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Abstract

This paper explores the view that a criterion of intergenerational equity serves

to make choices according to ethical intuitions on a domain of relevant technological

environments. In line with this view I first calibrate different criteria of intergen-

erational equity in the AK model of economic growth, with a given productivity

parameter A, and then evaluate their performance by mapping the consequences

of the criteria in various technological environments. The evaluation is based on

the extent to which they yield social choice mappings satisfying four desirable

properties. The Calvo criterion as well as sustainable discounted utilitarianism

and rank-discounted utilitarianism yield sustainable growth in the AK model, the

Ramsey technology and the Dasgupta-Heal-Solow-Stiglitz technology for any spec-

ifications of these technological environments.
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1 Introduction

In a series of papers (Llavador, Roemer and Silvestre, 2010, 2011, 2013; Roemer, 2011,

2013) on the ethics of intertemporal distribution in a warming planet, John Roemer

and his co-authors advocate a criterion of intergenerational distribution that allows

for sustainable growth. Specifically, they suggest that current wellbeing1 be maximized

subject to assuring that wellbeing grows at rate g forever. Formally, in their sustainable

growth criterion, a wellbeing stream 1x = (x1, x2, . . . , xt, . . . ) ≥ 0 is selected to solve

the following program (referred to as the g-SUS program):

max Λ subject to 1x being feasible and xt ≥ Λ(1 + g)t−1 > 0 for all t. (1)

The growth rate g of wellbeing is assumed to be non-negative.

In general, John Roemer supports extreme egalitarianism in the sense of maximiz-

ing the wellbeing of the worst-off individual. However, like another proponent of the

maximin criterion, John Rawls (1971), Roemer is willing to depart from the maximin

criterion in the case of intergenerational distribution. He writes (Roemer, 2011, p. 378):

A possible justification for choosing g greater than zero is that humans want their

children to be better off than they are; indeed, they are willing to sacrifice their

own [wellbeing] to make this possible—or, to state this less personally (so that

childless adults are included) each generation wants ‘human development’ to take

place, in the sense of increasing generational [wellbeing].

His position is clarified in his response (Roemer, 2013, p. 146) to Dasgupta (2011):

No generation has an ethical license to violate the rights of future generations by

choosing to discount their utility at a low rate, if doing so would render them worse

off than their right grants them; but each generation does have the ethical permit

not to enforce its own right to enjoy as much [wellbeing] as future generations. A

person can voluntarily abstain for enforcing a right that applies to him, but he is

not entitled to abrogate the rights of others.

This paper discusses how to capture Roemer’s position through criteria of intergener-

ational equity.

1I use the term ‘wellbeing’ for what Roemer and his co-authors refer to as ‘welfare’. It is meant to

indicate the current living situation and thus includes more than material consumption. Sentiments

like altruism is, however, assumed not to be included in this indicator.
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My discussion is not based on an axiomatic approach. Rather, I explore the view

that a criterion of intergenerational equity serves to make choices according to ethical

intuitions on a domain of relevant technological environments. Each technological en-

vironment combined with an initial condition gives rise to a set of feasible streams of

wellbeing. The role of the criterion is, according to this view, to select the first-ranked

stream according to a ranking of wellbeing streams in each set of feasible streams, thus

mapping an ethically commendable social choice as a function of sets of feasible streams

in a domain of relevant technological environments.

In other words, in the setting of the present paper, criteria of intergenerational

equity should be interpreted in an “as-if” sense: The ethically commendable social

choice is made “as-if” the choice is selected by a criterion of intergenerational equity.

My approach is based on welfarism (Sen, 1979) as the selection made by a criterion

depends on a fixed ranking of wellbeing streams; hence, the ranking does not change

with the sets of feasible streams as determined by the technological environments. Thus,

widening the domain of technological environments increases the need for a criterion

to be versatile. I understand that this represents a form of “intuitionism” (see Rawls,

1971, p. 34, and Dasgupta, 2011, p. 478) that John Roemer may not endorse.

When the sustainable growth criterion is used in Llavador, Roemer and Silvestre

(2010, 2011), it is applied in a technological environment where the wellbeing function

is linearly homogeneous, and where output is a constant-returns-to-scale function of

inputs that grow with rate g along an efficient balanced growth path.2 This means

that the technological environments in which Llavador, Roemer and Silvestre apply the

sustainable growth criterion essentially correspond to an AK model:

yt = xt + kt = A · kt−1 for all t ≥ 1, with k0 > 0 given,

where A is an exogenous gross productivity parameter greater than 1, and where kt and

yt denotes, respectively, capital and gross production as time t. In an efficient balanced

growth path in the AK model, gross production, capital and wellbeing increase with a

constant non-negative rate g smaller than A− 1.

Assume now that the gross productivity parameter takes on a particular value A∗

and that in this technological environment it appeals to ethical intuitions that wellbeing

2The analysis of the sustainable growth criterion in Llavador, Roemer and Silvestre (2010) is based

on a conjectured ‘turnpike’ result, entailing that such an efficient balanced growth path is approached

when the inputs initially are not in the proportions needed for efficient balanced growth. In Llavador,

Roemer and Silvestre (2011) there is in addition a stock of CO2 in the atmosphere which is constant

along the efficient balanced growth path.
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grows by rate g∗ > 0, where the condition g∗ < A∗ − 1 ensures that the resulting

balanced growth path is feasible and efficient. In line with Roemer’s position (see

the quotes above) this may correspond to a belief that each generation t is willing to

sacrifice some of their own wellbeing, compared to the maximum level A∗ · kt−1 − kt−1
determined from their obligation not to violate the rights of future generations. It

means that each generation chooses the same positive savings rate st (defined as the

ratio of net capital accumulation and net production) at each time t:

st =
kt − kt−1
yt − kt−1

=
(1 + g∗)kt−1 − kt−1
A∗ · kt−1 − kt−1

=
g∗

A∗ − 1
.

In the AK model where the gross productivity parameter equals A∗, it turns out

that an efficient balanced growth path with constant growth rate g∗ can be selected by

a number of different criteria of intergenerational equity – in addition to the sustainable

growth criterion with growth rate g∗, where a wellbeing stream is selected to solve the

g∗-SUS program (1) – provided that their functional forms and the parameters are

appropriately calibrated. Hence, the position that a given sustainable growth stream

is a commendable ethical social choice in this particular technological environment

cannot be used to evaluate the different criteria. Rather, such an evaluation can be

done either by investigating the axiomatic basis—which is not the subject of the current

paper—or by mapping the consequences of the different criteria in various technological

environments. In the present paper I follow the latter strategy for evaluating criteria

of intergenerational equity.

First, in Section 2 I calibrate undiscounted (or classical) utilitarianism, time-dis-

counted utilitarianism, sustainable discounted utilitarianism (Asheim and Mitra, 2010),

rank-discounted utilitarianism (Zuber and Asheim, 2012), the Calvo (1978) criterion

and the Chichilnisky (1996) criterion so that they all lead to a constant growth rate

g∗ when the gross productivity parameter equals to A∗. Then, in accordance with

welfarism, I investigate how these criteria – as calibrated to yield g = g∗ when A = A∗

– select optimal wellbeing streams in other technological environments: In Section 3 I

consider the consequences of varying the gross productivity parameter A. In Section 4

I explore the consequences of these criteria in the Ramsey technology, while in Section

5 I do the same in the Dasgupta-Heal-Solow-Stiglitz technology of capital accumulation

and resource depletion.

