for other countries, we apply this rate of increase across the 
board.    
57 It may be useful to comment on how the BASE model (the one without regulation) itself responds to changes in the 
above parameters. The most important observation is that when the conversion cost of new land decreases, direct 
emissions decline, because more biofuel is used. Less food is consumed but greater biofuel use leads to more land 
conversion. Other factors have similar qualitative effects on the model without regulation, but less in magnitude. 
Detailed results for this case are not shown but can be obtained from the authors.  
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Table 7. Sensitivity analysis: Percentage change of key variables in REG relative to BASE 
(year 2022) 

 

Initial 
Parameter 

Values 

(1) Lower land 
conversion cost 

(2) Higher 
Oil Stock 

(3) Higher Adoption 
of Biotech 

Food price  17 14.1        22 11.84 
Biofuel price  10 8.6 30 8.1 

Gasoline price -1 -1.4 -1.5 -1.1 
US food exports -82 -85 -84 -61 

      US biofuel imports  89 66 150 15 
             Aggr. acreage 4 4.5 4.38 4.9 

Direct 
emissions 

US  -1 -0.5 -3 -1.9 
EU -2 -1.15 -0.63 1 

World -1 -0.3 0.65 -1.2 
Indirect emissions 61 42 61 169 

Total emissions 32 27 30 51 
Note: All figures are percent changes in the variable in the REG model over the BASE model 

 

the former has a small effect on prices. The increase in food price is only 1.5%. World direct 

carbon emissions are almost constant (-0.11%) under the only EU policy, while EU emissions go 

down by 1.2%. The additional land area required to meet the EU target is smaller and indirect 

carbon emissions increase by 9%.58 Now consider the case of China and India, the two most 

populous countries, imposing domestic biofuel mandates.59 We assume that these two nations 

impose a mandate requiring the share of biofuels in transportation to rise linearly to at least 10% by 

2022. Imposing these mandates increases biofuel consumption in the MICs from 10 billion gallons 

under REG to 24 billion.60 However, terms of trade effects are smaller in this case because these 

two large countries use more biofuels. Global oil consumption goes down by less than 1%, with 

                                                
58 It may be of interest to deduce from our model how the EU mandate affects prices and emissions, given the US 
mandate. We can compare a case in which only the US mandate is imposed and then compare the outcome with REG 
in which both mandates are in effect. Since EU gasoline consumption is about half of the US, the change in biofuel 
consumption is small, which reduces the impact of the EU mandate. The increase in food price is about 2%. World 
direct carbon emissions are almost constant (-0.17%), and the indirect carbon emissions only increase by 9%. 
59 The number of vehicles in China is expected to increase from 30 to 225 million by the year 2025, and in India from 
15 to 125 million (IEA 2009a). Currently, biofuels supply less than 1% of transportation fuel in these countries.  
60 Here China and India are still modeled as part of the group of MICs. To calculate the minimum biofuel standard that 
meets the China-India target, we get gasoline consumption projections from the Energy Information Administration 
(EIA 2013). 
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little change in direct carbon emissions in the MICs. What is interesting is that instead of moving 

land away from food to fuel production, farmers from MICs, which are land abundant, bring new 

land under cultivation (another 10 million hectares). As a result, indirect emissions rise to 13 

million tons. Still, world food prices rise by only 1% beyond the impacts from US and EU 

mandates.  

 

We estimate the effects of three other key assumptions in the model. First, we suppose that the 

price of oil remains constant over the entire period at $105/barrel, the initial crude oil price in our 

model. Without a mandate, world use of biofuels decreases because of constant oil prices. US 

biofuel use drops from 8 to 2 billion gallons in 2022, and second gen fuels are never adopted. With 

the mandate, indirect carbon emissions increase by about 60% compared to the BASE model (both 

with cheap oil). About 85 million hectares of new land are brought under cultivation because of 

energy regulation. This is 10 million hectares more than when oil prices rise due to scarcity. With 

cheap oil, biofuel use is low without mandates and increases sharply with them. Now, imposing the 

mandate has a bigger effect on food prices, which increase by 30%. Recall that food prices 

increased by about 17% when oil prices were allowed to increase due to scarcity. The mandates 

induce higher land conversion to energy and less to food. The subsidy required to meet the US 

targets is almost 1.5 times larger than under the REG model.  

