# Payments for Carbon Sequestration in Agricultural Soils: Incentives for the Future and Fair Rewards for the Past \*

Mireille Chiroleu-Assouline<sup>†</sup> Sébastien Roussel<sup>§</sup>

April 29th, 2016

#### Abstract

According to several studies, agricultural carbon sequestration could be a relatively low cost opportunity to mitigate greenhouse gas concentrations. However the potential for storing additional carbon quantities in agricultural soils is critical, and depends on the past practices of agricultural firms that cause non observable land heterogeneity. In this paper, we set incentive mechanisms to enhance carbon sequestration as a principal-agent relationship between a regulator and agricultural firms. The potential for additional carbon sequestration is treated as an exhaustible resource, under the assumption that the sequestration costs increase with the amount of carbon already stored. We specify contracts in order to induce truthful revelation by firms regarding the characteristics of their intrinsic behaviour towards carbon sequestration, while analytically characterizing the optimal path to sequestering carbon as an exhaustable resource. Firstly, we show that incomplete information slows the sequestration process and increases the unexploited potential of carbon sequestration. Secondly, our paper provides a sound basis for differentiated per-hectare subsidies, dynamically defined for the entire duration of the contract. A type-dependent participation constraint acknowledges the previous efforts of the farmers who have previously accepted policy to incur some sequestration costs, and this constraint prevents them from deciding to switch back to less sequestering practices. The proposed contract has the advantage of avoiding the inefficiency of per-hectare subsidies, as well as the excess costs of a uniform per-tonne subsidy. In addition, it does not penalize early adopters of practices with more intensive sequestration.

*JEL classification:* D62 - D82 - H23 - Q15 - Q58.

*Keywords:* Agriculture, Carbon Sequestration, Hidden Information, Incentives, Land-use, Payment for Environmental Services (PES).

\*We are very grateful to François Salanié, Stéphane De Cara, Chris Costello, Andrew Plantinga and James Vercammen for unvaluable comments and suggestions.

<sup>†</sup>Corresponding author. Address: Paris School of Economics - Université Paris 1 Panthéon-Sorbonne, Centre d'Economie de la Sorbonne, 106-112 Bd de l'Hôpital, 75647 Paris Cedex 13, France, E-mail: Mireille.Chiroleu-Assouline@univ-paris1.fr

<sup>‡</sup>Université Montpellier 3 Paul Valéry

<sup>§</sup>Université Montpellier 1, UMR5474 LAMETA, F-34000 Montpellier, France. E-mail: roussel@lameta.univ-montp1.fr

## 1 Introduction

Agricultural carbon sequestration could be a relatively low cost opportunity to mitigate GHG concentrations and a promising means that could be institutionalized (McCarl and Schneider, 2000). While comparing different countries, the position given to carbon sequestration in their strategies to reduce GHG emissions has been very diverse. As stressed by Young et al. (2007), the US has not ratified the Kyoto Protocol but has been encouraging the use of agricultural and forestry carbon sequestration, whereas the EU ratified the Protocol as soon as 2002, but without using agricultural soil carbon sequestration in its strategy. Sperow et al. (2003) have estimated that agricultural carbon sequestration could account for 40% of the US reduction of GHG emissions needed to reduce US emissions relative to their level in 1990. In Europe, Freibauer et al. (2004) has estimated that carbon soil sequestration could have provided 9% of the reductions required in 2005. Schulze et al. (2009) show that Europe should consider the development of land management policies which aim at reducing GHG emissions as a priority. Within the preparation of the next European Common Agricultural Policy (CAP) for the period 2014-2020, after almost two years of negotiations between the Commission, the European Parliament and the Council, a political agreement on the reform of the CAP was reached on 26 June 2013 announcing that agri-environmental measures will be stepped up to complement specific greening practices. These programmes will have to set and meet higher environmental protection targets, even though carbon sequestration was not explicitly mentioned. The main objective of our article is therefore to analyse and provide theoretical justification to designing incentive mechanisms to enhance carbon sequestration in agricultural soils.

Additional storage of carbon in agricultural soils can be achieved by the use of new crops or new management practices. According to Feng, Zhao and Kling (2002) (referring to Lal *et al.*, 1998), the potential for carbon sequestration of US cropland through improved management could be set at 75–208 MMTC/year. Significant illustrations of these practices are conservation tillage and mineral fertilization. However, farmers do not switch spontaneously to costly practices that increase social benefits and the adoption rate is likely to be lower than the socially optimal one. They do indeed assess their private costs whilst ignoring the positive externalities of higher sequestration that enhances social benefits. Schneider (2002) states that these costs include adjustment costs, opportunity costs, stickiness, market changes, and environmental and international co-effects. The great heterogeneity that can be observed between countries regarding the use of different management practices is reflected in the heterogeneity of sequestration costs. For instance, Weersink *et al.* (2005) state that the profitability of reduced tillage is not significantly different compared

to the profitability of conventional practices, which is consistent with the observed common use of both tillage methods in Canada. Kurkalova, Kling and Zhao (2006) notice that switching to conservation practices does not always imply a monetary sacrifice for farmers; indeed they observe that even without any subsidy, on average more than one third of the US acres are in conservation tillage. Nevertheless, in Europe the practices that have the highest sequestration rates are also the least profitable (Pendell *et al.*, 2007) as is also true in many developing countries, such as in West Africa, according to Gonzalez-Estrada (2008). As a consequence, policymakers usually have to counteract direct costs while inducing sustainable sequestering practices to increase carbon sequestration in soils. To this end, they have the opportunity to offer monetary transfers as subsidies to bring about suitable land management systems. Two kinds of subsidies are mainly available to policymakers: a per-tonne subsidy and a per-hectare or lump-sum subsidy.

According to the soil-science literature, the role of history (past crops and practices) and the nature of agricultural soils do indeed lead to a great spatial heterogeneity about the potential of additional carbon sequestration (Stavins, 1999; Antle *et al.*, 2003) which prevents from implementing standard regulation policies (Pautsch *et al.*, 2001). This heterogeneity involves high monitoring costs if the regulator is concerned about rewarding farmers accordingly to their results. Kurkalova, Kling and Zhao (2004) point out the difficulties encountered by a regulator willing to differentiate payments between farmers in the absence of field-scale measurement technologies.

The question we are looking at may be framed as follows: how much should the policymaker foster carbon sequestration in agricultural land and how whilst taking into account heterogeneity in potential for additional carbon sequestration? We bear in mind that the regulator cannot observe this heterogeneity among plots of land without prohibitive costs, even in the same region (or even among plots belonging to the same farmer). This asymmetric information with private information on the farmers' side depicts a so-called hidden information or adverse selection setting. Asymmetric information indeed prevents a regulator from using first-best economic instruments as long as farmers get information rents. In this paper, we set incentive mechanisms to enhance carbon sequestration as a principal-agent relationship between the regulator and agricultural firms.<sup>1</sup> The originality of our paper is that we build a model on two different streams of the theoretical literature: on the one hand, optimal exploitation of the exhaustible resource represented by the

<sup>&</sup>lt;sup>1</sup>Furthermore, picking sequestering practices could imply changes in the use of fertilizers and pesticides and could generate positive or negative externalities such as variations in groundwater pollution. Even though we aknowledge the existence of such environmental co-benefits potentially provided by switches toward more sequestering practices, pointed out by Plantinga and Wu (2003) or Antle and Diagana (2003), we do not incorporate them in the analysis, at least because there is still an ongoing debate about assessing if the positive externalities are greater than the negative ones.

potential of additional carbon sequestration (Dasgupta and Heal, 1974, 1980), and on the other hand, mechanism design (Myerson, 1979; Baron and Myerson, 1982; Baron, 1989; Laffont and Martimort, 2002). As far as the potential for additional carbon sequestration can be considered as an imperfectly known stock of a valuable resource, i.e. possible carbon sequestration, the problem can be treated as an optimal resource extraction problem with adverse selection, similar to Gaudet, Lasserre and Long (1995), Osmundsen (1998), Hung, Poudou and Thomas (2006) or Poudou and Thomas (2000). The main differences with the existing literature are that, without subsidies, the farmer would not exploit the 'resource stock' and that, on top of this stock being non observable, the 'extraction flow' is also non observable. Our contribution is to take account of these specific features in order to specify appropriate differentiated contracts to induce truthful revelation by the firms regarding their intrinsic characteristics towards carbon sequestration (following Wu and Babcock (1996) or Canton, De Cara and Jayet (2009)), and to analytically characterize the optimal path to sequester carbon.

Several important results emerge from our theoretical framework. Firstly, we show that even with complete information, it is not always economically rational to exhaust the potential for carbon sequestration and that incomplete information slows the sequestration process and decreases the quantity of carbon stored at the end of the contract (which increases the unexploited potential for carbon sequestration). Secondly, our paper provides a sound basis for differentiated dynamic per-hectare subsidies. We introduce a participation type-dependent constraint, in order to acknowledge the previous effort of the farmers who have accepted before policy incurring some sequestration costs, and to prevent them from deciding to switch back to less sequestering practices. Our dynamic setting allows us to show that the subsidy path must be dynamically defined for the entire contract duration and not as a sequence of static independent yearly subsidies. The proposed contract has the advantage of avoiding the inefficiency of the per-hectare subsidy, as well as the excess cost of the uniform per-tonne subsidy; it is defined as a combination of a per-hectare subsidy with an output subsidy. In addition, by taking account of a type-dependent participation constraint, it overcomes the unfairness of the incentive mechanism mentioned by Kurkalova, Kling and Zhao (2004) by not penalizing early adopters of more sequestering practices. After the end of the sequestration process, the contract must entail a non-decreasing subsidy in order to deter any moral hazard and induce conservation.

The remainder of the paper is organized as follows. In Section 2, we describe our assumptions and the model design. In Section 3, we analyse the regulator's objective, and we detail the benchmark case of perfect information. In Section 4 we set out the menu of contracts under asymmetric information. Section 5 concludes and provides a few extensions of our analysis and public policy proposals.