In the concluding Section 6 I discuss the result that three of the criteria – sustain-

able discounted utilitarianism, rank-discounted utilitarianism and the Calvo criterion

– satisfy a number of desirable properties in all the technological environments that I
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will consider: These three criteria are

• effective in the sense of making a unique selection of a time consistent stream,

• non-wasteful in the sense that the selected stream is efficient,

• flexible in the sense that the growth rate of the selected stream responds to

changes in the technological environment,

• sustainable in the sense that the selected stream respect the rights of future

generations by not rendering them worse off than the present generation.

In contrast, the other criteria that are treated in this paper seem not to be able to

support ethical intuitions – as captured by the four properties above – over all the

“relevant” technological environments. Finally, I argue that the SDU criterion or the

Calvo criterion might be the ones that best correspond to Roemer’s motivation for a

positive growth rate g, namely that the generations are willing to sacrifice their own

wellbeing for the benefit of future generations.

2 Calibration in the AK model

The purpose of this section is to calibrate the following criteria of intergenerational

equity (they are presented in Appendix A),

(a) undiscounted utilitarianism (UU),

(b) time-discounted utilitarianism (TDU),

(c) sustainable discounted utilitarianism (SDU),

(d) rank-discounted utilitarianism (RDU),

(e) the Calvo criterion,

(f) the Chichilnisky criterion.

The criteria are calibrated so that they all lead to a constant growth rate g∗ in the AK

model when the gross productivity parameter equals A∗, where 0 < g∗ < A∗ − 1. It is

taken as a datum that g = g∗ when A = A∗ appeals to ethical intuitions.

Such a calibration is achieved by using a parameterized constant elasticity version

of the function u that turns wellbeing x of each generation into transformed wellbeing

(or generalized utility) u(x):

u(x) =
x1−η

1− η
, where η > 0,
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and where the case with η = 1 corresponds to u(x) = lnx. Under criteria (a)–(d)+(f),

the strict concavity of u (corresponding to η > 0) is an expression of inequality aversion

between generations in social evaluation. In criterion (e) – the Calvo criterion – the

strict concavity is an expression of inequality aversion between one generation and its

successors in the “private” altruistic evaluation of the current generation. It is part of

the calibration process to allow η to vary across the different criteria.

For the analysis of efficient balanced growth paths in the AK model, it is convenient

to introduce the concept of a competitive stream. First, note that the supporting prices

1p = (p1, p2, . . . ) of wellbeing is exogenously determined due to the linearity of the AK

technology:

pt =
(
1
A

)t
for all t ≥ 1.

A feasible wellbeing stream 1x is competitive with supporting prices 1µ = (µ1, µ2, . . . )

of generalized utility if,

xt maximizes µtu(x̃)− ptx̃ over all wellbeing levels x̃, for all t ≥ 1.

For any feasible stream 1x, we have that k0 =
∑τ

t=1 ptxt + pτkτ for all τ ≥ 1. Hence,

if a wellbeing stream 1x is competitive with supporting prices 1µ, then∑τ

t=1
µt
(
u(xt)− u(x̃t)

)
≥
∑τ

t=1
pt
(
xt − x̃t

)
≥ −pτkτ

for all feasible streams 1x̃, by the definition of competitiveness since k0 = k̃0 and

pτ k̃τ ≥ 0. Therefore, if pτkτ → 0 as τ →∞ holds as a transversality condition, then

lim infτ→∞
∑τ

t=1
µt
(
u(xt)− u(x̃t)

)
≥ 0 (2)

for all feasible streams 1x̃. Furthermore, by the iso-elastic form of the u-function with

η > 0, it follows that xt > 0 and µtu
′(xt) = pt for all t ≥ 1, since u is continuously

differentiable and strictly concave with limx→0 u
′(x) = ∞. Furthermore, 1x is the

unique stream having property (2) for all feasible streams 1x̃.

Note that if Λ∗ is the maximum value of program (1) in the AK model, with A = A∗,

g = g∗ ∈ (0, A∗ − 1), and initial stock k0 given, then

Λ∗ = (A∗ − 1− g∗)k0

and

pτkτ =
(1+g∗

A∗

)τ · k0 → 0 as τ →∞.

For the rest of this section, let 1x denote the wellbeing stream defined by xt = Λ∗(1 +

g∗)t−1 for all t ≥ 1.
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In the criterion of undiscounted utilitarianism (UU), wellbeing is transformed

through a continuous, increasing and strictly concave u-function and summed without

discounting. The strict concavity of the u-function leads to a decreasing marginal

generalized utility along the geometrically growing wellbeing stream which counters

the effect of having a gross rate of productivity A∗ greater than one.

To determine how UU can select an efficient balanced growth path in the AK

model, combine xt = Λ∗(1 + g∗)t−1 for all t ≥ 1 with the requirement that 1x be

a competitive stream satisfying the condition that µt = µ (constant) for all t ≥ 1.

Since u is continuously differentiable and strictly concave with limx→0 u
′(x) = ∞ and

limx→∞ u
′(x) = 0, we must have that µu′(xt) = pt for all t ≥ 1, so that

(1 + g∗)−η =
x−ηt+1

x−ηt
=
u′(xt+1)

u′(xt)
=
pt+1

pt
=

1

A∗
(3)

for all t ≥ 1. This implies that the parameter of inequality aversion, ηU , in the case of

UU is given by:

ηU =
lnA∗

ln(1 + g∗)
.

Since 0 < ln(1 + g∗) < lnA∗, we have that ηU > 1. Furthermore, straight-forward

calculations yield that

µ =

(
(A∗ − 1− g∗)k0

)ηU
A∗

.

The criterion of time-discounted utilitarianism (TDU) discounts future generalized

utility by a discount factor ρ ∈ (0, 1). Hence, in this criterion wellbeing is transformed

through a continuous, increasing and strictly concave u-function and summed with

discounting. The concavity of the u-function leads to a decreasing marginal generalized

utility which together with a discount factor ρ smaller than one counters the effect of

having a gross rate of productivity A∗ greater than one. This means that the u-function

will be less concave than in the case of UU.

To determine how TDU can select an efficient balanced growth path in the AK

model, combine xt = Λ∗(1 + g∗)t−1 for all t ≥ 1 with the requirement that 1x be a

competitive stream satisfying µt = µρt−1 (decreasing) for all t ≥ 1. By the properties

of the u-function, we must have that µtu
′(xt) = pt for all t ≥ 1, so that

ρ(1 + g∗)−η =
ρx−ηt+1

x−ηt
=
ρu′(xt+1)

u′(xt)
=
pt+1

pt
=

1

A∗
(4)

for all t. This implies that the parameter of inequality aversion, ηT , in the case of TDU

is given by:

ηT =
lnA∗ + ln ρ

ln(1 + g∗)
. (5)
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where ρ satisfies
1
A∗ < ρ < 1 .

This condition implies that lnA∗ + ln ρ > 0 to ensure that the u-function is strictly

concave. Note that the u-function is less concave with discounting (i.e., ηT < ηU ) as

ln ρ < 0. In particular, if 1 < A∗ρ ≤ (1 + g∗), then ηT ≤ 1. Hence, the requirement

that ηU be greater than 1 does not hold for ηT . Furthermore,

µ =

(
(A∗ − 1− g∗)k0

)ηT
A∗

.