 

We also examine the sensitivity of the outcome variables to a change in the social discount rate 

from 2 to 5 percent. A rise in the discount rate leads to a faster extraction of the oil stock. 

Therefore, one would expect biofuel consumption to decline in the BASE case. Indeed, it decreases 

from 9 to 4 billion gallons in 2022. Regulated first gen biofuel use is the same under both discount 

rates, equal to 15 billion gallons. As a result, world food prices increase by 21% due to adoption of 
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the US biofuel mandate (compared to BASE) instead of 17% in the base case. A higher discount 

rate means a lower oil price, which actually increases domestic emissions in the US, as well as 

global emissions due to leakage, by a few percentage points.  

 

To see the effect on food prices if no second gen mandate was specified in the US, we do a model 

run in which both first and second gen biofuels can be used to meet mandatory blending 

specifications, but there is no requirement on the share of second gen fuels. We find that second 

gen fuels are too costly and will not be produced without a mandate. With the mandate, 21 billion 

gallons are produced. Without mandates on second generation biofuels, food prices in 2022 go up 

by 40% from the base year 2007: in that case land-using first gen fuels supply most of the biofuel. 

One may expect more food to be produced when second gen fuels which are less land-intensive, 

are mandated. However, land rents decline, and US food exports double under second gen fuels, 

albeit from a low base. In summary, the mandate on second gen biofuels helps reduce imports, but 

does not release land for more food production in the US since second generation biofuels are 

domestically produced. 

 

Finally, we examine what happens when food preferences are assumed constant, i.e., there is no 

income-driven preference for meat and dairy products. We fix income elasticities for meat and 

cereal in the MICs and LICs at levels similar to the US and EU. This means that people in 

developing countries are assumed to have the same elasticities towards meat and cereals as in 

developed nations, but at their lower consumption levels. As a result, their meat consumption 

increases far less rapidly with income than before. To compare, note that per capita meat 

consumption goes up by 8% in MICs and by 34% in LICs from 2007 to 2022 when preferences 

change exogenously as in the previous runs. With stationary preferences, meat consumption is 
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almost constant. Food prices decrease by about 9% in the same period, compared to a 15% 

increase in the BASE model (see Table 4). Since land rents fall, more biofuels are produced. For 

instance in the US, an additional five billion gallons are produced compared to the BASE case, 

reaching 11 billion gallons in 2022. Food prices are higher under regulation by 7% compared to no 

regulation, when preferences are assumed stationary. To meet their biofuel targets, the US and EU 

import less biofuels from MIC countries. MIC nations, in turn, convert less land to farming.61  

 

6. Concluding Remarks 

We model the dynamic effects of biofuel mandates in the US and EU by combining three elements, 

which have not been considered together in previous studies - income-driven dietary preferences, 

differences in land quality and a limited endowment of oil. We find that modeling land supply 

leads to price impacts of the energy mandates that are generally lower than in most studies. 

Secondly, demand side effects that include expected changes in dietary preferences account for half 

of these price effects, the remaining coming from mandates. Third, even mandates adopted by big 

developing countries China and India do not produce large price effects, although more land is 

converted into farming. 

 

Our results suggest that dietary changes towards increased meat and dairy consumption may have 

an important role in the projected growth of food prices. For example, if diets were kept constant, 

food prices would actually fall over time (9%) without energy regulation, and with biofuel 

mandates, they will rise by only 7% in year 2022, less than what other studies predict. The upshot 

                                                
61 We also do a sensitivity run with a higher elasticity of substitution (doubling the base value). This assumption may 
be realistic if the vehicle fleet is mainly composed of Flex Fuel Vehicles. Biofuel consumption is lower than in the 
model with initial parameters. Hence, the increase in biofuel production required to meet the biofuel target is higher 
than under a lower elasticity of substitution. The net effect of biofuel policy is significant - food prices increase by 
24%. 
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of these results is that the effect of energy policies that divert corn from food to fuel can be 

mitigated by supply side adjustments such as land conversion. However, indirect carbon emissions 

will be significant, leading to no net reduction in greenhouse gas emissions, one of the primary 

stated goals of biofuel policy. In fact, annual aggregate emissions are almost invariant with respect 

to assumptions about the crude oil market. If crude oil supplies are assumed scarce, more biofuels 

are used, leading to low direct emissions but high indirect emissions from land conversion. If crude 

oil is assumed abundant, less biofuel is used, causing high direct emissions and low indirect 

emissions. Thus, biofuel mandates may not reduce aggregate emissions, unless new technologies 

such as genetically modified crops are widely used.  