# 2 Assumptions and model design

We consider the choice of agricultural practices (or crops) and output level by perfectly competitive farmers, and their consequences on the dynamics of carbon sequestration in soils. We determine their optimal regulation by a governement concerned about climate change mitigation. At time t = 0, the government proposes a contract for the next period T to farmers in order to foster carbon sequestration on their plots of land, supposed to be all the same size (one hectare each). Because of their past agricultural practices, the plots of land are characterized by unobserved heterogeneity, which is the source of ex ante asymmetric information between farmers and regulator. We assume that practices can be monitored thanks to satellit technologies, that are now currently and nearly costelessly available. Because these practices are observable and to prevent any release of carbon after the end of the contract, we propose to both pay a maintenance cost once for all at time T and we assume that if a farmer decides to switch back to less sequestreing practices, it will have to reimburse the whole payments he received so far.

## 2.1 The crucial role of the potential for additional carbon sequestration

The potential for additional carbon sequestration is at the core of our analysis. It depends on land quality as well as on past and upcoming crops and management practices by agricultural firms. Plots of land can be of different qualities (McCarl *et al.*, 2000).<sup>2</sup> The heterogeneity among plots of land is therefore twofold: partly observable and partly unobservable (or imperfectly observable and at a cost). Let us define the maximal soil carbon capacity, denoted by M (for *maximal*) of a given plot of land as the maximal amount of carbon that can be sequestered in it. It corresponds to the saturation level reached with the highest sequestration combination of a crop and land management system. The heterogeneity in M is exogenous and observable because it only depends on the land quality.

But even in case of equal quality, the quantity of carbon already sequestered in plots of land can differ, according to the past crops and practices. By carbon sequestration activities in agricultural soils, we refer to changes in land management of cropland, soil restoration and grassland or pasture that can in particular alter the input quantities of organic matter going into the soils. In Table 1, we state these sequestration practices.

<sup>&</sup>lt;sup>2</sup>By land quality we mean the natural bio-physical properties of soils.

| Cropland and soil restoration                 | Grassland or pasture                    |
|-----------------------------------------------|-----------------------------------------|
| Conservation tillage / Reduced tillage        | Effective species selection             |
| intensity (ridge tillage, mulch tillage, no   |                                         |
| tillage)                                      |                                         |
| Increase rotation complexity                  | Manure management (animal manure, green |
|                                               | manure, mulch, compost)                 |
| Inclusion of legume in rotation               | Inclusion of legume                     |
| Reduced fallow period (e.g., summer fallow    | Earthworm introduction                  |
| elimination)                                  |                                         |
| Inclusion of winter cover crop                | Irrigation                              |
| Efficient management of fertilizers,          | Fertilization                           |
| pesticides, and irrigation                    |                                         |
| Erosion control or reduction                  | Erosion reduction                       |
| Conversion of cropland to grassland / pasture |                                         |

Conversion of cropland to grassland / pasture

Table 1. Land management categories in agriculture and their corresponding practices which can increase carbon sequestration

(Adapted from West *et al.* (2004) citing Paustian, Collins and Paul (1997), West and Post (2002), Conant, Paustian and Elliott (2001), and from Post *et al.* (2004))

Let us now define for any plot of land, its potential for additional carbon sequestration, denoted by A (for additional), as the difference between its maximum soil carbon capacity M and the amount of carbon already sequestered at time  $T_0$  of the policy's implementation. The unobservable heterogeneity between two plots of land due to the dynamics of carbon sequestration is illustrated by the following figure (Figure 1), according to most empirical studies (INRA, 2002) which demonstrate that the sequestration process is essentially non-linear. After a move toward more sequestration management practices, carbon sequestration increases rapidly, then slows down to reach a maximum level depending on the nature of the soil, the crops and on the practices themselves, which is the saturation level for carbon sequestration associated with these crop and practices.

The time over which sequestration is effective refers to the duration of sequestration, while reaching this maximal soil carbon capacity that refers to carbon or soil saturation (West and Six, 2007). <sup>3</sup> In case of any move back to less sequestering practices, carbon release is even faster than was carbon sequestration. Taking these specific dynamics into account, Ragot and Schubert (2008) show that the only optimal policy is to encourage permanent carbon storage as far as future

<sup>&</sup>lt;sup>3</sup>West and Six (2007) distinguish sequestration flow duration and sequestration stock duration. Flow duration is the time period with active sequestration (with annual changes), whereas stock duration is the time period following this active sequestration; stock duration allows the previously-sequestered carbon to remain effectively sequestered. The stock duration, also called passive sequestration, is a steady state and is different from sequestration saturation as changes in management practices can once more provide new flow and stock durations with a new steady state (closer to the saturation level when soil carbon can no longer increase regardless of changes in production inputs or management).

carbon prices do not decrease. We will consider this point explicitly later.



Figure 1: Carbon stock in soil, potential for additional carbon sequestration and maximal soil carbon capacity

To illustrate the mechanism, let us assume that there are four kinds of practices or crops (A, B, C, D), each of them allowing a maximum potential  $S_A^* < S_B^* < S_C^* < S_D^*$  to be sequestered (Figure 1). Under the assumption that the maximal soil carbon capacity M is the same for two plots of land, suppose that more sequestering practices had been adopted on plot 1 sooner than on plot 2. On plot 1, the farmer decides to switch from practice B to practice C and engages on a new dynamics of sequestration from  $S_B^*$  to  $S_C^*$ . On plot 2, the decision is taken later to switch from practice A to practice B and then to sequester carbon progressively until  $S_B^*$ . At the date  $T_0$  of implementation of the policy, the potential for additional carbon sequestration of plot 1 ( $A_1$ ) is less than the potential for additional carbon sequestration of plot 2 ( $A_2$ ).



Figure 2: Carbon stock in soil and potential for additional carbon sequestration for different maximal soil carbon capacities

Given the available practices and crops, any plot of land can be entirely characterised by its observable maximal soil carbon capacity M, that depends on its soil nature and its location and - more specifically, by its unobservable potential for additional carbon sequestration A depending on its history of crops and practices. This history is generally not known by the regulator at the beginning of the contract (in most countries farms are not required to document land use history). Two plots of land with different M could be characterized by the same A depending, on their crop history, as shown by Figure 2. But the proportion of the maximal soil carbon capacity that has already been exploited is both a measure of the effort previously done and, because sequestration becomes more difficult and costly when reaching the maximal capacity, a measure of the future efficiency in sequestering. From now on, we denote  $\theta$  the ratio A/M: the higher  $\theta$  and the less sequestering in the past together with the more efficiency in the future.

By relying on this statement, we assume that the economy is composed by a continuum of competitive agricultural firms characterized, at the date of implementation of the policy, by their observable land's quality, featured by their maximal soil carbon capacity M and by their potential for additional carbon sequestration, A, or equivalently by their future sequestering efficiency that is the firm's type  $\theta$  determined by their crop and practices history. We assume that, for any given M, the real type of the firm is distributed according to  $\theta$  in a continuous manner such that  $\theta \in [\underline{\theta}, \overline{\theta}]$ .  $\underline{\theta}$  therefore accounts for the firm with the lowest additional potential for carbon sequestration (more sequestering in the past but the least efficient type for the future) while  $\overline{\theta}$  accounts for the firm with the highest potential for additional carbon sequestration (the most efficient type).  $\theta$  is the unobservable intrinsic characteristic of the plot of land and  $f(\theta)$  represents the probability

density function on  $[\underline{\theta}, \overline{\theta}]$ ;  $F(\theta)$  is the cumulative distribution function of the firms' types, which is assumed to be known by the policymaker. The following assumption accounts for monotone hazard rate and inverse hazard rate properties.

$$H1: \frac{d}{d\theta} \left(\frac{1 - F(\theta)}{f(\theta)}\right) \le 0 \text{ non-increasing hazard rate in } \theta.$$

### 2.2 Heterogeneity and subsidies

In order to infer changes in management practices by the agricultural firms, public authorities have to subsidize them to cover induced costs and create incentives. Regarding the subsidies, Antle *et al.* (2003) emphasize that the heterogeneity across plots of lands in terms of sequestration potential implies that per-hectare subsidies should be individualized to reflect this heterogeneity. Kurkalova, Kling and Zhao (2004) highlight the difficulties associated with payments differentiation. Instead of measuring the annual amount of carbon accumulated in each plot of land, one could work to observe the practices employed by the farmer and to estimate the level of the accumulated carbon stock. But in fact, this process would imply quite high monitoring costs too (for example, if the nature of the crops can be monitored with observation satellites, but more usually with on-field inspection) meaning the practices cannot be easily controlled. The same paper examines the related problem of the per-tonne basis for incentive payments. Either the payment is based on the total amount of carbon sequestered in the soil, or the payment rewards carbon stored above an initial baseline, that might be the level of carbon contained in the soil at the beginning of the program, and then early adopters of more sequestering practices would be penalised.

Since monitoring costs are high, a per-hectare subsidy could only be based on average sequestration rates and it could therefore be less efficient than a per-tonne subsidy. However, on-site monitoring costs of the sequestered carbon are high as well, and technical constraints generally prevent the implementation of per-tonne subsidies. Even though the ranking between the two kinds of subsidy depends on the gap between losses of efficiency (per-hectare) and monitoring costs (per-tonne), the choice currently favours per-hectare subsidies. Other instruments are rarely considered, except Pendell *et al.* (2007) who study the incentives to adopt conservation practices provided by marketable carbon credits. The implementation of carbon credits probably raises the same issue about monitoring costs of the effective amount of carbon sequestered. However, Mooney *et al.* (2004) evaluate these costs for the small-grain producing region of Montana and confirm that the costs of measuring and monitoring are greater in the most heterogeneous areas; their amount compared to the value of carbon credit depends crucially on the price of carbon credits. Antle and Diagana (2003) see the main incentive to sequester carbon in the carbon price established by the environmental regulations implied by the Kyoto Protocol and the rising concern about climate change. For their part, Wu and Babcock (1996) develop a payment scheme that overcomes the information asymmetry between farmers and a policymaker and accounts for the deadweight losses of distortionary taxes in the case of an "environmental stewardship" program, whereby farmers receive direct payments for the services they provide.