Appendix A presents the sustainable generalized discounted utilitarian (SDU) crite-

rion (Asheim and Mitra, 2010) and the rank-discounted generalized utilitarian (RDU)

criterion (Zuber and Asheim, 2012). Also in these criteria, the wellbeing xt of each

generation t is transformed into generalized utility u(xt) by an increasing, strictly con-

cave and continuously differentiable function u. Both SDU and RDU discount future

generalized utility by a discount factor ρ ∈ (0, 1), as long as the future is better off than

the present, thereby trading-off current sacrifice and future gain. Hence, if wellbeing is

perfectly correlated with time, these criteria work as TDU. The important difference

is that, in the criteria of SDU and RDU, the future is discounted because priority is

given to the worse off earlier generations.

However, if the present is better off than the future, then priority shifts to the

future. In this case, future generalized utility is not discounted, implying that zero

relative weight is assigned to present wellbeing. The criteria of SDU and RDU can

therefore capture the intuition that we should seek to assist future generations if they

are worse off than us, while not having an unlimited obligation to save for their benefit

if they turn out to be better off. Also, RDU is compatible with equal treatment of

generations by being insensitive to all re-orderings of the wellbeing stream.

In the present case of the wellbeing stream 1x defined by xt = Λ∗(1 + g∗)t−1 for all

t ≥ 0, wellbeing is perfectly correlated with time. Hence, SDU and RDU yields the

same result as TDU: The stream 1x is the unique SDU optimum and the unique RDU

optimum if the u-function is parameterized by ηS = ηR = ηT as given by eq. (5).

To formally demonstrate that 1x is a SDU when the u function is parameterized in

this way, note first that it follows from Asheim and Mitra (2010, Proposition 2(i)) that

TDU welfare wTρ (1x̃) is always as great as SDU welfare wSρ (1x̃) for any wellbeing stream

1x̃, where the welfare functions wTρ and wSρ are defined in Appendix A. However, as

stated in Asheim and Mitra (2010, Proposition 2(ii)) wSρ (1x
+) = wTρ (1x

+) for a non-

decreasing stream 1x
+ like 1x. Finally, it follows from the fact that 1x is the unique
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TDU optimum that wTρ (1x) > wTρ (1x̃) for any feasible stream 1x̃ not identical to 1x.

Combining these results yields:

wSρ (1x) = wTρ (1x) > wTρ (1x̃) ≥ wSρ (1x̃)

for any feasible stream 1x̃ not identical to 1x, there establishing that 1x is the unique

SDU optimum if the u-function is parameterized by ηS = ηT as given by eq. (5).

The corresponding result for RDU optimality can be established by adapting Zuber

and Asheim (2012, Proposition 10) to the AK model.

Turn next to the Calvo criterion (Calvo, 1978) which maximizes the infimum of

TDU welfare of all generations. It applies the maximin criterion, not on the wellbeing

stream 1x, but on the stream of TDU welfare 1w = (w1, w2, . . . ). The interpretation

is that each generation exhibits a simple recursive form of nonpaternalistic altruism

(Ray, 1987), where the welfare of each generation t is an additively separable function

of its own wellbeing and the welfare of the next generation t+ 1:

wt = (1− ρ)u(xt) + ρwt+1 .

Thus, the welfare of each generation t, wt, equals wTρ (tx).

Along the increasing stream 1x, infimum of TDU welfare over all generations equals

wTρ (1x), the welfare of generation 1. However, 1x uniquely maximizes wTρ (1x) if the

u-function is parameterized by ηT . It is therefore a trivial observation that 1x is the

unique Calvo optimum with ρ satisfying 1/A∗ < ρ < 1 and ηT being given by (5).

The Chichilnisky criterion (Chichilnisky, 1996) evaluates streams according to a

convex combination of TDU welfare and the limit of transformed wellbeing as time

goes to infinity. It might be interpreted as a convex combination of TDU and the long-

term average criterion, thereby avoiding dictatorship of both the present and the future.

It follows that 1x is the unique Chichilnisky optimum with ρ satisfying 1/A∗ < ρ < 1

and ηT being given by (5), since then 1x is a TDU optimum and limt→∞ xt =∞.

The results of the present section can be summarized as follow:

Proposition 1 Let 1x denote the wellbeing stream selected by the sustainable growth

criterion in the AK model, when the gross productivity parameter equals A∗, and the

growth rate in program (1) equals g∗, where 0 < g∗ < A∗ − 1. It is taken as a datum

that g = g∗ when A = A∗ appeals to ethical intuitions. The UU, TDU, SDU, RDU,

Calvo and Chichilnisky criteria can be calibrated so that they all uniquely select 1x as

the optimal wellbeing stream.
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3 Varying the rate of productivity

In the present section I investigate how the different criteria behave when the gross

productivity parameter A of the AK is varied and takes on values that differ from

A∗, but where I stick to the calibrations obtained in Section 2. These criteria are, in

addition to the sustainable growth criterion with growth rate g∗: (a) UU, (b) TDU, (c)

SDU, (d) RDU, (e) the Calvo criterion, and (f) the Chichilnisky criterion

In the sustainable growth criterion where a wellbeing stream is selected to solve

the g∗-SUS program (1), a balanced growth path with Λ > 0 exists if and only if

A > 1 + g∗. Furthermore, this solution is time consistent. Thus, sustainable growth

criterion is effective and non-wasteful under this condition, but not otherwise. There

is a balanced growth path also if A = 1 + g∗, but then the savings rate

st =
g∗

A− 1
= 1 for all t,

meaning that wellbeing equals zero at any point in time. Clearly, this is wasteful.

The sustainable growth criterion is not flexible since the growth rate does not respond

to different technological environments. Although the sustainable growth criterion is

sustainable by respecting the rights of future generations whenever the rate of gross

productivity is sufficiently high for the criterion to be effective and non-wasteful, it

does not solve the intergenerational conflict for low rates of gross productivity.

By substituting A for A∗ and ηU for η, the condition for competitiveness under UU

is changed from (3) to:

(1 + g)−ηU =
x−ηUt+1

x−ηUt

=
u′(xt+1)

u′(xt)
=
pt+1

pt
=

1

A
.

Solving for g yields:

gU = A
1
ηU − 1 = A

ln(1+g∗)
lnA∗ − 1 .

This uniquely determines the efficient balanced growth path, 1x
U , defined by xUt =

ΛU (1 + gU )t−1 for all t ≥ 1, where ΛU = (A − 1 − gU )k0. Since A > 1 and 0 <

ln(1 + g∗) < lnA∗, it follows that 0 < gU < A − 1. Hence, UU is effective and non-

wasteful for all A > 1. Furthermore, it is flexible since the growth rate gU responds

to changes in A, with a higher A leading to a higher gU . Finally, the UU criterion is

sustainable for all A > 1 in the sense of respecting the rights of future generations.

By substituting A for A∗ and ηT for η, the condition for competitiveness under TDU
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is changed from (4) to:

ρ(1 + g)−ηT =
ρx−ηTt+1

x−ηTt

=
ρu′(xt+1)

u′(xt)
=
pt+1

pt
=

1

A
.

Solving for g yields:

gT = (Aρ)
1
ηT − 1 = (Aρ)

ln(1+g∗)
lnA∗ − 1 .