 

The model is simple and can be extended in many directions. The general equilibrium effects of the 

energy mandate are not studied. For example, converting new land into farming may induce labor 

migration into these areas, which may in turn shift the regional demand curves for food and energy. 

Alternatively, energy price changes may trigger technological change, which may further reduce 

the impacts of regulation. For instance, high fuel prices may lead to the increased adoption of fuel-

efficient cars and reduce fuel use, including biofuels. Higher meat prices may lead to changes in 

the livestock industry, such as a shift from ranching to intensive feedlot operations, which will 

mitigate the effect of food price shocks. Learning effects, that are a result of market share, 

especially for new technologies like second generation biofuels, may also be quite significant. 

Finally, it is not clear how other countries will react to the mandates in choosing their own energy 

and agricultural policies. Strategic interactions could be modeled explicitly in future work. 

Increases in food prices, whether from demand effects or energy policies, may lead to increased 

efficiency in agriculture, through irrigation, better seeds and other inputs. Our model assumes 
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exogenous rates of technological change, not linked to prices. Price effects may further strengthen 

the supply response discussed in the paper.  
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Appendix: Data Used in Calibration 
 

Here we describe the model assumptions and data in more detail. The model is a discrete-time, 

non-linear dynamic programming problem, and was solved using GAMS software. It runs for the 

period 2007-2207. The reference year for model calibration is thus 2007. Because of the leveling 

off of population and elasticity parameters, the solution does not change significantly after year 

2100. To reduce computational time, we program the model in time steps of 5 years.  

 

Calibration of Demand Demand is specified by condition (14). Cereals include all grains, starches, 

sugar and sweeteners and oil crops.  Meat includes all meat and dairy products such as milk and 

butter. The constant demand parameter Arj is product and region-specific. It is calculated to 

reproduce the base year global demand for each product by using 
  
Arj =

Drj (Prj ,t)

Prj
α rj yr (t)βrj (t ) Nr (t)

from 

(14). That is, we use the regional per capita income, population, demand for each product and the 

price of the product in the base year (2007).62All the data needed to calculate the constant demand 

parameters is shown in Table A1. Initial per capita income is taken from the World Bank database 

(World Bank 2010) and population from United Nations Population Division (2010). Per capita 

demand for cereals and meat are from FAOSTAT. While per capita consumption for the US and 

EU is readily available from FAOSTAT, per capita consumption for MICs, Other HICs and LICs is 

computed by aggregating per capita consumption across countries, weighted by the share of the 

country's population in the region. Initial per capita demand for transport fuel is obtained by 
                                                
62 For example, for cereal demand in the US in year 2007, US per capita income is $46,405, population 301 million, 
per capita demand for cereals is 0.27 tons and the initial price and income demand elasticities are -0.1 and 0.01, 
respectively. The price for cereals is $250/ton. From (14), the constant parameter Arj  is calculated as 0.4212. Other 
demand parameters are computed similarly.   
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aggregating the fuel demand for diesel-powered and gasoline-powered cars for each region. For the 

US, EU, MICs and LICs, this data is readily available from World Resources Institute (2010). 

However, for Other HICs, they are aggregated from individual country data. Initial prices are 

domestic or world prices depending on whether the product is traded or not. Since cereals and meat 

are internationally traded, we use world prices for different types of cereals and meat from World 

Bank (2011) and calculate their weighted average for the base year. Transport fuels are consumed 

and produced domestically so their price is region-specific. US and EU fuel prices are from Davis 

et al. (2011). Other HICs, MICs and HICs fuel prices are world-weighted averages taken from 

Chakravorty et al. (2012).63  

 

Price and income elasticities for cereals, meat and transport fuel are given by Hertel et al. (2008). 