Instead of any per-hectare or per-tonne subsidies, we propose to define contracts or subsidies depending ex post both on the observable land quality that determines the maximal soil carbon capacity M and on the potential for additional carbon sequestration A, in order to take into account the unobservable heterogeneity of the plots of land. We focus on voluntary adoption of sequestering practices promoted by a stewardship contract, relying on Wu and Babcock (1999), who show that voluntary programs can be more efficient than mandatory programs in agriculture when the marginal cost of public funds is zero or small, and if the number of firms involved is large. With incomplete information, the policymaker proposes contracts to farmers in order to induce them to adopt sequestering practices whilst revealing their efficiency level (type), *i.e.*, their knowledge / characteristics towards their private information. We assume that the contract is signed at the beginning of the first period with full commitment between the policymaker (so-called the principal) and the farmers (so-called the agents).

Regarding the time duration of the contract, in our framework, we consider that it entails two stages: the first stage would account for the carbon sequestration process stage while the second stage would represent the stationary carbon level stage.<sup>4</sup> As already shown by Ragot and Schubert (2008) in a different framework, it is never optimal to stop sequestering carbon, since the carbon released into the atmosphere is actually done so more quickly than during the sequestration stage, and the regulator must keep on providing a subsidy to the agricultural firm even if the firm has reached its maximal soil carbon capacity. This subsidy is similar to a maintenance cost as mentioned by Kim, McCarl and Murray (2008). It prevents the firm from going back to practices that sequester less carbon in the second stage.<sup>5</sup> Under the assumption that a maintenance cost will be paid to the farms after the end of the sequestration contract, we acknowledge this permanence issue without explicitly taking it into account in the design of the contract. We will show in the following that it is not always optimal to sequester carbon until the maximal soil carbon capacity and that incomplete information impacts both the sequestration process and its extent.

<sup>&</sup>lt;sup>4</sup>This is the stage when the upper bound in carbon sequestration has been reached.

 $<sup>{}^{5}</sup>$ If the carbon value falls under the cost of sequestration, the optimal policy could be different, as it is shown by Ragot and Schubert (2008) who take into account the heterogeneity of land and the dynamics of carbon sequestration and carbon release in a macroeconomic model.

### 2.3 The cost function of agricultural firms

Agricultural practices are supposed to be represented by an index of sequestering intensity k (for example, inverse of the intensity of tillage). All plots of land are the same size, normalized to 1. We assume that the farmers may choose any level of k for a given crop.

For a plot characterized by its maximal soil carbon capacity M and by  $\theta$ , the output  $y_t$  and the carbon sequestration flow  $q_t$  both depend on the practices adopted and on the accumulated carbon stock  $S_t(\theta) = M - A_t(\theta, M)$  resulting from the whole history of the plot of land or equivalently on the remaining gap up to full carbon sequestration  $A_t(\theta, M)$ . On one hand, when k increases, the output decreases, but the accumulated carbon stock  $S_t(\theta) = M - A_t(\theta, M)$  enhances the soil fertility and exerts a positive productivity effect.<sup>6</sup> On the other hand, increasing k allow to sequester more carbon instantanously but the saturation effect reduces the rate of accumulation of carbon slows as its stock approaches the soil's carrying capacity, i.e. as  $A_t$  decreases.

- $q_t = q(k_t, A_t(\theta, M))$ , with  $\frac{\partial q}{\partial k} > 0$ ,  $\frac{\partial q}{\partial A} < 0$  and  $\frac{\partial^2 q}{\partial k^2} < 0$ ,  $\frac{\partial^2 q}{\partial A^2} > 0$ .
- $y_t = y(k_t, M A_t(\theta, M))$  with  $\frac{\partial y}{\partial k} < 0$ ,  $\frac{\partial y}{\partial A} < 0$  and  $\frac{\partial^2 y}{\partial k^2} > 0$ ,  $\frac{\partial^2 y}{\partial A^2} > 0$

By inverting the sequestration function, we obtain  $k_t(q_t, A_t(\theta, M))$ , which allows to define  $C(y_t(\theta), q_t(\theta), A_t(\theta, M))$  as the farmer's total cost of producing  $y_t(\theta)$  and sequestering a flow of carbon  $q_t(\theta)$  when the remaining potential for carbon sequestration is  $A_t(\theta, M)$ : it includes both direct cost and opportunity cost of sequestration.

On the agricultural firm's side during period t, crops and practices enable carbon sequestration flows denoted by  $q_t$ , whereas the accumulated carbon stock during the contract and before is set as  $S_t(\theta)$ . We assume that farmers choose practices and crops that imply carbon sequestration flows  $q_t$ .<sup>7</sup> As the plot of land is characterized by the ratio  $\theta$  of its initial potential for additional carbon sequestration  $A_0$  to its maximal soil carbon capacity M,  $C(y_t(\theta), q_t(\theta), A_t(\theta, M))$  are exploitation costs for an individual farmer that result from the farm's aggregated output  $y_t(\theta)$ , the carbon sequestration flow  $q_t(\theta)$ , and its remaining gap up to full carbon sequestration  $A_t(\theta)$  which is defined as the gap, at time t, between the maximal soil carbon capacity in this plot of land and the accumulated carbon stock  $S_t(\theta)$  in the soil. Our cost function modelling results therefore basically from the previous assumptions. The opportunity cost of sequestering carbon depends negatively on  $\theta$  because it increases when the remaining gap to full carbon sequestration decreases (saturation

<sup>&</sup>lt;sup>6</sup>Gulati and Vercammen (2005) study the optimal contract length under the assumption that the level of carbon stored in the soil increases the soil's productivity.

<sup>&</sup>lt;sup>7</sup>The only convenient assumption here is that  $k_t$  is assumed to be continuous, instead of discrete, and so is  $q_t$ . Instead of a sequential choice of different sequestration practices, our model is more appropriate in representing the farms' decision of increasing the percentage of their land under conservation tillage or other activities.

effect).<sup>8</sup> But the productivity effect exerted by the accumulated carbon stock  $S_t(\theta) = M - A_t(\theta, M)$ play at the opposite: a lower carbon stock in the soil should be compensated by increasing the use of intrants. Even though we aknowledge that this productivity effect may have been the primary motivation for farmers to adopt sequestreing practices before the contract (which explains the heterogeneity between plots of land), we consider that, at the time when the contract is offered, this effect can be considered to be a second-order effect relative to the negative effect induced by the change in practices and that it can be neglected. If not, there would be no use to contract with the farmer in order to induce him to choose sequestering practices. even though the choice variables will be shown to depend on the firm's type, from now on, we will simplify the notations unless the details become necessary. Our cost function is thus basically defined in order to capture heterogeneity. Even if farms would likely not use the same technique but a combination of techniques to get to M, we assume here that all farms have essentially the same choice of activities and so that the core variable is the gap to M, which is heterogeneous. To be consistent with the physical sequestration process and the saturation issue illustrated in Figure 1, our cost function exhibits exploitation costs depending on the potential for additional carbon sequestration for each firm  $A_t$ .<sup>9</sup> We may notice that this cost dependency on the accumulated stock does raise an asymptotic cost growth (Levhari and Liviatan, 1977). As a result, and as an indirect effect, the cost decreases when the maximum soil carbon capacity M increases, for any given  $\theta$ .

The cost function  $C(y_t(\theta), q_t(\theta), A_t(\theta, M))$  is therefore defined by the following assumptions (where  $C_i$  stands for the marginal cost of variable *i* and  $C_{ij} = \partial^2 C / \partial i \partial j$ ):

- $H2: C_y \ge 0, C_{yy} \ge 0$ , convexity in the output  $y_t$ ;
- $H3: C_q \ge 0, C_{qq} \ge 0$ , convexity in the carbon sequestration flow  $q_t$ ;
- $H4: C_A \leq 0$ , and  $C_{AA} \geq 0$  (and consequently  $C_{\theta} \leq 0$ , and  $C_{\theta\theta} \geq 0$ )
- $H5: C_{yq} \ge 0$ , increasing in both arguments, and  $C_{qA} \le 0$  (equivalently  $C_{q\theta} \le 0$ ).
- $H6: C_{yA} = 0$  ( $C_{y\theta} = 0$ ) separable in  $y_t$  and  $A_t$ , for simplicity sake and because, as already written, it is likely that the productivity effect can be neglected if the regulator feels necessary to pay a subsidy to foster carbon sequestration; that leads to simplifying the different marginal costs as  $C_y(y_t, q_t)$  and  $C_{Ay}(q_t, A_t)$

<sup>&</sup>lt;sup>8</sup>Put in other words, the less the crops and the practices were previously sequestering, the less costly it is to switch to better practices (Antle et al., 2002).

<sup>&</sup>lt;sup>9</sup>Like Osmunden (1998), we model the inter-period link arising from the "resource" constraint by using a reservebased cost function.

•  $H7: C_{qq}(y_t, q_t, A_t)C_{yy}(y_t, q_t) - (C_{yq}(y_t, q_t))^2 < 0$  which ensures the Hessian of the cost function is negative definite (for a given level of the remaining gap up to full carbon sequestration).

As mentioned by Osmundsen (1998), the convexity of the single period cost (Assumption H3) makes it profitable to spread sequestration over the following periods. The asymptotic costs assumption implies, in our setting also, an interior solution (a non-binding constraint).

### 2.4 The regulator's objective

As agriculturally sustainable practices raise the quantities of carbon in soils, the accumulated carbon stock in the atmosphere decreases, which raises welfare in the economy. The representative consumer surplus (V) depends on the agricultural output flow  $y_t$  and on the amount of carbon stock stored  $M - A_t$  through the avoided damage due to climate change. V is assumed to be separable:  $V_t = U(y_t, A_t) - p_t y_t - (1 + \lambda)\Lambda_t(\theta)$  with  $U(y_t, A_t) = p_t y_t - dA_t$ .<sup>10</sup>

The regulator seeks to maximize an expected social welfare function W that can then be defined as the discounted sum of the current expected welfare  $W_t$  assumed to be the sum of the current consumer expected surplus  $(EV_t)$  and the expectancy, according to its type, of the current profits of the agricultural firm  $E\Pi_t = \int_{\underline{\theta}}^{\overline{\theta}} \pi(y_t, q_t, A_t) f(\theta) d\theta$ , that is  $EW_t = EV_t + E\Pi_t$ . The relationship between the regulator and the agricultural firm can be described as the following game: (1) the regulator offers a contract that specifies a trajectory of monetary transfers  $\Lambda_t(\theta)$  and of practices  $k_t(\theta)$ ,<sup>11</sup> during the contract length T exogenously chosen by the government for all firms; (2) the farmer accepts the contract and announces his type  $\theta$ , or he declines the contract; (3) the government commits to pay  $\Lambda_t(\theta)$  during the contract length T, and a maintenance cost  $\overline{\Lambda}(\theta)$  at time t = T to prevent release of carbon at the end of the contract, (4) the farmer may decides to sign the contract only if it pays at least his reservation profit, i.e. the expected discounted profit that it could obtain during the same period without the contract and (5) the sequestration takes place.