This uniquely determines the efficient balanced growth path, 1x
T , defined by xTt =

ΛT (1 + gT )t−1 for all t ≥ 1, where ΛT = (A− 1− gT )k0. Since 0 < ln(1 + g∗) < lnA∗,

it follows that 0 < gT < Aρ − 1 < A − 1 if A > 1/ρ, gT = 0 if A = 1/ρ and gT < 0 if

A < 1/ρ. Hence, TDU is effective and non-wasteful for all A > 1. Furthermore, it is

flexible since the growth rate gT responds to changes in A, with a higher A leading to

a higher gT . However, the TDU criterion is sustainable in the sense of respecting the

rights of future generations only if A ≥ 1/ρ, but not if 1 < A < 1/ρ.

It now follows from the argument for SDU optimality in Section 2 that 1x
T is SDU

optimal whenever the efficient balanced growth path is increasing (i.e., in the case where

A > 1/ρ), because then the inequalities wSρ (1x
T ) = wTρ (1x

T ) > wTρ (1x̃) ≥ wSρ (1x̃) hold

for any feasible stream 1x̃ not identical to 1x
T . However, for A ≤ 1/ρ, then it follows

from Asheim and Mitra (2010, Proposition 3) that SDU optimality corresponds to the

equalitarian stream 1x
e, defined by xet = (A− 1)k0 for all t ≥ 1, ensuring that capital

is maintained at its original level (kt = k0 for all t ≥ 1) and corresponding to a growth

rate gS = 0.3 Hence, SDU is effective and non-wasteful for all A > 1. Furthermore,

it is flexible since the growth rate gS responds to changes in A for A > 1/ρ, with a

higher A leading to a higher gS = gT , even though gS is constant and equal to 0 for all

A ≤ 1/ρ. Finally, the SDU criterion is sustainable in the sense of respecting the rights

of future generations for all A > 1.

The same conclusions hold for the RDU and Calvo criteria. Again, the result for

RDU optimality can be established by adapting Zuber and Asheim (2012, Proposition

10) to the AK model.4 The result for Calvo optimality can be established by adapting

the proof of part (2) of Calvo (1978, Proposition 2) to the AK model. Hence, both the

TDU and Calvo criteria are effective and non-wasteful for all A > 1, flexible in that the

3Conditions (2) and (3) of Asheim and Mitra (2010, Proposition 3) are satisfied since pt/pt−1 =

1/A ≥ ρ for all t ≥ 1, writing p0 = 1, and
∑∞
t=1ptx

e
t = k0 =

∑τ
t=1ptx̃t + pτ k̃τ ≥

∑∞
t=1ptx̃t for any

feasible stream 1x̃ and for all τ ≥ 1.

4Zuber and Asheim (2012, Proposition 10) is based on Asheim (1991, Proposition 6), where the

proof of Case 2 must be adapted to the AK model to show that 1x
e maximizes wTρ (1x

+) over all

non-decreasing streams 1x
+ when A ≤ 1/ρ.
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sense the growth rate responds to changes in A if and only if A > 1/ρ, and sustainable

in the sense of respecting the rights of future generations for all A > 1.

The TDU optimal stream 1x
T is also Chichilnisky optimal if A > 1/ρ. However,

if A ≤ 1/ρ, there does not exist a Chichilnisky optimal stream. The problem is that

the TDU part of the Chichilnisky criterion is increased by following 1x
T for a longer

period of time, before ensuring that limt→∞ xt =∞ to “maximize” the second limiting

part of the Chichilnisky criterion. However, if 1x
T is followed forever, then limt→∞ xt =

(A−1)k0 for A = 1/ρ and limt→∞ xt = 0 for A < 1/ρ. Hence, the Chichilnisky criterion

behaves like TDU for A > 1/ρ, while not being effective otherwise.

The results of the present section can be summarized as follow:

Proposition 2 Consider the sustainable growth criterion as well as the UU, TDU,

SDU, RDU, Calvo and Chichilnisky criteria with the calibrations from Section 2. Al-

low the gross productivity parameter A of the AK to be varied, taking on values that

differ from A∗. Only the UU, SDU, RDU and Calvo criteria satisfy all four desirable

properties in the AK model when the gross productivity parameter A is varied, by being

effective, non-wasteful, flexible and sustainable.

4 The Ramsey technology

Assume that the technology is given by an increasing, strictly concave, and twice con-

tinuously differentiable production function f : R+ → R+, satisfying f(0) = 0 and

limk→∞ f
′(k) = 0. A wellbeing stream 1x = (x1, x2, . . . ) ≥ 0 is feasible given an initial

capital stock k0 > 0 if there exists a capital stream 1k = (k1, k2 . . . ) ≥ 0 such that

xt + kt = kt−1 + f(kt−1)

for all t ≥ 1. This is the Ramsey technology, which is the standard technological

environment for the analysis of economic growth.

With the assumption that the net marginal productivity of capital, f ′(k), ap-

proaches 0 as k → ∞, it follows that the ratio of net product to capital, f(k)/k,

approaches 0 as k → ∞. The implication is that no stream with positive wellbeing

growing at a constant positive rate g is feasible.5 This leads to the conclusion that

5Asheim and Mitra (2010, Lemma 1) is a formal demonstration of this result, as
∑τ
t=1 ρ

t−1Λ(1+g)t−1

would diverge for any ρ satisfying 1/(1 + g) ≤ ρ < 1 if a wellbeing stream defined by xt = Λ(1 + g)t−1

for all t were feasible with Λ > 0 and g > 0.
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the sustainable growth criterion of selecting a wellbeing stream that solves the g∗-SUS

program (1) selects no stream in the Ramsey technology with this assumption on the

net marginal productivity of capital. Hence, the sustainable growth criterion is not

effective in the Ramsey technology.

Also the UU criterion need not be effective in the Ramsey technology, even with

the requirement that ηU be greater than 1. A closed-form demonstration of this fact

is most easily done in the continuous time version of the Ramsey technology: A non-

negative wellbeing stream (x(t))∞t=0 is feasible given an initial capital stock k(0) > 0 if

there exists a non-negative capital stream (k(t))∞t=0 such that

x(t) + k̇(t) = f(k(t)) (6)

for all t ≥ 0. By giving the production function a iso-elastic form: f(k) = kα, where

0 < α < 1, the assumptions on f are fulfilled and a closed-form solution can be given.

Note that the net marginal productivity of capital f ′(k) then equals αkα−1, so that the

Keynes-Ramsey rule becomes:

αk(t)α−1 = ηU
ẋ(t)

x(t)
(7)

Combining the Keynes-Ramsey rule (7) with

lim
τ→∞

e−
∫ τ
0 αk(t)α−1dtk(τ) = 0 (8)

as a transversality condition is sufficient and necessary for UU optimality. The techno-

logical relation (6), where f(k) = kα, together with the Keynes-Ramsey rule (7) imply

that the savings rate s(t) defined by k̇(t) = s(t)f(k(t)) is constant and equal to 1/ηU .6

Substituting 1/ηU for s(t) and k(t)α for f(k(t) in k̇(t) = s(t)f(k(t)) and integrating

yields:

k(τ) = e
∫ τ
0

1
ηU

k(t)α−1dt
k(0) .