Regional demand elasticities for the EU, Other HICs, MICs and LICs are aggregated up from 

individual country demands. To illustrate our procedure, suppose we need to compute the cereal 

demand for a region with two countries. We use the per capita demand for cereals, the world cereal 

price, population, and price and income elasticities for each country to compute the country 

demand curve for cereals, which is aggregated up to get the regional demand. The regional demand 

elasticity for cereals is the weighted average elasticity where the weight is the share of country 

consumption in regional consumption. These elasticities are reported in Table A1. 

 

Exogenous Growth of Demand Demand for food commodities and transport fuel depend upon the 

growth in per capita income and population. Data on growth rates for per capita income are from 

                                                
63 To ensure that the area under the demand curve is bounded, we define an arbitrary limit price for each final good and 
the corresponding quantity demanded at these prices. The limit price is 10,000 dollars per ton for food commodities 
and 10,000 dollars per vehicle miles traveled for transport energy. The net surplus is the area between the limit price 
and the market price.  Our results are not sensitive to these values.  
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Nordhaus and Boyer (2000) and population data for each region is from the UN Population 

Division (2010). Table A2 shows the level of per capita income and population by region in 2007 

and 2050. Since we calibrate our model in time steps of five years, annual growth rates of 

population and per capita income are constant within each five-year period. Demand for food and 

fuel are in billion tons and billion miles driven. 

The AIDADS system (An Implicit Direct Additive Demand System) is the most flexible demand 

function that takes into account the change in dietary preferences with a rise in the level of income. 

However, there are no studies that provide the demand parameters for cereal and meat  

commodities by region.64 We thus make some adjustments in the calibration of demand given by 

(14). First, the change in food preferences is driven by the rise in per capita income. As a result, we 

consider per capita income times population as in other studies (e.g., Rosegrant et al.,2008). 

Second, we introduce flexibility in food consumption by letting income elasticities vary 

exogenously with the level of income. These country-level elasticities are taken from Hertel et al. 

(2008). For each country, we match the per capita income from the World Bank (2010) database to 

the elasticity for cereals and meat. Table A3 shows the resulting income-based elasticities (see 

numbers in bold). Per capita income in the LICs in year 2050 is assumed to converge to the per 

capita income for MICs in year 2007. As a result, LIC income elasticities in year 2050 are similar 

to MIC income elasticities in 2007. 

 

 

 

 

                                                
64 Cranfield et al. (2002) estimate consumer demand for different groups of products (food, beverages  and tobacco, 
gross rent and fuel, household furnishings and operations and other expenditure) using the AIDADS demand system. 
Unfortunately, this classification is not useful for aggregating preferences over cereals and meat.   
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Table A1. Demand parameters in base year (2007)   
    US EU Other HICs MICs LICs 

Per capita income (yr) ($) 46,405 30,741 36,240 5,708 1,060  
Population (Nr) (million)  301     496    303  4,755 765  

Per capita demand rj

r

D
N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 
Cereals (tons/cap/yr) 0.27 0.14 0.22 0.20  0.20 
Meat (tons/cap/yr) 0.40 0.21 0.20 0.07 0.030 

     Fuel (VMT/cap/yr) 10,730 3,429   3,219  644  214  

Prices ( )rjP  
Cereals ($/ton)   250   250   250 250 250 
Meat ($/ton) 2,260 2,260 2,260 2,260 2,260 

Fuel ($/VMT) 0.14 0.23 0.19 0.19 0.19 

Income elasticity ( )rjβ   
Cereals +0.01 +0.02 +0.03 +0.60   +0.65  
Meat  +0.89 +0.80 +0.85 +0.90  +1.10 
Fuel  +0.90 +0.90   +0.90  +0.99  +1.30 