The reservation profit of the farmer is therefore defined as

$$\Pi_t(\theta) = \int_0^{+\infty} \check{\pi}(\check{y}_t(\theta), \check{q}_t(\theta), \check{A}_t(\theta, M)) e^{-\rho t} dt \text{ and } \Pi'_t(\theta) < 0$$

<sup>&</sup>lt;sup>10</sup>We should actually consider that the consumer surplus decreases with the total carbon stock released in the atmosphere  $\Sigma = \Sigma_0 - S_t$  where  $\Sigma_0$  stands for the carbon stock released by the world economy net of sequestration elsewhere (by other farmers, or in forestry, for example). We consider from now on that the government contracts independently with each agricultural firm without taking into account the endogeneity of  $\Sigma_0$  (that is why we simply assume that the consumer's utility increases with  $M - s_t$ ) but it is worth noting that the marginal utility of the carbon sequestered by the regulated firm is all the lower as  $\Sigma_0$  is higher.

<sup>&</sup>lt;sup>11</sup>Ideally, the regulator would like to contract upon sequestration flows because it is his variable of interest. But these flows are not observable. The only observable variables are the practices chosen, since output is assumed to be also influenced by other factors and therefore potentially stochastic.

where  $\check{y}_t(\theta), \check{q}_t(\theta)$  and  $A_t(\theta, M)$  denote the levels that would have been chosen spontanously by the farmer without the subsidy scheme, and  $\check{\pi}$  the resulting instantanous profit. For a given M, the soil fertility at time t = 0 is positively correlated to the stock of carbon already stored and it is then negatively correlated to  $\theta$ . When  $\theta$  increases, profits are delayed compared to farms with lower  $\theta$ , and because of the discounting  $\Pi'_t(\theta) < 0$ . By assumption, we normalize  $\Pi_t(\bar{\theta}) = 0$ .

Let us assume perfect competition summarized by the exogenous market price  $p_t$  of the aggregated agricultural commodity (common to all farms). If  $\Lambda_t(\theta)$  is the monetary transfer given during period t by the regulator to the firm to infer carbon sequestration in its plots of lands, the farmer's current profit is  $\pi(y_t(\theta), q_t(\theta), A_t(\theta, M)) = p_t y_t - C(y_t(\theta), q_t(\theta), A_t(\theta, M)) + \Lambda_t(\theta)$ . And because this transfer has to be financed through a distortionary tax policy,  $\lambda$  denotes the marginal cost of public funds or the opportunity cost of the regulation. The current expected welfare  $EW_t$ writes then (see the proof in Appendix 7.1):

$$EW_t = \int_{\underline{\theta}}^{\overline{\theta}} \left( p_t y_t(\theta) - C(y_t(\theta), q_t(\theta), A_t(\theta, M)) - \frac{d}{1+\lambda} A_t(\theta, M) - \frac{\lambda}{1+\lambda} \pi(y_t(\theta), q_t(\theta), A_t(\theta, M)) \right) f(\theta) d\theta$$
(1)

In the following section, we consider successively the complete information case, as a benchmark, and the incomplete information case to show how the regulatory policy is altered.

## **3** The Complete Information Case

With complete information, each agricultural firm's potential for additional carbon sequestration denoted by  $A = \theta M$  is perfectly known by the regulator whose problem of maximizing social welfare is:

$$\max_{y_t,q_t} W = \int_0^{+\infty} \left( p_t y_t - C(y_t, q_t, A_t) - \frac{d}{1+\lambda} A_t - \frac{\lambda}{1+\lambda} \pi(y_t, q_t, A_t) \right) e^{-\rho t} dt$$
$$st \begin{cases} \int_0^{+\infty} \pi(y_t(\theta), q_t(\theta), A_t(\theta, M)) e^{-\rho t} dt + \overline{\Lambda}(\theta) \ge \Pi_t(\theta) \\ \text{with } \Pi'_t(\theta) = \partial \Pi_t(\theta) / \partial \theta < 0 \text{ and } \Pi_t(\overline{\theta}) = 0 \\ \dot{A}_t = -q_t(\theta) \\ A_t \ge 0 \\ A_0 = \theta M, \mu_0 \\ \lim_{t \to \infty} e^{-\rho t} \mu_t A_t = 0 \quad \text{transversality condition:} \end{cases}$$

where  $\pi(y_t, q_t, s_t, M) \geq \Pi_t(\theta)$  is the type-dependent participation constraint.  $\mu_t$  is the value of the shadow cost of sequestration at date t.  $A_0$  is the initial value following the implementation of the public policy and equals  $\theta M$ .  $\mu_0$  is the initial value of the shadow cost associated with the sequestration process. The transversality condition is given by  $\mu_T A_T = 0$ . Our type-dependent participation constraint can be interpreted as taking into account the possibility mentioned by Kurkalova et al. (2004) that because farmers may have accepted before the policy to incur some sequestration costs, they would not be happy by accepting a contract that would not acknowledge their previous effort and they could decide to switch back to less sequestering practices if they do not sign the contract. Their participation constraint is thus type-dependent (Jullien, 2000): a low  $\theta$  comes from a high previous sequestering effort that the firm wants to monetize.  $\Pi_t(\theta)$  decreases when  $\theta$  increases:  $\Pi'_t(\theta) = \partial \Pi_t(\theta)/\partial \theta < 0$ . This amount stands for the opportunity cost for not releasing all the carbon already sequestered before the policy implementation.<sup>12</sup> By assumption,  $\Pi_t(\overline{\theta}) = 0$ . Obviously, the participation constraint is binding for all firms:  $\int_0^T \pi(y_t(\theta), q_t(\theta), A_t(\theta, M))e^{-\rho t}dt + \overline{\Lambda}(\theta) = \Pi_t(\theta)$  because any extra-profit given to a firm would increase the policy's costs without any efficiency gain.

The assumption of convexity of  $C(y_t, q_t, S_t)$  in  $(q_t, S_t)$ , where  $S_t = \theta M - A_t$ , ensures the existence of an optimum (Farzin, 1992).

When the agricultural firm actually sequesters carbon  $(q_t > 0)$ , the first-order necessary conditions are (see the proof in Appendix 7.2):

$$p_t = C_y(y_t, q_t) \tag{2}$$

$$\mu_t = C_q(y_t, q_t, A_t) \tag{3}$$

$$\rho\mu_t = \dot{\mu}_t + \frac{d}{(1+\lambda)} + C_A(q_t, A_t) \tag{4}$$

The firm produces the output of perfect competition which equals the market price of its marginal cost (2). As  $C_{yq} \ge 0$ , any effort of carbon sequestration increases the marginal cost of output. That means that, by choosing some more sequestering practices or crops, the firm must sacrifice some output.

The shadow price of carbon sequestration  $\mu_t$  is equal to the marginal static cost of sequestration, adjusted by the marginal cost of public funds (3).

The last equation stands for a Hotelling rule regarding the exploitation of the exhaustible resource which is the remaining potential for additional carbon sequestration,  $A_t$ . It features a cost-benefit analysis which can be explained such that:  $\rho\mu_t$  accounts for the marginal cost when the agricultural firm does not sequester at the current time period (with the discount rate  $\rho$ ). In other words, this is the marginal cost when the agricultural firm does not extract the resource in carbon

<sup>&</sup>lt;sup>12</sup>Our setting is compatible with the fact that carbon sequestration have produced and will produce private benefits to the farmer. It avoids paying farms for profitable activities already taken (and because they would not choose to reverse sequestration anyway, even without a payment), because it restricts the payment for past and future action only on accumulated carbon, beyond what the farmer finds unilaterally to be profitable.

sequestration, and this is the cost when the flow  $q_t$  does not take place.  $\dot{\mu}_t$  is the marginal benefit when the firm does not sequester (does not extract the resource in carbon sequestration) at the current time period; the gap up to full carbon sequestration is therefore not reduced for the future. d is the marginal utility of the representative consumer when the accumulated carbon stock  $S_t$ increases (respectively when the remaining gap up to full carbon sequestration  $A_t$  is reduced); this stands for the avoided damage due to carbon sequestration.  $C_A(q_t, A_t)$  accounts for the marginal cost when the agricultural firm increases the accumulated carbon stock  $S_t$  (respectively decreases the remaining gap up to full carbon sequestration  $A_t$ ). This last equation can also be written as:

$$\dot{\mu}_t = \rho \mu_t - \frac{d}{(1+\lambda)} - C_A(q_t, A_t) \tag{5}$$

The shadow cost of carbon sequestration increases at a non-constant rate that is not equal to  $\rho$  but increased by the marginal cost of having a low remaining potential  $C_A < 0$  and lowered by the marginal damage d > 0. As d is constant and  $C_{AA} \ge 0$ , along the sequestration path,  $S_t$  is non-decreasing (resp.  $A_t$  is non-increasing), the gap between the growth rate of the shadow value and  $\mu_t$  decreases unambiguously along the sequestration stage (where  $A_t$  decreases):  $\partial (\dot{\mu}_t - \rho \mu_t) / \partial A = -C_{AA} \le 0$ . Because of the separability assumption of the cost function (Assumption H6)), this growth rate does not depend on the level of output.

Moreover, at t = 0,  $A_0 = \theta M$  and  $\partial (\dot{\mu}_0 - \rho \mu_0) / \partial \theta = 0$ , the shadow cost growth does not depend on  $\theta$ .