Hence, for the transversality condition (8) to hold, it must be that α > 1/ηU .

Hence, the UU criterion is effective if and only ηU > 1/α > 1, implying that ηU > 1

is not sufficient for an UU optimum to exist. In this case, with ηU > 1/α, the UU

criterion is non-wasteful for all k(0) > 0, flexible in the sense that the growth rate

responds to changes in k(0), with a higher k(0) leading to a lower growth rate due to

lower net marginal productivity of capital. Finally, the UU criterion is sustainable for

all k(0) > 0 in the sense of respecting the rights of future generations.

6Use (6) combined with f(k) = kα and k̇ = sf(k) to obtain ẋ/x = sαkα−1 and insert in (7).
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However, if ηU ≤ 1/α, then there exists no UU optimum. The problem is that short-

run optimality, as dictated by the Keynes-Ramsey rule, leads to over-accumulation of

capital. Hence, a given elasticity of marginal generalized utility ηU > 1 – as an expres-

sion of inequality aversion in social evaluation – fails to deliver a UU optimal stream

in all the technological environments that satisfy the assumptions of the Ramsey tech-

nology. If f(k) is interpreted as a reduced form constant-returns-to-scale production

function of capital and labor, with the labor force constant and normalized to 1, then

a sufficiently high functional share of capital α is needed for the UU criterion to be

effective in the sense of being able to select an optimal stream.

Return now to the Ramsey technology in discrete time. For analyzing the proper-

ties of the remaining criteria in this technological environment, we need to define the

modified golden rule. Define k∞ : (0, 1)→ R+ by, for all ρ ∈ (0, 1),

k∞(ρ) = min{k ≥ 0 : ρ
(
1 + f ′(k)

)
≤ 1} .

It follows from the properties of f that k∞ is well-defined and continuous, and it is

strictly increasing for all ρ for which there exists k ≥ 0 such that ρ(1 + f ′(k)) = 1. For

given ρ ∈ (0, 1), k∞(ρ) is the capital stock corresponding to the modified golden rule.

Beals and Koopmans (1969) show that there is a unique TDU optimal capital stream

1k
T , with associated TDU optimal wellbeing stream 1x

T , for given initial capital stock

k0. Furthermore, 1k
T and 1x

T are monotone, converging to k∞(ρ) and f(k∞(ρ)),

respectively. In particular, wellbeing is increasing if k0 < k∞(ρ), constant (and equal

to f(k∞(ρ))) if k0 = k∞(ρ) and decreasing if k0 > k∞(ρ). Hence, TDU is effective and

non-wasteful for all k0 > 0. Furthermore, it is flexible in the sense that the growth

rate responds to changes in k0; in particular, increasing k0 from below to above k∞(ρ)

changes positive growth in wellbeing to negative growth in wellbeing due to lower net

marginal productivity of capital. However, the TDU criterion is sustainable in the sense

of respecting the rights of future generations only if k0 ≤ k∞(ρ), but not if k0 > k∞(ρ).

As in the case of the AK model, the TDU optimal stream is SDU optimal whenever

the TDU optimal stream is increasing (i.e., the case where k0 < k∞(ρ)). However, for

k0 ≥ k∞(ρ), then it follows directly from Asheim and Mitra (2010, Theorem 2) that

SDU optimality corresponds to the equalitarian stream 1x
e, defined by xet = f(k0) for

all t ≥ 1, ensuring that capital is maintained at its original level (kt = k0 for all t ≥ 1).

Hence, SDU is effective and non-wasteful for all k0 > 0. Furthermore, it is flexible in

the sense that the growth rate responds to changes in k0; in particular, increasing k0

from below to above k∞(ρ) changes a stream with increasing wellbeing to a stream of
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constant wellbeing due to lower net marginal productivity of capital. Finally, the SDU

criterion is sustainable in the sense of respecting the rights of future generations for all

k0 > 0.

The same conclusions hold for the RDU and Calvo criteria. The result for RDU

optimality follows directly from Zuber and Asheim (2012, Proposition 10), while the

result for Calvo optimality follows direcly from Calvo (1978, Proposition 2). Hence,

both RDU and the Calvo criterion are also effective for all k0 > 0. Furthermore, they

are both non-wasteful, flexible in the sense that the growth rate responds to changes

in k0, and sustainable in the sense of respecting the rights of future generations for all

k0 > 0.

There is no Chichilnisky optimum in the Ramsey technology (see e.g. Asheim and

Ekeland, 2015, Proposition 3). As for the AK model, the existence problem arises

since, by the Chichilnisky criterion, it is socially valuable to extend the period of time

for which the TDU optimal stream is followed, while it is not optimal to follow the

TDU optimal stream forever. However, in addition to not yielding an optimum, the

Chichilnisky criterion is also time inconsistent. Therefore, in Asheim and Ekeland

(2015), we investigate stationary Markov equilibria in the game that generations with

Chichilnisky preferences play in the continuous time version of the Ramsey technology.

We argue for plausibility of a particular equilibrium where behavior

• corresponds to the TDU optimum if the TDU optimum is increasing; in continu-

ous time version this corresponds to small k0 satisfying f ′(k0) > δ where δ is the

continuous time discount rate;

• corresponds to the SDU/TDU/Calvo optimum, yielding a constant stream, for

intermediate values of k0 satisfying δ ≥ f ′(k0) ≥ (1 − γ)δ, where (1 − γ) is the

weight on the TDU part of the Chichilnisky criterion;

• is unsustainable, leading to a decreasing stream, for large values of k0 satisfying

f ′(k0) < (1− γ)δ.

Hence, in this equilibrium, the Chichilnisky criterion is effective and non-wasteful for

all k0 > 0. Furthermore, it is flexible in the sense that the growth rate responds to

changes in k0, so that the selected wellbeing stream is increasing for small values of k0,

constant for intermediate values of k0, and decreasing for large values of k0. However,

in this equilibrium, the Chichilnisky criterion is sustainable in the sense of respecting

the rights of future generations only for small and intermediate values of k0, but not

for large values of k0.
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The results of the present section can be summarized as follow:

Proposition 3 Consider the sustainable growth criterion as well as the UU, TDU,

SDU, RDU, Calvo and Chichilnisky criteria with the calibrations from Section 2. Only

the SDU, RDU and Calvo criteria satisfy all four desirable properties in the Ram-

sey technology when the initial capital stock k0 > 0 is varied, by being effective, non-

wasteful, flexible and sustainable.

Note in particular that the UU criterion, which passed this test in the AK model, need

not be effective in the Ramsey technology if the functional share of capital is too small.

5 The Dasgupta-Heal-Solow-Stiglitz technology

Dasgupta and Heal (1974, 1979), Solow (1974) and Stiglitz (1974) developed the stan-

dard technological environment for the analysis of economic growth when natural re-

sources are important. In their model, production depends on man-made physical

capital kmt , the extraction dt of a natural exhaustible resource knt , and the labor supply

`t. The natural resource is depleted by the resource use, so that knt+1 = knt −dt. The pro-

duction function f̂(kmt , dt, `t) is concave, non-decreasing, homogeneous of degree one,

and twice continuously differentiable. It satisfies (f̂km , f̂d, f̂`)� 0 for all (km, d, `)� 0

and f̂(km, 0, `) = f̂(0, d, `) = 0 (both the physical capital and the natural resource are

essential in the production). Moreover, given (k̃m, d̃)� 0, there exists a scalar χ̃ such

that
(
df̂d(k

m, d, 1)
)
/
(
f̂`(k

m, d, 1)
)
≥ χ̃ for (km, d) satisfying km ≥ k̃m and 0 ≤ d ≤ d̃

(the ratio of the share of the resource to the share of labor is bounded away from zero

when labor is fixed at unit level).