Price elasticity ( )rjα   Cereals -0.10 -0.12 -0.13 -0.37  -0.40 

 
Meat  -0.68 -0.65 -0.65 -0.80  -0.80 
Fuel  -0.60  -0.65  -0.65  -0.50  -0.50 

Constant ( )rjA  
Cereals 0.4212 0.3786 0.3527 0.0037 0.0081 
Meat  0.0054 0.0082 0.0286 0.0038 0.0068 
Fuel 0.2060 0.8524 0.2747 0.0957 0.0006 

Notes: 1) The letters in parenthesis refer to the regional demand function (equation (14)). 2) Units: per capita income 
is in 2007 dollars; population in millions; per capita demand for cereals and meat in tons/cap/year; per capita demand 
for fuel in VMT/cap/year. Sources: Per capita income is from World Bank (2010); Population is from UN Population 
Division (2010); Per capita demand for cereals and for meat are from FAOSTAT, per capita demand for fuel is from 
World Resources Institute (2010); World cereal and meat prices are weighted average prices computed from World 
Bank (2011) data; US and EU fuel prices are from Davis et al. (2011); Other HICs, MICs and HICs fuel prices are 
world weighted averages from Chakravorty et al. (2012); Price and income elasticities are from Hertel et al. (2008). 
 

Table A2. Population and per capita income in 2007 and 2050 
        Population (million)    Per capita income ($) 

US 
2007 2050 2007 2050 
301 337 46,405 63,765 

EU 496 554 30,741 42,241 
Other HICs 303 339 36,240 49,798 
MICs 4,755 6,661 5,708 16,451 
LICs 765 1,791 1,061 3,743 
World 6,620 9,682 -- -- 

Notes: Income is in 2007 dollars. Source: UN Population Division (2010); Initial per capita income is 
from World Bank (2010), per capita income in 2050 is calculated by using growth rates from Nordhaus 
(2010). 
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Table A3. Changes in income elasticities for food commodities conditional on per capita 
income 

Region Year Per capita income ($) Cereals Meat 

US 2007 46,405 + 0.01 + 0.89 
2050 63,765 + 0.01 + 0.88 

EU 2007 30,741 + 0.02 + 0.80 
2050 42,241 + 0.02  + 0.79 

Other HICs 2007 36,240 + 0.03 + 0.85 
2050 49,798 + 0.03 + 0.84 

MICs 2007 5,708 + 0.60 + 1.01 
2050 16,451 + 0.55  + 0.90 

LICs 2007 1,061 + 0.65 + 1.30 
2050         4,000           + 0.59 + 1.20 

Sources: Initial per capita income is from World Bank (2010), per capita income in 2050 is calculated by using the 
growth rates from Nordhaus (2010); Initial elasticities are from Hertel et al. (2008), elasticities in 2050 are from 
authors’ calculations.  
 

Land Quality The USDA database divides the world land area into nine categories based on 

climate and soil properties and suitability for agricultural production (Eswaran et al. 2003) labeled 

I to IX (see Figure 2), land quality I being the most productive. Three criteria are used, namely, 

land quality, soil resilience and soil performance. Land quality is defined as the ability to perform 

its function of sustainable agricultural production. This is measured by the length of the growing 

season, e.g., the period of a year when the crop can be grown. Soil resilience is the ability to revert 

to a near original production level after it is degraded. Soil performance measures the capacity to 

produce under moderate level of inputs in the form of conservation technology, fertilizers and pest 

control. We disregard land qualities unsuitable for agricultural production, i.e., categories VII to 

IX. We aggregate the remaining six (I through VI) into three land qualities. Category I and II are 

grouped as High quality, III and IV are Medium and V and VI are Low quality. We thus have three 

land qualities indexed by n={High, Medium, Low}. High land quality benefits from a long growing 

season and soil of high quality. Medium quality land has a shorter growing season due to water 
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stress or excessive temperature variance. Low quality land faces numerous production constraints 

like water stress.  

Forests under plantations or under legislative protection and natural forests are not included in the 

model. These lands are termed “inaccessible” by Gouel and Hertel (2006) and equal 820 million 

ha; approximately half of the total land available for farming (see Table 2). The parameters for land 

conversion costs (see equation 15) are reported in Table A4. They are assumed to be the same 

across land qualities but varying by region.  