A crucial point is that the observable maximal soil carbon capacity M also matters: for any given  $\theta$ , the higher M and the lower the marginal utility of an additional unit of carbon added to the sequestered flow; the shadow cost growth is the lowest for the highest M as  $\partial (\dot{\mu}_t - \rho \mu_t) / \partial M = -\theta C_{AA} \leq 0$ .

Under Assumption H5, the Spence-Mirlees condition or static single-crossing property (Salanié, 2005) is verified and under Assumption H4 ( $C_{AA} \ge 0$ ), the dynamic single-crossing condition is also verified. This ensures that the iso-profit curves of the agricultural firms cross only once in ( $\Lambda$ , q). It implies that  $\partial q_t / \partial \theta \ge 0$  i.e. the sequestration effort required from a plot of land increases with its sequestration potential  $\theta M$ .

One can show that, depending on the relative values of the first and second derivatives, the growth rate of the sequestration flow  $\dot{q}_t/q_t$  could be either positive or negative (see the proof in Appendix 7.2.1). But, since  $A_t$  does not increase during the contract, because of the sequestration process, the growth rate of the sequestration flow decreases. At any date t,  $\dot{q}_t(\theta)$  increases with  $\theta$ , according to the intuition: the highest  $\theta$  (the lowest sequestration effort before the contract), and the highest the growth of the sequestration flow.

Since the sequestration cost is asymptotic, it may be optimal for the firm not to exhaust its whole maximal soil carbon capacity (as well as for any exhaustible resource with stock dependent exploitation cost, as in Gaudet, Lasserre and Long (1995) or Poudou and Thomas (2000)). At some endogenous date  $T(\theta)$ , the sequestration flow is equal to zero. From this date on, the remaining gap up to full carbon sequestration remains constant,  $A_t(\theta) = A_{T(\theta)} \quad \forall t \geq T(\theta)$  (under the assumption that the appropriate payment is offered to prevent the firm from releasing back the sequestered carbon stock). Because of the discounting, there is no incentive for the farmer to stop sequestering carbon before the end of the contract and  $T(\theta) \geq T \quad \forall \theta$ . At the end of the contract, the maximal soil carbon capacity M is not exhausted because the sequestration is no more profitable ( $A_T > 0$ ). The necessary condition to determine this level of unexploited resource  $A_T(\theta)$  is given by the transversality condition  $\mu_T = 0$  and:

$$A_T(\theta) = A_0(\theta) - \int_0^T q_t(\theta) dt = \theta M - S_T(\theta)$$

Since  $q_t(\theta)$  increases with  $\theta$  ( $\forall t$ ), it follows that  $S_T(\theta)$  increases with  $\theta$ , but because the potential for additional carbon sequestration at the beginning of the contract also increases with  $\theta$ ,  $A_T(\theta)$ might decrease or increase with  $\theta$ . We can show however that there is an absolute economic limit to the remaining unexploited carbon potential, denoted by  $\Theta M$  and that if some plots with an initial low potential may reach it, for others, the remaining unexploited potential is higher than  $\Theta M$  and increases with  $\theta$  (proof in Appendix 7.2.2). The intuition behind this result is that, for farms with an already high level of sequestration effort before the contract, it will be too costly to try to store additional carbon in the soil, because of the depletion effect of the 'resource' represented by the maximal soil carbon capacity.

Because of the intertemporal link between sequestration costs due to the depletion effect, the sequestration flows for all periods must be set simultaneously at the implementation date and the subsidy path must be dynamically defined for the entire contract duration and not as a sequence of static independent yearly subsidies.

As a result, we get the following Proposition:

**Proposition 1** With complete information, the potential for additional carbon sequestration is similar to an exhaustible resource and the carbon sequestration process occurs following the optimal path defined by this Hotelling rule with trade-offs: (i) for a given M, the growth rate of the sequestration flow increases with  $\theta$ ; (ii) for a given  $\theta$ , the growth rate of the sequestration flow increases with M; (iii) there exists a threshold  $\hat{\theta} \geq \underline{\theta}$  such that for  $\underline{\theta} \leq \theta \leq \hat{\theta}$ ,  $A_T(\theta) = \Theta M$  with  $\Theta < \underline{\theta}$ , and for  $\hat{\theta} < \theta < \overline{\theta}$ , the remaining unexploited potential increases with  $\theta$ .

# 4 Information and Incentives: the Case of Incomplete Information

With incomplete information, the planner's objective is to derive the social optimum within an adverse selection setting; private information on the firms' side increases the cost of any regulatory policy. To this end, we lean on the revelation principle (Myerson (1979); Baron and Myerson (1982); Baron (1989)). This direct mechanism means that firms will reveal their real types  $\theta$ , *i.e.*, their real potential for additional carbon sequestration  $A_0$ , which is unknown by the planner. It is worth noting that our adverse selection issue is a static one (a farm's type does not vary over time and the farm will reveal its type only once) even though the contract concerns a dynamic path of carbon sequestration.

The range of contracts is a range of trajectories of monetary transfer - sequestration flow contracts  $\{(\Lambda_t(\theta), q_t(\theta))\}_{t=T_0,...T}$  where  $\Lambda_t(\theta)$  is the subsidy depending *ex post* on the potential for additional carbon sequestration A, compared to the maximum soil carbon capacity M of the plot of land. Nevertheless, as  $q_t(\theta)$  is unobservable but linked to the observable and verifiable practives adopted  $k_t(\theta)$ , the contract is defined by  $\{(\Lambda_t(\theta), k_t(\theta))\}_{t=T_0,...T}$ 

Assuming that the firm claims  $\tilde{\theta}$ , the profit of an agricultural firm is:

$$\pi(y_t(\widetilde{\theta}), q_t(\widetilde{\theta}), A_t(\widetilde{\theta}, M)) = p_t y_t(\widetilde{\theta}) - C(y_t(\widetilde{\theta}), q_t(\widetilde{\theta}), A_t(\theta)) + \Lambda_t(\widetilde{\theta})$$

Obviously, the sole rational type declaration by an agricultural firm is then  $\tilde{\theta} < \theta$ . This declaration is close to  $\underline{\theta}$  in order to get the highest subsidy.

The Incentive Constraints (IC1, IC2) account for the conditions under which a given firm will be induced to adopt the intended behavior, and the Participation Constraint (PC) for the reservation profit condition:

$$IC1 : \pi_{\theta}(q_t, A_t(\widetilde{\theta}))\Big|_{\widetilde{\theta}=\theta} = -C_{\theta}(q_t(\widetilde{\theta}), A_t(\theta, M)) \ge 0$$
(6)

$$IC2 : \pi_{\theta\theta}(q_t, A_t(\widetilde{\theta}))\Big|_{\widetilde{\theta}=\theta} \le 0$$
  
$$PC : \pi(y_t, q_t, s_t/M) \ge \Pi_t(\theta) \quad \text{with } \Pi'_t(\theta) < 0$$

Condition (6) gives the positive marginal information rent for the firm:  $\pi_{\theta}(q_t, A_t(\tilde{\theta})) \geq 0$  because  $C_{\theta} \leq 0$ . The marginal information rent increases as  $\theta$  increases. The less sequestering firms will obtain the highest information rent, because they are the most efficient for the future. Since  $\Pi'_t(\theta) < 0$ , we also have  $\pi_{\theta} - \Pi'_t(\theta) < 0$ . In this specific case, the type-dependent participation constraint does not entail countervailing incentives.

A firm close to  $\overline{\theta}$  uses practices with initial crops which allow one of the highest total sequestration levels. Accordingly, the higher this potential is  $(\theta \to \overline{\theta})$ , the less expensive the sequestration practices are for a given quality of agricultural soils. A firm of type  $\tilde{\theta}$  will announce the type of the less efficient firm (or close to the less efficient one),  $\underline{\theta}$ , in order to get the highest available subsidy  $\Lambda_t(\tilde{\theta})$ . The less efficient firm is the only one that cannot understate its potential and therefore that is unable to extract any information rent.

The information rent is then:

$$\pi(y_t, q_t, A_t) = \pi(y_t(\underline{\theta}), q_t(\underline{\theta}), A_t(\underline{\theta}, M)) + \int_{\underline{\theta}}^{\theta} -C_{\theta}(q(\zeta), A(\zeta, M)) d\zeta$$
(7)

where the first term is the profit of the firm characterized by the lowest potential for additional carbon sequestration, and the second term accounts for the informational benefit of any firm characterized by a higher potential ( $\underline{\theta} < \theta$ ).

The monotonicity condition holds, as the monotone inverse hazard rate property is a sufficient condition insuring separating contracts (Assumption H1). Again Assumptions H5 and H4 ensure that the iso-profit curves of the agricultural firms cross only once in  $(\Lambda, q)$ , which implies that  $\partial q_t/\partial \theta \geq 0$  *i.e.* the sequestration effort required from a plot of land increases with its initial sequestration potential  $\theta M$ .

With incomplete information, the regulator's problem of maximizing expected social welfare E(W) is

$$\max_{y_t(\theta),q_t(\theta)} EW \iff \max_{y_t(\theta),q_t(\theta)} \int_{\underline{\theta}}^{\overline{\theta}} \left[ \int_{0}^{+\infty} \left( p_t y_t - C(y_t,q_t,A_t) - \frac{d}{1+\lambda} A_t \right) e^{-\rho t} dt \right] f(\theta) d\theta$$
$$- \int_{\underline{\theta}}^{\overline{\theta}} \int_{0}^{+\infty} \left[ \frac{\lambda}{1+\lambda} C_{\theta}(q_t(\theta),A_t) \frac{(1-F(\theta))}{f(\theta)} e^{-\rho t} dt \right] f(\theta) d\theta$$
$$- \int_{0}^{+\infty} \frac{\lambda}{1+\lambda} \pi(y_t(\underline{\theta}),q_t(\underline{\theta}),A_t(\underline{\theta})) e^{-\rho t} dt$$
$$st \begin{cases} IC1, IC2, PC \\ \dot{A}_t = -q_t(\theta) \\ A_t \ge 0, A_0 = \theta M, \mu_0 \end{cases}$$

The first-order necessary conditions become (see the proof in the Appendix 7.3):

$$p_t = C_y(y_t, q_t) \tag{8}$$

$$\mu_t = C_q(y_t, q_t, A_t) - \frac{\lambda}{1+\lambda} \frac{(1-F(\theta))}{f(\theta)} C_{\theta q}(q_t, A_t)$$
(9)

$$\dot{\mu}_t = \rho \mu_t - \frac{d}{1+\lambda} - C_A(q_t, A_t) + \frac{\lambda}{1+\lambda} \frac{(1-F(\theta))}{f(\theta)} C_{\theta\theta}(q_t, A_t)$$
(10)

From these necessary conditions, we can observe that unlike the complete information case, new terms appear in the equations: these terms account for the marginal information costs. As a result, we get the trade-off for the regulator between efficiency in the sequestration activities and informational rents. Optimal sequestration flows  $q_t^*(\theta)$  set the optimal practices  $k_t^*(\theta)$  and the monetary transfers in our contract design  $(\Lambda_t(\theta), k_t^*(\theta))$ . Comparing these necessary conditions with the ones obtained with complete information allows us to draw the following conclusions. It is worth noticing that, in our framework, imperfect information does not change the impact of the environmental co-effects of sequestration practices.