Assume, as before, that the labor force is constant and normalized to 1. Write

f(km, d) := f̂(km, d, 1). Also assume that f is strictly concave and that the cross

partial derivative satisfies fkm,d(k
m, d) ≥ 0 for all (km, d) � 0. A wellbeing stream

1x = (x1, x2, . . . ) ≥ 0 is feasible given initial stocks (km0 , k
n
0 )� 0 if there exist streams

of capital, 1k
m = (km1 , k

m
2 , . . . ) ≥ 0, and resource, 1k

n = (kn1 , k
n
2 , . . . ) ≥ 0, such that

xt + kmt ≤ f(kmt−1, k
n
t−1 − knt ) + kmt−1

for all t ≥ 1. Hence, net production f(kmt−1, k
n
t−1−knt ) is split between wellbeing xt and

capital accumulation kmt − kmt−1 at each time t.

The assumptions made so far do not ensure that it is feasible to maintain a con-

stant and positive wellbeing level forever. Therefore, assume in addition that there
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exists from any (km0 , k
n
0 )� 0 a constant stream with positive wellbeing. Cass and Mi-

tra (1991) give a necessary and sufficient condition on f for this assumption to hold.7

Under this additional assumption there exists an efficient constant wellbeing stream

from any (km1 , k
n
1 ) � 0 (see Dasgupta and Mitra, 1983, Proposition 5). A technol-

ogy satisfying the above assumptions is referred to as a Dasgupta-Heal-Solow-Stiglitz

(DHSS) technology.

Even though a stream with constant and positive wellbeing is feasible, no stream

with positive wellbeing growing at a constant positive rate g is feasible.8 This leads

to the conclusion that the sustainable growth criterion of selecting a wellbeing stream

that solves the g∗-SUS program (1) selects no stream in the DHSS technology with

the assumptions above. Hence, as for the Ramsey technology, the sustainable growth

criterion is not effective in the DHSS technology.

Also the UU criterion need not be effective in the DHSS technology. A closed-form

demonstration of this fact is most easily done in the continuous time version of the

DHSS technology: A non-negative wellbeing stream (x(t))∞t=0 is feasible given an initial

stock (km(0), kn(0))� 0 if there exists non-negative streams of capital (km(t))∞t=0 and

resource (kn(t))∞t=0 such that

x(t) + k̇m(t) = f(km(t),−k̇n(t))

for all t ≥ 0. By giving the production function a Cobb-Douglas form: f(km,−k̇n) =

(km)α(−k̇n)β, where 0 < β < α < 1 and α + β < 1, the assumptions on f are

fulfilled and a closed-form solution can be given, as demonstrated by Asheim et al.

(2007). Furthermore, it follows from Asheim et al. (2007, Theorem 10 and 12) (see also

Dasgupta and Heal, 1979, pp. 303–308) that a UU optimum exists if and only if

α− β > 1− β
ηU

.

Hence, the UU criterion is effective if and only ηU > (1−β)/(α−β) > 1, implying that

ηU > 1 is not sufficient for an UU optimum to exist in the DHSS technology, echoing the

similar result in the Ramsey technology. A sufficiently large functional share of capital

α and a sufficiently small functional share of resource input β is needed for an UU opti-

mum to exist. With ηU > (1−β)/(α−β), the UU criterion is non-wasteful and sustain-

able in the sense of respecting the rights of future generations for all (km(0), kn(0))� 0,

7Mitra et al. (2013) do likewise in the continuous time version of the model.

8Asheim and Mitra (2010, Lemma 2) is a formal demonstration of this result, as
∑τ
t=1 ρ

t−1Λ(1+g)t−1

would diverge for any ρ satisfying 1/(1 + g) ≤ ρ < 1 if a wellbeing stream defined by xt = Λ(1 + g)t−1

for all t were feasible with Λ > 0 and g > 0.
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and flexible in the sense that the growth rate responds to changes in (km(0), kn(0)).

However, no UU optimum exists with ηU ≤ (1− β)/(α− β).

Already Dasgupta and Heal (1974) demonstrated in the continuous time version

of the DHSS model that wellbeing is forced towards 0 as time goes to infinity under

the TDU criterion for any positive discount rate δ and specification of the u-function

that turns wellbeing into generalized utility. The same conclusion holds in the discrete

time version for any discount factor ρ between 0 and 1. The reason is that the net

productivity of capital is forced towards zero in any stream where wellbeing is bounded

away from zero. So, even though the TDU criterion is effective and non-wasteful for all

initial stocks (km0 , k
n
0 )� 0, it is never sustainable in the sense of respecting the rights

of future generations.

In contrast, the SDU, RDU and Calvo criteria give always rise to a sustainable

wellbeing stream, for any (km0 , k
n
0 ) � 0. This wellbeing stream has the property of

maximizing the TDU criteria over all non-decreasing wellbeing streams. Since the

TDU optimum is not non-decreasing, the stream selected by the SDU, RDU, and

Calvo criteria differs from the stream selected under TDU. To describe this wellbeing

stream, denote by xe(km0 , k
n
0 ) the positive and constant level of wellbeing that can be

sustained forever along an efficient constant consumption stream from (km0 , k
n
0 ) � 0.

It is possible to attach a sequence of shadow prices

(p1(k
m
0 , k

n
0 ), p2(k

m
0 , k

n
0 ), . . . , pt(k

m
0 , k

n
0 ), . . . )

to the corresponding stationary consumption stream (for a characterization of the

prices, see Asheim and Mitra, 2010, Lemma 3). Write

ρ∞(km0 , k
n
0 ) =

∑∞
t=1 pt(k

m
0 , k

n
0 )∑∞

t=0 pt(k
m
0 , k

n
0 )
,

where p0(k
m
0 , k

n
0 ) = 1, for the long-run discount factor at time 0 supporting this sta-

tionary stream.

The unique SDU optimal wellbeing stream 1x
S is characterized as follows:

(a) If ρ∞(km0 , k
n
0 ) < ρ, then 1x

S is the non-decreasing stream maximizing TDU wel-

fare over all feasible and non-decreasing streams. This stream has the property

that there exists τ = min{t ≥ 0 : ρ∞((kmt )S , (knt )S) ≥ ρ} such that

xSt < xSt+1 for t ≤ τ ,

xSt = xe((kmτ )S , (knτ )S) for all t > τ .

17



(b) If ρ∞(km0 , k
n
0 ) ≥ ρ, then 1x

S is the egalitarian stream with xSt = xe(km0 , k
n
0 ) for

all t ≥ 1.

The result that 1x
S is the unique SDU optimal wellbeing stream follows directly

from Asheim and Mitra (2010, Theorem 3). The result that 1x
S is also the unique RDU

optimal wellbeing stream follows directly from Zuber and Asheim (2012, Proposition

11). The analysis with the Calvo criterion is more complicated, as an optimal time

consistent stream does not exist in case (a) (see Asheim, 1988, Theorem 1). However,

1x
S is the unique equilibrium of the intergenerational game, under the assumption that

the optimal stream is followed as soon as one exists (see Asheim, 1988, Theorem 2).