Total supply is the product of land supplied times its yield, as discussed earlier.65 We need to 

obtain yield data by land quality for each final demand. Each land quality covers a group of 

countries and FAOSTAT gives crop yields for each country. Eswaran et al. (2003) have data on the 

volume of land by land quality in each region. We match Eswaran et al. (2003) and FAOSTAT 

data by country to get the yield per unit land in each region and the corresponding volume of land 

available.  

Table A4. Cost Parameters for Land Conversion 
 1rφ  2rφ  
USA 234 245 
MICs   38   42 
LICs   83 126 
Source: Gouel and Hertel (2006). Notes: For MICs (LICs) we adopt their figures for Latin America (Rest of the 
World). 
 
To calculate yields for food crops (cereals and meat), we use yield data for each crop, namely 

cereals, starches, sugar and sweeteners and oil crops weighted by their share of production for each 

land quality and region. These values are presented in Table A5. Food crops can be used directly 

for food (i.e., cereals) or animal feed that is transformed into meat. We assume that one ton of 

primary crop produces 0.85 tons of the final food product (FAOSTAT), for all regions.66 The 

                                                
65 Since our model is coded in time steps of five years and harvests are annual, we multiply annual production by five.  
66 Other models make similar assumptions (e.g., Rosegrant et al. 2001).   
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quantity of meat produced from one ton of crop is region-specific and adapted from Bouwman 

(1997). We use a feed ratio of 0.4 for developed countries (US, EU and Other HICs) and 0.25 for 

developing countries (MICs and LICs) to account for higher conversion efficiencies in the former. 

Table A5. Food Crop Yields by Land Quality and Region 

 Land 
Quality US EU Other HICs MICs LICs 

Initial crop yields 
(tons/ha) 

 

High 4.0 4.0 3.5 3.5 2.0 
Medium 2.5 2.0 2.2 1.7 1.0 

Low 1.7 1.5 1.7 1.0 0.5 
Annual growth in 
crop yields (%) 
 

High 0.9 0.9 0.9 1.2 1.1 
Medium 0.7 0.7 0.7 1.0 0.8 

Low 0.6 0.6 0.6 0.8 0.7 
Source: Yields per land quality are adapted from FAOSTAT and Eswaran et al. (2003); average 

annual growth rates are adapted from Rosegrant et al. (2001). 
 

Production costs of crops are taken from GTAP database 5 for the year 1997, the latest year 

available, aggregated suitably for the different regions (Other HICs, MICs and LICs). The GTAP 

database divides the total costs into intermediate inputs, skilled and unskilled labor, capital, land 

and taxes. Using equation (16), we can recover the cost parameters by using total production costs 

and volume. They are reported in Table A6. Production costs are the same for each use j  but they 

differ by region, as shown in the table. The cost of processing food crops into cereals and meat is 

reported in Table A7. 

Table A6. Crop production cost parameters by region  
 US EU Other HICs MICs LICs 
1rη   1.15 1.15 1.15 1.35 1.25 

2rη   1.50 1.55 1.50 1.75 1.80 
         Source: GTAP 5 Database.   

Table A7. Processing costs for food crops by region 

 U.S. E-U Other HICs MICs LICs 
Cereals ($/ton) 120 120 120 150 150 
Meat ($/ton) 900 900 900 1,200 1,200 
Source: GTAP 5 Database.  
      

Transport  fuel Fuel is provided by three resources – oil, first gen and second gen biofuels.  



53 
 

The parameter rπ  is region-specific and calibrated from the relation 

1 1 1

(1 )

r
r r r
r r

re r rg rg rg rbq q q

σ
σ σ σ
σ σπ µ µ
− − −⎡ ⎤

= + −⎢ ⎥
⎢ ⎥⎣ ⎦

. For each region, we choose the value of rσ  to reproduce 

the base year production of transport fuel.67  Table A8 presents the data used for the base year 

(2007) and the computed values of rπ . In the table, transport fuel use equals the sum of fuel 

consumption for gasoline and diesel cars.68 To calculate biofuel consumption, we only consider 

first-generation biofuels since the actual consumption of second generation biofuels is negligible. 