Firstly, because of our separability assumption about the cost function (Assumption H6), the first order condition is unchanged for output (8). But, as  $C_{yq} \ge 0$ , if the process of carbon sequestration is slowed under incomplete information, the level of output can increase relative to the complete information case. This is part of the trade-off resolution: it is optimal for the regulator to slow sequestration and pay a lower subsidy to maintain the same level of profit.

Secondly, the firm with the highest potential for additional carbon sequestration produces the optimal level of agricultural commodity and sequesters carbon with respect to the optimal path (a non-distortion at the highest level). All firms, except for those with lowest potential, would get an information rent which allows them to get a higher subsidy compared to the complete information case and to sequester a lower amount of carbon. The regulator minimizes the cost of this regulation policy by allowing the lowest possible information rents: the additional profit, compared to its reservation profit, of the less efficient firm is nil ( $\pi_t(\underline{\theta}) = \Pi_t(\underline{\theta})$ ) and the others get an extra subsidy. This leads to distortions pushing practices towards those of the less efficient firms (Baron and Myerson, 1982).<sup>13</sup> This part of the contract may seem rather unfair because in this model, as the lower efficiency in sequestration activities for a firm is due to its earlier adoption of sequestration practices, for a given nature of its soil and consequently for a given M. But in fact this unfairness is counterbalanced by the decreasing reservation profit: the fixed part of the subsidy is actually a kind of reward for early adopters but they obtain the lowest marginal

 $<sup>^{13}</sup>$ Because the potential for additional carbon sequestration is similar to an exhaustible resource, our results are close to those obtained in the case of exploitation of such an exhaustible resource with incomplete information (Hung *et al.*, 2006).

subsidy for further sequestration. In the end, both effects play in the opposite directions and the *ex post* profit could be either decreasing or increasing with  $\theta$ , depending on the convexity of the information rent and on the highest component among the reservation profit or the informational rent (see Figure 3).

$$\Lambda_t(\theta) = \pi(y_t^*(\theta), q_t^*(\theta), A_t(\theta)) - p_t y_t^*(\theta) + C(y_t^*(\theta), q_t^*(\theta), A_t(\theta))$$



Figure 3: Information rent, reservation profit and ex-post profit

As for implementation, since  $q_t^*(\theta)$  is strictly increasing, the sufficient condition for feasibility of the contract is verified and  $q_t^*(\theta)$  can be inverted. Thus, the case is similar to Osmundsen (1998), which allows us to conclude that revelation of the type of the plot of land (and of its initial potential for additional carbon sequestration) and the choice of the optimal sequestration path can be implemented through a tangent hyperplane, i.e. in our case, through a combination of per-hectare subsidies and of output subsidies.

Thirdly, the Hotelling rule is changed by incomplete information about initial conditions, because the cost function exhibits a stock dependency (H4). It follows that incomplete information slows the sequestration process for all types except for the most efficient ones (because  $C_{\theta\theta} \geq 0$ which implies that  $\dot{\mu}_t$  is higher and  $\dot{q}_t$  is lower than under complete information) but would not prevent obtaining the highest potential for additional carbon sequestration as soon as differentiated subsidies are provided at each period of time (equation (10)), if and only if the overall cost were not asymptotic: but with our Assumption H4, the maximal absolute potential cannot be reached even with complete information.  $S_T(\theta)$  still increases with  $\theta$  but is lower than under complete information. As a result, a lower range of plot types will exhaust the maximal economic potential for carbon sequestration  $\Theta M < \underline{\theta}M$ . This result is consistent with the intuition (like in Poudou and Thomas, 2000 for mining concessions): because imperfect information rent by lowering the amount of sequestered carbon and by allowing a larger number of farms not to exhaust their potential.

From a technical point of view, because the reservation profit of the firm is positive except for  $\overline{\theta}$ , the shutdown of the less efficient firms might be desirable (Laffont and Martimort, 2002) if their reservation profit is too high compared to the social surplus obtained from their future sequestered carbon. In the following proposition, we assume that it does not happen.

This leads to the following Proposition.

**Proposition 2** With incomplete information, the potential for additional carbon sequestration is similar to an exhaustible resource and the carbon sequestration process occurs following the optimal path defined by this Hotelling rule with trade-offs as with complete information: (i) the regulator has to trade-off between the efficiency in the sequestration activities and informational rents allowed to the agricultural firms and differentiated subsidies have to be provided at each period of time; (ii) all firms, except for those with the lowest potential, would get an information rent above their reservation profit; (iii) for a given M, the sequestration process is slowed except for the firm with the highest potential  $\overline{\theta}$  (i.e. the lowest sequestration effort before the contract); (iv) for a given  $\theta$ , the growth rate of the sequestration flow increases with M; (v) there is a threshold  $\check{\theta} < \hat{\theta}$  such that for  $\underline{\theta} \leq \theta \leq \check{\theta}$ ,  $s_T(\theta) = \Theta M$  with  $\Theta < \underline{\theta}$ , and for  $\check{\theta} < \theta < \overline{\theta}$ , the remaining unexploited potential increases with  $\theta$  and is higher than under complete information; (v) to implement the optimal sequestration path, the regulator must commit to a dynamic contract composed of a trajectory of differentiated combinations of per-hectare and per-ton of output subsidies.

# 5 Concluding Comments

The various perceptions of the potential for carbon sequestration by the agricultural sector certainly lie in the difference in the share of abatement that agriculture could hold in each region. However, European distrust about agricultural carbon sequestration also springs from the questionable permanence of the carbon storage, the difficulties of measuring actual sequestration, the uncertainties concerning the incurred costs, and the issue of designing the appropriate incentives to induce farmers to adopt new practices.

Land management changes could only occur if there are economic incentives for carbon management, and therefore if parts of the cost are borne by a policymaker. On the one hand, one part of the subsidy has to cover the cost regarding changes in practices; on the other hand, one part of the subsidy has to create incentives to induce changes. Carbon sequestration is a strategic way to mitigate GHG concentration and climate change regarding its low cost and actual implementation, while other technologies to cope with climate change appear (in a portfolio management way) (Post *et al.*, 2004). Furthermore, practically and culturally speaking, there should be a shift from a positive externality reward associated to carbon sequestration and its co-benefits provided by agricultural firms (multifunctionality), to the Payment for Environmental Services (PES), as agricultural firms provide an environmental service through carbon sequestration. In Europe, this is currently at the core of the agenda to design the new Common Agricultural Policy (CAP) from 2014 and its implementation, with regards to the allocation of funds to agricultural firms.

In this paper, we have emphasized the crucial importance of the potential for additional carbon sequestration in agricultural soils whilst designing incentive mechanisms for firms related to land heterogeneity. The policymaker has to choose between the less expensive of these policies: (i) the incentive policy as she offers a rewarding contract, and she might accept the cost of asymmetric information and give higher subsidies in order to induce revelation by the agricultural firm of its private information; (ii) the full monitoring policy if this is technically feasible as she monitors the crops and management practices of the agricultural firm aimed at raising real sequestered carbon stocks in a perfect and continuous manner, in order to be able to allocate subsidies efficiently.

One of our contributions is to build our analysis on the standard problem of the exploitation of a natural exhaustible resource for which the available stock is unknown; we proceed in an original way in viewing carbon sequestration and incentives to agricultural firms within a dynamic setting. The proposed contract has the advantage of avoiding the inefficiencies of standard subsidies - perhectare and per-tonne - by identifying agricultural firms and of inducing truthful revelation, and to provide a fair subsidy for each firm by both paying an information rent to the most efficient ones and by rewarding the least efficient ones which were nevertheless the earliest adopters of sequestering practices.

Finally, we may consider a few extensions of our model and analysis. Firstly, incomplete information would also appear through moral hazard which is created by high costs of monitoring. This implies that firms might not fulfill their contractual commitment. As we have shown that taking into account the characteristics of carbon sequestration does not modify the standard argument about *ex ante* incomplete information (adverse selection), we can then accept the standard result about *ex post* incomplete information (moral hazard), without any additional economic model. With incomplete information regarding the strategy of the firm during the contract, the planner must give a greater subsidy in order to induce the requested behavior by the firm. Secondly, throughout the paper, we have assumed that the contract has been signed at the beginning of the first period with full commitment by both parties. According to the revelation principle, by accepting the contract, the firm reveals its real type. One could then argue that the regulator does not need to commit in the upcoming periods, but can use the revealed information to negotiate a new contract from period two. Nevertheless, if adverse selection disappears, moral hazard is very likely to remain over time. In any case, asymmetric information increases the cost of regulation and reduces the environmental efficiency of the policy, namely the total amount of carbon sequestered in the soil (Gulati and Vercammen, 2006).

We could also take into account the possibility for the government to contract with several agricultural firms during the same period: as in standard cases of multiple mines of different qualities. It would then be more profitable for the society to extract from the cheapest farms/firms. In our case, the regulator would choose to contract first to sequester carbon on the highest quality lands and with the highest remaining potential. For the other ones, the payment would only aim at preventing them to release the already stocked carbon. The same choice may be made in case the government budget constraint is binding.