To see that stream 1x
S is not optimal in case (a), but an equilibrium, observe that

generation τ + 1 would want the generation τ + 2 to enjoy wellbeing on its behalf as

ρ times the gross marginal instantaneous productivity of capital exceeds 1. However,

if generation τ + 1 makes such a sacrifice, generation τ + 2 would want to share this

wellbeing with its descendants. However, if generation τ + 2 does so, then it is better

for generation τ + 1 to stick to 1x
S since the gross marginal productivity of capital is

decreasing along 1x
S .

Therefore, the SDU, RDU and Calvo criteria are effective in the DHSS technology

– in the sense of selecting a time consistent stream – for all (km0 , k
n
0 ) � 0. They are

also non-wasteful, flexible in the sense that the growth rate responds to changes in

(km0 , k
n
0 ), and sustainable in the sense of respecting the rights of future generations for

all (km0 , k
n
0 )� 0.

As for the Ramsey technology, there is no Chichilnisky optimum in the DHSS

technology. There is yet no game theoretic analysis of the Chichilnisky criterion in

the DHSS technology, not even in the continuous time version of the model, so it is

premature to speculate on the properties of such a Chichilnisky equilibrium in this

technological environment.

The results of the present section can be summarized as follow:

Proposition 4 Consider the sustainable growth criterion as well as the UU, TDU,

SDU, RDU, Calvo and Chichilnisky criteria with the calibrations from Section 2. Only

the SDU, RDU and Calvo criteria satisfy all four desirable properties in the DHSS

technology when the initial stocks (km0 , k
n
0 ) � 0 are varied, by being effective, non-

wasteful, flexible and sustainable.
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6 Discussion

In this paper I have evaluated different criteria of intergenerational equity by mapping

the consequences of the criteria in various technological environments, and observed

to which extent they yield social choice mappings that are effective (in the sense of

selecting a time consistent stream), non-wasteful (in the sense that the selected stream

is efficient), flexible (in the sense that the growth rate of the selected stream responds

to changes in the technological environment), and sustainable (in the sense that the

selected stream respect the rights of future generations by not rendering them worse

off than the present generation). The different criteria was calibrated so that they give

rise to the same efficient balanced growth path in the AK model for a given value

A∗ of the gross productivity parameter A, before being subjected to the technological

environments that arise when varying A in the AK model, as well as to the Ramsey

and DHSS technologies. The results are summarized in Table 1.

[Table 1 about here.]

Being effective and non-wasteful are basic and undisputable properties. Flexibility

seems necessary for ensuring that a criterion is effective, as is illustrated in Table 1

by the results on the sustainable growth criterion of selecting a wellbeing stream that

solves the g∗-SUS program (1). Lastly, sustainability is the position that Roemer (2011,

2013) argues for in the quotes of the introduction; this is a position that I support.

The table shows that the UU criterion is not a viable alternative, as it need not be

effective in the Ramsey and DHSS technologies. The criterion that economists usually

endorse, TDU, does fine in the AK model and in the Ramsey technology as long the

economy is sufficiently productive. Hence, the endorsement of TDU might from a

pragmatic perspective be based on a view that these are the “relevant” technological

environments and on the fact that it is not to the disadvantage of future generations in

these settings that they are discriminated against by TDU. However, if productivity is

low, or if natural resources are important (as they are in the DHSS technology), then

the TDU criterion does not yield sustainable outcomes.

The Chichilnisky criterion is not effective, at least not unless a game theoretic anal-

ysis is invoked in response to the time inconsistency of this criterion. And even in the

game that generations with Chichilnisky preferences play in the continuous time ver-

sion of the Ramsey technology, the plausible equilibrium does not lead to a sustainable

outcome if productivity is low.
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Table 1 shows that the remaining criteria, SDU, RDU, and the Calvo criterion, do

well with respect to all the four desirable properties in all the considered technological

environments. In these criteria, discounting of generalized utility is not allowed to be

to the disadvantage of future generations, at least not in technological environments

(like the ones I consider) with positive net marginal productivity of capital.

The Calvo criterion is of particular interest, as it combines the extreme egalitari-

anism of the maximin principle – which is endorsed by John Roemer – with altruism

for future generations. In fact, Calvo’s (1978) contribution arose as a response to

Rawls’s (1971) discussion of intergenerational equity, as interpreted by Arrow (1974)

and Dasgupta (1974). It shows how sustainable growth can be combined with the max-

imin principle, because generations with altruism choose to let their descendants enjoy

wellbeing on their behalf.

Also the SDU criterion has a motivation that is close to that conveyed by Roemer

(2011, 2013) in the quotes of the introduction. It captures the intuition that we have an

obligation to assist future generations if they are worse off than us, but we may choose to

give them the means for achieving a higher wellbeing than the one enjoyed by ourselves.

The RDU has a different motivation, as generations are treated completely sym-

metric, with rank-discounting being an expression of social aversion to inequality. In

particular, with negative net marginal productivity of capital between two periods,

RDU would allow a generation a wellbeing level that exceeds the wellbeing that some

future generation will enjoy. However in the technological environments that I have

considered in this paper, RDU yields the same outcome as the SDU and Calvo criteria.

From a technical point of view, the discount factor ρ between 0 and 1 that enters

into the SDU, RDU and Calvo criteria has property to ensure that the criteria are

effective. When ρ approaches 1, the outcome approaches the UU optimum when this

exists. For ρ sufficiently small, the outcome is an egalitarian wellbeing stream, hence,

the outcome that would have arisen if the maximin criterion had been applied.

As for the choice of the growth rate g∗ in the g∗-SUS problem when applied to the

AK model, the parameters of the SDU, RDU and Calvo criteria, the discount factor

ρ and the parameter of inequality aversion η, must be chosen according to ethical

intuitions—or perhaps, in line with the quotes of the introduction, how we believe that

generations will choose to make sacrifices for their descendants. Even for a given choice

of the growth rate g∗ in the AK model with with the gross productivity parameter

A equal to a particular value A∗, there is trade-off between ρ and η as shown by

eq. (5): More discounting (in the form of a lower discount factor ρ) corresponds to less
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inequality aversion (in the form a lower parameter of inequality aversion η) and less

responsiveness to changes in productivity.9

Throughout this paper I have abstracted from exogenous or endogenous variation of

population size. In particular, population is been assumed to be constant and normal-

ized to 1, implying that the analysis has abstracted from intragenerational inequality.

Moreover, I have assumed zero probability of extinction, and that generations succeed

each other without overlapping in a deterministic setting. This setting has allowed a

focus on the ethics of intergenerational distribution.

As Stéphane Zuber and I show in Asheim and Zuber (2014, 2015), the RDU can

be generalized to settings with variable population and intergenerational risk. I do the

same for SDU in Dietz and Asheim (2011). Practical use of the Calvo criterion requires

that such issues be resolved also for this criterion of intergenerational equity. The

properties of these criteria may well differ when expanding the domain of technological

environments by considering also population issues and intergenerational risk.