Transport fuel is in billion gallons and is converted into MegaJoules (MJ) using the coefficients 

reported in Table A9 and then into Vehicle Miles Traveled (VMT), the unit of demand in our 

model. One MJ of transportation energy equals 0.177 VMT for a gasoline-powered car and 0.155 

miles for a diesel car (Chen et al, 2012).69 

Data on crude oil stocks is taken from the World Energy Council (World Energy Council 2010) 

and reported in Table A10. Oil is also an input in sectors other than transportation, such as in 

 

                                                
67 The parameter rπ is calculated to reproduce the base year transport fuel production as 

11 1

(1 )
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. We use the observed base year value for the production of transport fuel ( )req  , 

oil consumption ( ),rgq  consumption of first gen biofuel ( ),rbq  the observed share of oil in transport fuel rg
rg

re

q
q

µ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

  

and the elasticity of substitution ( ).rσ  These values are reported in Table A10.  
 
68 We ignore other fuels such as jet fuel and kerosene which together account for about 10% of world transport fuel 
consumption. 
69 For simplicity, we assume that only conventional passenger cars are used. To meet the US target, the share of 
biofuels in total transportation fuel should exceed 15%; as a result, some conventional cars should be replaced by more 
efficient Flex Fuel Vehicles (FFVs): for these, one MJ of transportation energy equals 0.216 VMT for a gasoline-
powered car and 0.189 for diesel. By not considering the choice of vehicles in our model (as in Bento et al., 2009 and 
Chen et al., 2012) we may be overestimating the demand for fuel. Hence our estimate of the impact on food prices may 
be biased upward. 
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Table A8. Energy supply parameters by region for base year (2007) 
 US EU Others HICs MICs LICs 
Transport fuel use req  (bln gal) 152 80 46 144 7 
Gasoline use rgq (bln gal)     134      62     26     130    8 

Biofuel use rbq   (bln gal)    7     3  2    5       0,5 
Share of gasoline in fuel rgµ   0.90 0.96 0.97 0.96 0.98 

Elasticity of substitution rσ     2 1.65 2       1.85 1.85 
Constant rπ   1.332 1.388 1.090 1.065 0.774 
Notes: gal=gallons, Sources: Transport fuel use (World Resources Institute 2010); Biofuel use (EIA 2011) 
is the sum of ethanol and biodiesel use; Share of gasoline and biofuels in transportation is computed from 
observed data. Elasticities of substitution are taken from Hertel, Tyner and Birur (2010). 

 
Table A9. Energy content of fuels 

 Gasoline Ethanol Cellulosic Ethanol Diesel Biodiesel BTL 
Diesel 

Energy content (MJ/gal) 120 80 80 137 120 135 
Source: Chen et al. (2012) 
 

chemicals and heating. Studies suggest that around 60% of oil consumption occurs in 

transportation (IEA 2011). We thus consider 60% of total oil reserves as the initial stock available 

for transport.70  

Table A10. Extraction cost of crude oil 
Initial stock 

(trillion gallons) 
 

153 

 Extraction cost in $/gallon 

1ϕ  2ϕ   
3ϕ  

0.47
 

6  5 
Sources: Stock (World Energy Council, 2010); Extraction costs (Chakravorty et al. 2012) 

Oil is converted into gasoline or diesel for transportation use. We consider a representative fuel in 

each region - gasoline for the US and diesel in the EU.71 One gallon of oil produces 0.47 gallons of 

gasoline or 0.25 gallons of diesel.72 We use the term “gasoline” for all petroleum products. The 

                                                
70 By keeping the share of oil in transportation fixed, we ignore possible changes in the share of petroleum that is used 
in transportation. It is not clear ex ante how this share will change as the price of oil increases - it may depend on the 
availability of substitutes in transport and other uses. 
71 For other regions, the representative fuel is gasoline.  
72 Conversion rates between oil and oil products may vary based on crude oil quality and refinery characteristics: we 
abstract from regional differences in crude oil and product quality. 
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cost of converting oil into gasoline is the same across different regions and equals $0.46 per gallon 

(Chakravorty et al. 2012).  This cost is assumed to decrease annually by 0.5%. 