## 6 Appendix

## 6.1 The social welfare function

The current planner's social welfare function  $W_t$  can then be defined as the sum of the consumer surplus  $(V_t)$  and the profits of the agricultural firm  $(\Pi_t)$ , that is  $W_t = V_t + \Pi_t$ . By denoting d the marginal damage caused by non sequestered carbon, the consumer surplus maybe be written as:

$$V_t = U(y_t, M - A_t) - p_t y_t - (1 + \lambda) \Lambda_t(\theta)$$
  
with  $U(y_t, M - A_t) = p_t y_t - dA_t$ 

The profit of an agricultural firm is:

$$\pi(y_t, q_t, A_t(M)) = p_t y_t - C(y_t, q_t, A_t(M)) + \Lambda_t(\theta)$$

Even though the choice variable of the regulator is the level of the subsidy individualised according to the characteristics of the firm, it is much more significant to consider that, by setting a level of subsidy, the regulator actually chooses the firm's profit. By rewriting the previous equation, we can obtain the level of subsidy  $\Lambda_t(\theta)$  needed to provide a given profit to the firm:

$$\Lambda_t(\theta) = \pi(y_t, q_t, A_t(M)) - p_t y_t + C(y_t, q_t, A_t(M))$$

Introducing this expression in V, and then into W we obtain the following expected social welfare function that the planner seeks to maximize (equation (??)):

$$EW_t = \int_{\underline{\theta}}^{\overline{\theta}} W_t f(\theta) d\theta$$

### 6.2 Complete information

The current Hamiltonian value  $\mathcal{H}$  for the regulator's problem with complete information is:

$$\mathcal{H} = \left( p_t y_t - C(y_t, q_t, A_t) - \frac{d}{1+\lambda} A_t - \frac{\lambda}{1+\lambda} \pi(y_t, q_t, A_t) \right) + \mu_t q_t$$

The first-order necessary conditions are  $\partial \mathcal{H}/\partial y_t = 0$ ;  $\partial \mathcal{H}/\partial q_t \leq 0$ ;  $q_t \partial \mathcal{H}/\partial q_t = 0$  and  $-\partial \mathcal{H}/\partial S_t = \partial \mathcal{H}/\partial s_t = \dot{\mu}_t - \rho \mu_t$  that leads to (2), (3) and (4), when carbon is actually sequestrated ( $q_t > 0$ ).

$$p_t = C_y(y_t, q_t) \tag{2}$$

$$\mu_t = C_q(y_t, q_t, A_t) \tag{3}$$

$$\rho\mu_t = \dot{\mu}_t + \frac{d}{(1+\lambda)} + C_A(q_t, A_t) \tag{4}$$

### 6.2.1 Dynamics of the sequestration flow

By differentiating (3) and (2) and using (4), and with the additional assumption that  $\dot{p}_t/p_t = \rho$ , one obtains:

$$\begin{bmatrix} \underbrace{C_{qq}(y_t, q_t, A_t)}_{+} - \underbrace{(C_{yq}(y_t, q_t))^2 / C_{yy}(y_t, q_t)}_{+} \end{bmatrix} \frac{\dot{q}_t}{q_t} \\ = \begin{bmatrix} \underbrace{C_q(y_t, q_t, A_t)}_{+} - C_y(y_t, q_t) \underbrace{C_{yq}(y_t, q_t)}_{+} / \underbrace{C_{yy}(y_t, q_t)}_{+} \end{bmatrix} \frac{\rho}{q_t} \\ - \underbrace{\frac{1}{(1+\lambda)}}_{+\lambda} \frac{1}{q_t} \underbrace{U_2(M-s_t)}_{+\approx 0} - \frac{1}{M} \frac{1}{q_t} \underbrace{C_s(q_t, s_t/M)}_{-} + \frac{1}{M} \underbrace{C_{qs}(q_t, s_t/M)}_{-} \end{bmatrix}$$

The dynamics of the sequestration flow is therefore, in this general case, far from obvious. Depending on the relative values of the first and second derivatives,  $\dot{q}_t/q_t$  could be either positive or negative. Under *H*7, the coefficient of  $\dot{q}_t/q_t$  is négative. In the simple case where  $C(y_t, q_t, A_t) = \alpha(q_t)c(y_t) + \beta(A_t)q_t$  with  $\alpha(q_t) = \frac{\alpha}{2}(q_t + a)^2$ ,  $c(y_t) = \frac{c}{2}y_t^2$ ,  $\beta(A_t) = \frac{\beta}{2}\left(1 - \frac{A_t}{M}\right)^2$  since  $0 < \frac{A_t}{M} < 1$ , one obtains, by using (4),  $C_y(y_t, q_t, A_t) = \frac{\alpha c}{2}(q_t + a)^2y_t = p_t \Rightarrow y_t = \frac{2p_t}{\alpha c}\frac{1}{(q_t + a)^2} \Leftrightarrow p_t/y_t = \frac{\alpha c}{2}(q_t + a)^2$  and

$$\dot{q}_t = \frac{\rho\alpha}{2} \left( q_t + a \right) - \frac{\beta\rho\alpha c}{12} \frac{\left( q_t + a \right)^4}{p_t^2} \left( 1 - \frac{A_t}{M} \right)^2 + \frac{1}{\left( 1 + \lambda \right)} \frac{\alpha c}{6} \frac{\left( q_t + a \right)^4}{p_t^2} dt$$

Even in this case, the growth rate of the sequestration flow might be positive or negative but clearly, since  $A_t$  does not increase during the contract because of the commitment of the firm to the sequestration process, this growth rate is decreasing.

Moreover, since  $q_t$  and  $A_t$  increase with  $\theta$ ,  $\dot{q}_t$  increases with  $\theta$ , according to the intuition: the highest  $\theta$  (the lowest sequestration effort before the contract), and the highest the growth of the sequestration flow.

#### 6.2.2 Remaining unexploited soil carbon capacity at the end of the contract

As  $q_t(\theta)$  and  $S_t(\theta)$  increase with  $\theta$ , at the end of the contract the amount of stored carbon is higher on plots where the potential was at the highest at t = 0. But since the potential for additional carbon sequestration at the beginning of the contract also increases with  $\theta$ , theoretically  $A_T(\theta)$ might decrease or increase with  $\theta$ . Nevertheless, it is worth noting that, due to our thorough depiction of the different sources of heterogeneity, we can consider that, for a given observable maximal soil carbon capacity, i.e. for a given M, a plot of land characterised by  $\theta > \theta$  is nothing but the same plot of land than  $\theta$  at a previous stage of sequestration. It implies that  $A_T(\theta) \ge A_T(\theta)$ , denoted by  $\Theta M$ . If the contract duration is sufficiently long, the unexploited potential may reach the level  $\Theta M$  for any  $\theta$  but if T is sufficiently low,  $A_T(\theta) > \Theta M$ . Between these extreme cases, there exists a threshold  $\hat{\theta}$  such that for  $\underline{\theta} < \theta < \hat{\theta}$ ,  $A_T(\theta) = \Theta M$ , and for  $\hat{\theta} < \theta < \overline{\theta}$ , the remaining unexploited potential increases with  $\theta$ .

## 6.3 Incomplete information

Integrating (7) by parts leads to

$$\int_{\underline{\theta}}^{\overline{\theta}} \pi(y_t, q_t, A_t) f(\theta) d\theta = \pi(y_t(\underline{\theta}), q_t(\underline{\theta}), A_t(\underline{\theta})) - \int_{\underline{\theta}}^{\overline{\theta}} C_{\theta}(1 - F(\theta)) d\theta$$
(A1)

as

$$F(\theta) = prob(A_0 < \theta M); \ F'(\theta) = f(\theta) < 0$$

$$\begin{split} &\int_{\underline{\theta}}^{\overline{\theta}} \left( \int_{\underline{\theta}}^{\theta} -C_{\theta}(q(\zeta), A(\zeta)) d\zeta \right) f(\theta) d\theta \\ &= \int_{\underline{\theta}}^{\overline{\theta}} \left( \int_{\underline{\theta}}^{\theta} C_{\theta}(q(\zeta), A(\zeta)) d\zeta \right) (-f(\theta)) d\theta \\ &= \left[ (1 - F(\theta)) \int_{\underline{\theta}}^{\theta} C_{\theta}(q(\zeta), A(\zeta)) d\zeta \right]_{\underline{\theta}}^{\overline{\theta}} - \int_{\underline{\theta}}^{\overline{\theta}} C_{\theta} \left( 1 - F(\theta) \right) d\theta \\ &= -\int_{\underline{\theta}}^{\overline{\theta}} C_{\theta} \left( 1 - F(\theta) \right) d\theta \end{split}$$

Inserting (A1) in the expected social welfare E(W), we obtain the regulator's problem:

$$\max_{y_t(\theta),q_t(\theta)} \int_{\underline{\theta}}^{\overline{\theta}} \left[ \int_{0}^{+\infty} \left( p_t y_t - C(y_t, q_t, A_t) - \frac{d}{1+\lambda} A_t \right) e^{-\rho t} dt \right] f(\theta) d\theta$$
$$- \int_{\underline{\theta}}^{\overline{\theta}} \int_{0}^{+\infty} \left[ \frac{\lambda}{1+\lambda} C_{\theta}(q_t(\theta), A_t) \frac{(1-F(\theta))}{f(\theta)} e^{-\rho t} dt \right] f(\theta) d\theta$$
$$- \int_{0}^{+\infty} \frac{\lambda}{1+\lambda} \pi(y_t(\underline{\theta}), q_t(\underline{\theta}), A_t(\underline{\theta})) e^{-\rho t} dt$$
$$st \begin{cases} IC1, IC2, PC \\ \dot{A}_t = -q_t(\theta) \\ A_t \ge 0, A_0 = \theta M, \mu_0 \end{cases}$$

 $\mu_t$  is the value of the costate variable at date t.  $S_0$  and  $\mu_0$  are the initial values of the carbon stock and the costate variable. The transversality condition is  $\mu_T s_T = 0$ . The current hamiltonian value  $\mathcal{H}$  for the regulator's problem with asymmetric information is:

$$\mathcal{H} = \int_{\underline{\theta}}^{\overline{\theta}} \left( p_t y_t - C(y_t, q_t, A_t) - \frac{d}{1+\lambda} A_t \right) f(\theta) d\theta$$
$$- \int_{\underline{\theta}}^{\overline{\theta}} \frac{\lambda}{1+\lambda} C_{\theta}(q_t(\theta), A_t) \frac{(1-F(\theta))}{f(\theta)} f(\theta) d\theta$$
$$- \int_{0}^{T} \frac{\lambda}{1+\lambda} \pi(y_t(\underline{\theta}), q_t(\underline{\theta}), A_t(\underline{\theta})) + \mu_t (-q_t)$$

Thus, the first-order necessary conditions given by equations (8), (9) and (10) are obtained.