9The two parameters can be calibrated independently if there are two different combinations of

gross productivity and growth rate, (A∗, g∗) and (A∗∗, g∗∗), that appeal to ethical intuitions in the AK

model.
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Appendix A

Definitions of UU optimality, TDU optimality, SDU optimality, RDU

optimality, Calvo optimality, and Chichilnisky optimality

Let X be a set of feasible wellbeing streams for given initial condition. That is, the

wellbeing stream 1x = (x1, x2, . . . ) is feasible if and only if 1x ∈ X. Let X be the

union of X when varying the initial conditions in both models. For all elements X in

X , X contains only streams where wellbeing xt at each time t is non-negative. Let

u : R++ → R be a increasing, strictly concave and continuously differentiable function

with limx→0 u
′(0) =∞ that maps positive wellbeing into transformed wellbeing (which

can also be referred to as generalized utility). In the parameterized versions of u in the

main text, u need not be defined for zero wellbeing.

Undiscounted generalized utilitarianism (UU). Say that 1x ∈ X is an undiscounted

generalized utilitarian (TDU) optimum given the set of feasible utility streams X if

lim infτ→∞
∑τ

t=1

(
u(xt)− u(x̃t)

)
≥ 0 for all 1x̃ ∈ X .

Time-discounted generalized utilitarianism (TDU). Define the TDU welfare function

wTρ : X → R for the discount factor ρ ∈ (0, 1) as follows:

wTρ (1x) = (1− ρ)
∑∞

t=1
ρt−1u(xt) .

Say that 1x ∈ X is a time-discounted generalized utilitarian (TDU) optimum given

the set of feasible utility streams X if

wTρ (1x) ≥ wTρ (1x̃) for all 1x̃ ∈ X .

Sustainable discounted generalized utilitarianism (SDU) (see Asheim and Mitra, 2010,

for a presentation and analysis of this criterion, including an axiomatization). Under

SDU, the future is discounted if and only if the future is better off than the present.

Define the SDU welfare function wSρ : X → R for ρ ∈ (0, 1) as follows: wSρ (1x) =

limτ→∞ z(1, τ), where z(1, τ) is constructed as follows:

z(τ, τ) = wTρ (τx)

z(τ − 1, τ) = min{(1− ρ)u(xτ−1) + ρz(τ, τ), z(τ, τ)}
· · ·
z(1, τ) = min{(1− ρ)u(x1) + ρz(2, τ), z(2, τ)} .
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Say that 1x ∈ X is a sustainable generalized discounted utilitarian (SDU) optimum

given the set of feasible utility streams X if

wSρ (1x) ≥ wSρ (1x̃) for all 1x̃ ∈ U .10

Rank-discounted generalized utilitarianism (RDU) (see Zuber and Asheim, 2012, for a

presentation and analysis of this criterion, including an axiomatization). Under RDU,

streams are first reordered into a non-decreasing stream, so that discounting becomes

according to rank, not according to time. The definition takes into account that streams

like (1, 0, 0, 0, . . . ), with elements of infinite rank, cannot be reordered into a non-

decreasing stream. Therefore, let `(1x) denote lim inf of 1x if it exists (set `(1x) = ∞
otherwise), and let L(1x) := {t ∈ N | xt < `(1x)}. If |L(1x)| = ∞, then let [1]u =

(x[1], x[2], . . . ) be a non-decreasing reordering of all elements xt with t ∈ L(1x) (so that

x[r] ≤ x[r+1] for all ranks r ∈ N). If |L(1x)| < ∞, then let (x[1], x[2], . . . , x[|L(1x)|]) be a

non-decreasing reordering of all elements xt with t ∈ L(1x) (so that x[r] ≤ x[r+1] for all

ranks r ∈ {1, . . . , |L(1x)|}), and set x[r] = `(1x) for all r > |L(1x)|.
Define the RDU welfare function wRρ : X → R for ρ ∈ (0, 1) as follows:

wRρ (1x) = wTρ ([1]x) .

Say that 1x ∈ X is a rank-discounted generalized utilitarian (RDU) optimum given

the set of feasible utility streams X if

wRρ (1x) ≥ wRρ (1x̃) for all 1x̃ ∈ X .

It follows from the assumptions made in Sections 2, 3, 4 and 5 that the generalized

utilitarian welfare functions wTρ , wSρ and wRρ are well-defined on X .

The Calvo criterion (see Calvo, 1978, for a presentation and analysis of this criterion)

evaluates streams according to the infimum of the non-paternalistic altruistic welfare.

Hence, the Calvo welfare function is defined on X as follows:

inf
t≥1

wTρ (tu) .

Say that 1x ∈ X is a Calvo optimum if

inf
t≥1

wTρ (tx) ≥ inf
t≥1

wTρ (tx̃) for all 1x̃ ∈ X .

10Asheim and Mitra (2010, Section 2) use the construction presented here to establish the existence

of a SDU welfare function, while using their requirements (W.1)–(W.4) as the primitive definition.
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The Chichilnisky criterion (see Chichilnisky, 1996, for a presentation and analysis of

this criterion, including an axiomatization) evaluates streams according to a convex

combination of TDU welfare and the limit of transformed wellbeing:

(1− γ)wTρ (1x) + γ lim
t→∞

u(xt) ,

where γ ∈ (0, 1).

Say that 1x ∈ X is a Chichilnisky optimum if

(1− γ)wTρ (1x) + γ lim
t→∞

u(x1) ≥ (1− γ)wTρ (1x̃) + γ lim
t→∞

u(x̃t) for all 1x̃ ∈ X ,

or if 1x is a TDU optimum and limt→∞ xt =∞.

Remark on the axiomatic foundation. The UU, TDU and Chichilnisky criteria

satisfy the strong Paretian principle, while the SDU and RDU criteria do not. Pareto

efficiency is not a straight-forward concept in the case of the Calvo criterion, since

efficiency in wellbeing need not imply efficiency in altruistic utility. Moreover, the

UU and RDU criteria treat generations equally in the sense of satisfying Anonymity

(RDU in the strong sense of being invariant even to infinite permutations), while the

remaining criteria do not treat generations equally. Finally, the UU, TDU and SDU

induce time consistent preferences, while the RDU, Calvo and Chichilnisky criteria do

not.
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Table 1: The implications of criteria in various technological environments

AK AK Ramsey Ramsey DHSS
A large A small k0 small k0 large

g∗-SUS
Effective + − − − −
Non-wasteful + n.a. n.a. n.a. n.a.
Flexible − n.a. n.a. n.a. n.a.
Sustainable + n.a. n.a. n.a. n.a.

Undisc. util. (UU)
Effective + + (+) a (+) a (+)b

Non-wasteful + + (+) a (+) a (+)b

Flexible + + (+) a (+) a (+)b

Sustainable + + (+) a (+) a (+)b

Time-disc. util. (TDU)
Effective + + + + +
Non-wasteful + + + + +
Flexible + + + + +
Sustainable + − + − −

Sust. disc. util. (SDU)
Rank-disc. util. (RDU)
Calvo criterion

Effective + + + + +
Non-wasteful + + + + +
Flexible + + + + +
Sustainable + + + + +

Chichilnisky criterion
Effective + − (+) c (+) c −
Non-wasteful + n.a. (+) c (+) c n.a.
Flexible + n.a. (+) c (+) c n.a.
Sustainable + n.a. (+) c (−) c n.a.

(a) For high functional share of capital only. (b) For high high functional share
of capital and low functional share of resource only. (c) In the equilibrium of an
intergenerational game.
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