Biofuels are produced from specific crops in each region (see Table 3), e.g., sugar cane in MICs 

and rapeseed in the EU. For each land quality, we determine the crop-specific biofuel yield by 

multiplying the yield crop and the conversion coefficient of crop into biofuels (Rajagopal and 

Zilberman 2007). The representative crop and energy yield by quality is reported in Table A11.  

Table A11. Yield and representative crop for first generation biofuels 
 US EU Other HICs MICs LICs 

  Crop type Corn Rapeseed Corn Sugar-cane Cassava 
Energy yield 

per land 
quality 

(gallons/ha) 

High 820 500     717 1,800 400 
Medium 512 250     451    874 200 

Low  250 180    249    514 100 

Source: FAO (2008a); FAOSTAT and EIA (2011); Rajagopal and Zilberman (2007).  

Information on second gen biofuels is not easily available. Their yields are assumed to be uniform 

across lands of different quality. This assumption is reasonable because second gen biofuels are 

less demanding in terms of land quality than first gen biofuels (Khanna 2008). Recall that 2,000 

gallons per hectare are produced from ligno-cellulosic biomass whereas 1,000 gallons per hectare 

are produced from Biomass-to-liquids (BTL).  

Carbon emissions  Emissions are measured in tons of CO2 equivalent units, or CO2e) released per 

unit of gasoline consumed. The figures used in the model are shown in Table A12. Let n
rz  be the 

amount of carbon sequestered per unit of land of quality n brought into production in region r. 

Then, aggregate indirect carbon emissions by region are given by n n
r rz l   where n

rl  is the acreage of 

land of quality n brought into cultivation. Indirect emissions depend on whether forests or 

grasslands are converted for farming - one hectare of forest releases 604 tons of CO2e while 
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grasslands emit 75 tons (Searchinger et al. 2008).73 For each land quality and region, we weight the 

acreage converted by the share of new land allocated to each use (grasslands or forests). For 

instance, in the MICs, 55% of the land of medium quality is under pasture (45% under forest), thus 

indirect emissions from converting one hectare of medium quality land is 313 

(=(0.55)75+0.45(604)) tons of CO2e per hectare.74 Land of low quality in MICs consists of 84% 

forest, so emissions are 519 tons CO2e/ha. The corresponding figures for LICs are 323 tons 

(medium quality) and 530 tons (low quality). In the LICs, 47% of medium quality land is under 

forests and 53% under pasture; and 86% of low quality land is under forest and 14% under pasture. 

High quality land is already under cultivation so there are no additional emissions from new 

conversion. 

Table A12. Carbon emissions from gasoline and representative biofuels 
 Carbon emissions (kg of CO2e/gallon) Emission reductions 

 relative to gasoline 
Gasoline 
Corn ethanol 
Cellulosic ethanol 

3.2 
2 

0.5 

-- 
35% 
83% 

Diesel 
Rapeseed biodiesel 
BTL diesel  
Sugarcane ethanol 
Cassava ethanol 

3.1 
1.5 
0.5 
0.8 
0.8 

-- 
50% 
83% 
72% 
72% 

Source: Gasoline, corn ethanol and sugarcane ethanol figures are taken from Ando et al. (2010) and Chen 
et al. (2012). Note: Carbon emissions from biofuels include emissions from feedstock production and 
biofuel conversion, distribution and consumption. Feedstock production also emits other greenhouse gases 
such as nitrogen dioxide and methane; hence, carbon emissions are calculated in terms of CO2e.   

 
  

                                                
73 Losses from converting forests and grasslands are assumed to be the same in MICs and LICs. Carbon is sequestered 
in the soil and vegetation. We assume that 25% of the carbon in the top soil and all the carbon stored in vegetation is 
released during land conversion. Detailed assumptions behind these numbers are available in the supplementary 
materials to Searchinger et al. (2008), see 
http://www.sciencemag.org/content/suppl/2008/02/06/1151861.DC1/Searchinger.SOM.pdf. Other studies such as 
Tyner et al. (2010) also use the same assumptions. 
74 By using this method, we assume that the share of marginal land under forests and grasslands is constant. In our 
model, the area of marginal land converted into cropland is endogenous; however, we cannot determine if forests or 
grasslands have been converted.    