## 7 References

Antle, J., S. Capalbo, S. Mooney, E.T. Elliott, and K.H. Paustian, 2002. "Sensitivity of Carbon Sequestration Costs to Soil Carbon Rates." *Environmental Pollution* 116: 413-422.

—, 2003. "Spatial Heterogeneity, Contract Design, and the Efficiency of Carbon Sequestration Policies for Agriculture." *Journal of Environmental Economics and Management* 46: 231-250.

Antle, J., and B. Diagana, 2003. "Creating Incentives for the Adoption of Sustainable Agricultural Practices in Developing Countries: The Role of Soil Carbon Sequestration." *American Journal of Agricultural Economics* 85(5): 1178-1184.

Baron, D. P., 1989. "Design of Regulatory Mechanisms and Institutions." in R. Schmalensee and R.D. Willig eds, *The Handbook of Industrial Organization*. Elsevier North-Holland.

Baron, D. P., and R.B. Myerson, 1982. "Regulating a Monopolist with Unknown Costs." *Econometrica* 50: 911-930.

Canton, J., S. De Cara, and P.A. Jayet, 2009. "Agri-environmental Schemes: Adverse Selection, Information Structure and Delegation." *Ecological Economics* 68(7): 2114-2121.

Conant, R.T., K. Paustian, E.T. Elliott, 2001. "Grassland Management and Conversion into Grassland: Effects on Soil Carbon." *Ecological Applications* 11: 343-355.

Dale, V., and S. Polasky, 2007. "Measures of the Effects of Agricultural Practices on Ecosystem Services." *Ecological Economics* 64(2): 286-296.

Dasgupta, P., and G. Heal, 1974. "Optimal Depletion of Exhaustible Resources." *Review of Economic Studies* 36: 3-28.

—, 1980. Economic Theory and Exhaustible Resources. Cambridge University Press.

Elbakidze, L., and B.A. McCarl, 2007. "Sequestration offsets versus direct emission reductions: consideration of environmental co-effects." *Ecological Economics* 60(3): 564-571.

Farzin, Y. H., 1992. "The time path of scarcity rent in the theory of exhaustible resources." *The Economic Journal* 102(413): 813-830. Feng, H., J. Zhao, and C.L. Kling, 2002. "The Time Path and Implementation of Carbon Sequestration." *American Journal of Agricultural Economics* 84(1): 134-149.

Freibauer, A., M. Rounsevell, P. Smith, and J. Verhagen, 2004. "Carbon Sequestration in the Agricultural Soils of Europe." *Geoderma.* 122(1): 1-23.

Gaudet, G., P. Lasserre P., and Ngo Van Long, 1995. "Optimal Resource Royalties with Unknown and Temporally Independent Extraction Cost Structures." *International Economic Review* 36(3): 715-749.

Gonzalez-Estrada, E., 2008. "Carbon Sequestration and Farm Income in West Africa: Identifying Best Management Practices for Smallholder Agricultural Systems in Northern Ghana." *Ecological Economics* 67(3): 492-502.

Gulati, S., and J. Vercammen, 2006. "Time Inconsistent Resource Conservation Contracts." Journal of Environmental Economics and Management 52: 454-468.

Hoel, M., and S. Kverndokk, 1996. "Depletion of fossil fuels and the impacts of global warming." *Resource and energy economics* 18(2): 115-136.

Hung, N.M., J.-C. Poudou, and L. Thomas, 2006. "Optimal Resource Extraction Contract with Adverse Selection." *Resources Policy* 31: 78-85.

INRA, 2002. Stocker du Carbone dans les Sols Agricoles en France ?, Report for the French Ministery of Ecology and Sustainable Development.

Jullien, B., 2000. "Participation Constraints in Adverse Selection Models." Journal of Economic Theory 93: 1-47.

Kim, M.-K., B.A. McCarl, and B.C. Murray, 2008. "Permanence discounting for land-based carbon sequestration." *Ecological Economics* 64(4): 763-769.

Kurkalova, L., C. Kling, and J. Zhao, 2004. "Value of Agricultural Non-point Source Pollution Measurement Technology: Assessment from a Policy Perspective." *Applied Economics* 36(20): 2287-2298.

——, 2006. "Green Subsidies in Agriculture: Estimating the Adoption Costs of Conservation Tillage from Observed Behavior." *Canadian Journal of Agricultural Economics* 54(2): 247-267.

Laffont, J.-J., and D. Martimort, 2002. *The Theory of Incentives: the Principal-Agent Model*. Princeton University Press.

Lal, R., J.M. Kimble, R.F. Follett, and C.V. Cole, 1998. *The Potential of U.S. Cropland to Sequester Carbon and Mitigate the Greenhouse Effect.* Ann Arbor MI: Sleeping Bear Press.

Levhari, D., and N. Liviatan, 1977. "Notes on Hotelling's Economics of Exhaustible Resources." *Canadian Journal of Economics* 10: 177-192.

McCarl, B.A., and U.A. Schneider, 2000. "Agriculture's Role in a Greenhouse Gas Emission

Mitigation World: An Economic Perspective." Review of Agricultural Economics 22: 134–159. Mooney, S., J. Antle, S. Capalbo, and K. Paustian, 2004. "Design and Costs of a Measurement"

Protocol for Trades in Soil Carbon Credits." Canadian Journal of Economics 52(3): 257-287.

Myerson, R.B., 1979. "Incentive Compatibility and the Bargaining Problem." *Econometrica* 47: 61-74.

Osmundsen, P., 1998. "Dynamic Taxation of Non-Renewable Natural Resources under Asymmetric Information about Reserves." *The Canadian Journal of Economics / Revue canadienne d'Economique* 31(4): 933-951.

Pautsch, G., L. Kurkalova, B. Babcock, and C. Kling, 2001, "The Efficiency of Sequestering Carbon in Agricultural Soils." *Contemporary Economic Policy* 19: 123–134

Paustian, K., H.P. Collins, and E.A. Paul, 1997. "Management Controls of Soil Carbon." In E.A. Paul, K. Paustian, E.T. Elliot, and C.V. Cole, eds, *Soil Organic Matter in Temperate Agroecosystems*. CRC, New York, 15-19.

Pendell, D., J. Williams, S. Boyles, C. Rice, and R. Nelson, 2007. "Soil Carbon Sequestration Strategies with Alternative Tillage and Nitrogen Sources under Risk." *Review of Agricultural Economics* 29(2): 247-268.

Plantinga, A., and J. Wu, 2003. "Co-benefits from Carbon Sequestration in Forests: Evaluating Reductions in Agricultural Externalities from an Afforestation Policy in Wisconsin." *Land Economics.* 79(1): 74-85.

Post, W.M., R.C. Izaurralde, J.D. Jastrow, B.A. McCarl, J.E. Amonette, V.L. Bailey, P.M. Jardine, T.O. West, and J. Zhou, 2004. "Enhancement of Carbon Sequestration in US Soils." *BioScience*. 54(10): 895-908.

Poudou, J.-C., and L. Thomas, 2000. "Concession minière et asymétrie d'information." *Economie et Prévision* 143-144: 129-138.

Ragot, L., and K. Schubert, 2008. "The Optimal Carbon Sequestration in Agricultural Soils: do the Dynamics of the Physical Process Matter?". *Journal of Economic Dynamics and Control* 32(12): 3847-3865.

Salanié, B., 2005. The economics of contracts. The MIT Press.

Schneider, U.A., 2002. "The Cost of Agricultural Carbon Savings." Working Paper 02-WP306, Center for Agricultural and Rural Development, Iowa State University.

Schulze, E. D., S. Luyssaert, P. Ciais, A. Freibauer, I.A. Janssens *et al.*, 2009. "Importance of Methane and Nitrous Oxide for Europe's Terrestrial Greenhouse-Gas Balance." *Nature Geoscience* 686: 842-851.

Sperow, M., M. Eve, and K. Paustian, 2003. "Potential Soil C Sequestration on US Agricultural

Soils." *Climatic Change* 57(3): 319-339.

Stavins, R. N., 1999. "The costs of carbon sequestration: a revealed-preference approach." *The American Economic Review* 89(4): 994-1009.

Weersink, A., D. Pannell, M. Fulton, and A. Meyer-Aurich, 2005. "Agriculture's Likely Role in Meeting Canada's Kyoto Commitments." *Canadian Journal of Agricultural Economics* 53(4): 425-441.

West, O.T., and W.M. Post, 2002. "Soil Organic Carbon Sequestration Rates by Tillage and Crop Rotation: a Global Data Analysis." Soil Science Society of America Journal 66: 1930-1946.

West, O.T., and J. Six, 2007. "Considering the Influence of Sequestration Duration and Carbon Saturation on Estimates of Soil Carbon Capacity." *Climatic Change* 80: 25-41.

West, O.T., G. Marland, A.W. King, W.M. Post, A.K. Jain, and K. Andrasko, 2004. "Carbon Management Response Curves: Estimates of Temporal Soil Carbon Dynamics." *Environmental Management* 33(4): 507-518.

Wu, J., and B. Babcock, 1996. "Contract Design for the Purchase of Environmental Goods from Agriculture." *American Journal of Agricultural Economics* 78(4): 935-945.

—, 1998. "The Choice of Tillage, Rotation, and Soil Testing Practices: Economic and Environmental Implications." *American Journal of Agricultural Economics* 80(3): 494-511.

—, 1999. "The Relative Efficiency of Voluntary vs. Mandatory Environmental Regulations." Journal of Environmental Economics and Management 38(2): 158-175.

Young L., A. Weersink, M. Fulton and B. Deaton B., 2007. "Carbon Sequestration in Agriculture: EU and US Perspectives." *EuroChoices.* 6(1): 32-37.